EXTENDING THE PRODUCT OF TWO REGULAR BOREL MEASURES

BY

ROY A. JOHNSON

1. Introduction

Let X be a compact Hausdorff space, and let B(X) denote the Borel sets of X. A Borel measure on X is a finite, nonnegative, countably additive measure on B(X), and a Borel measure μ on X is regular if $\mu(E) = \sup \{\mu(K) : K \subset E \text{ and } K \text{ is compact} \}$ for all E in B(X).

If μ and ν are regular Borel measures on compact Hausdorff spaces X and Y, respectively, then it is well known that the product measure $\mu \times \nu$ on $B(X) \times B(Y)$ has an extension to a regular Borel measure $\mu \otimes \nu$ on $X \times Y$. In this paper we give some partial answers to the following open question: Does $\mu \times \nu$ have only one extension to a Borel measure on $X \times Y$? Equivalently, if ρ is a Borel measure on $X \times Y$ such that $\rho(E \times F) = \mu(E)\nu(F)$ whenever $E \in B(X)$ and $F \in B(Y)$, is ρ regular? In particular, necessary conditions and sufficient conditions are given for the existence of a nonregular Borel extension of $\mu \times \nu$.

We pause to consider an equivalent statement for the condition that $\mu \otimes v$ is the only extension of $\mu \times v$ to a Borel measure on $X \times Y$.

THEOREM 1.1. The following are equivalent:

- (1) If ρ is a Borel measure on $X \times Y$ and $\rho|_{B(X) \times B(Y)} = \mu \times v$, then $\rho = \mu \otimes v$.
- (2) If λ is a Borel measure on $X \times Y$ and $\lambda|_{B(X) \times B(Y)}$ is absolutely continuous with respect to $\mu \times \nu$, then λ is absolutely continuous with respect to $\mu \otimes \nu$.

Proof. In order to show that (1) implies (2), let λ be a Borel measure on $X \times Y$ such that $\lambda|_{B(X) \times B(Y)} \ll \mu \times \nu$. We wish to show that $\lambda \ll \mu \otimes \nu$. Suppose otherwise. Then there exists a Borel set E in $X \times Y$ such that $\mu \otimes \nu(E) = 0$ and $\lambda(E) > 0$. Choose F in $B(X) \times B(Y)$ such that $\lambda(E) = \lambda(E \cap F)$ and such that $\mu \times \nu(F)$ is as small as possible under the requirement that $\lambda(E) = \lambda(E \cap F)$. Then $(\mu \times \nu)_F \ll \lambda$. That is, $(\mu \times \nu)(F \cap G) = 0$ whenever G is in $B(X) \times B(Y)$ and $\lambda(G) = 0$. Otherwise, we would have $\lambda(E) = \lambda(E \cap (F - G))$ and $\mu \times \nu(F - G) < \mu \times \nu(F)$.

Received November 15, 1978.

^{© 1980} by the Board of Trustees of the University of Illinois Manufactured in the United States of America

By the Radon-Nikodým theorem, there exists a nonnegative function f on $X \times Y$ such that f is measurable with respect to $B(X) \times B(Y)$ and $\mu \times v_F(H) = \int_H f \, d\lambda$ for all H in $B(X) \times B(Y)$. If $M \in B(X \times Y)$, define

$$\rho(M) = \int_M f \, d\lambda + \mu \otimes v(M - F).$$

Then ρ is a Borel measure on $X \times Y$ and $\rho|_{B(X) \times B(Y)} = \mu \times v$. Since $\mu \times v_F$ and λ_F have the same sets of measure 0 in $B(X) \times B(Y)$, we may assume that the function f is strictly positive on F. Then since $\lambda(E \cap F) > 0$, we have $\rho(E \cap F) = \int_{E \cap F} f \, d\lambda > 0$. Hence, $\rho(E \cap F) > 0$ and $\mu \otimes v(E \cap F) = 0$, which violates the hypothesis of (1). Therefore, $\lambda \ll \mu \otimes v$.

In order to show that (2) implies (1), let ρ be a Borel measure on $X \times Y$ such that $\rho|_{B(X) \times B(Y)} = \mu \times v$. By the hypothesis of (2), ρ is absolutely continuous with respect to the regular Borel measure $\mu \otimes v$. Hence, ρ is a *regular* Borel measure on $X \times Y$ [4, Exercise 52.9]. Since ρ extends $\mu \times v$, it must therefore be $\mu \otimes v$ and we are done.

Notice that $\mu \otimes v$ is the only extension of $\mu \times v$ to a Borel measure (whether regular or not) on $X \times Y$ if any one of the following equivalent statements holds:

- (1) $\mu \times v$ and $\mu \otimes v$ have the same completion.
- (2) Every compact set in $X \times Y$ is $\mu \times v$ -measurable.
- (3) Every compact set in X × Y with positive μ ⊗ v-measure contains a set in B(X) × B(Y) with positive μ × v-measure.
- (4) Every Borel set in X × Y with zero μ ⊗ v-measure is contained in some set in B(X) × B(Y) with zero μ × v-measure.

2. Necessary conditions for a nonregular Borel extension of $\mu \times \nu$

THEOREM 2.1. Suppose some nonregular Borel measure on $X \times Y$ extends $\mu \times \nu$. Then there exists a compact set K in $X \times Y$ and a nonzero Borel measure λ on $X \times Y$ with the following properties:

- (1) $\mu \times v_*(K) = 0$ and $\mu \times v^*(K) > 0$.
- (2) If S(K) is the smallest σ -algebra of subsets of $X \times Y$ containing $B(X) \times B(Y)$ and K and if π is that unique measure on S(K) such that $\pi(K) = 0$ and $\pi(H) = \mu \times \nu^*(H \cap K)$ if $H \in B(X) \times B(Y)$, then $\lambda|_{S(K)} \ll \pi$.

Proof. Suppose ρ is a nonregular Borel measure on $X \times Y$ which extends $\mu \times v$. Since ρ is not absolutely continuous with respect to $\mu \otimes v$, there is a Borel set E in $X \times Y$ such that $\rho(E) > 0$ and $\mu \otimes v(E) = 0$. Choose a set F in $B(X) \times B(Y)$ such that $\rho(E) = \rho(E \cap F)$ and such that $\mu \times v(F)$ is a minimum under the requirement that $\rho(E) = \rho(E \cap F)$. Since $\mu \otimes v(E \cap F) = 0$ and $\rho(E \cap F) > 0$ and since $\mu \otimes v(F) = \rho(F)$, we have $\mu \otimes v(F - E) > \rho(F - E)$. Then since $\mu \otimes v$ is regular, there exists a compact set K contained in F - E.

such that $\mu \otimes v(K) > \rho(F - E)$. Necessarily, $\mu \otimes v(K) > \rho(K)$. In order to see that $\mu \times v_*(K) = 0$, suppose $G \in B(X) \times B(Y)$ and $G \subset K$. Then $G \subset F - E$, so that $E \cap F = E \cap (F - G)$. Hence, $\mu \times v(F - G) = \mu \times v(F)$. Hence, $\mu \times v(G) = \mu \times v(F \cap G) = 0$, so that $\mu \times v_*(K) = 0$.

Choose a compact G_{δ} set L containing K such that $\mu \otimes v(K) = \mu \otimes v(L)$ [1, Theorem 59.1]. Necessarily $L \in B(X) \times B(Y)$. Let $\lambda = p_{L-K}$. That is, $\lambda(E) = \rho((L-K) \cap E)$ for all $E \in B(X \times Y)$. Then λ is a Borel measure on $X \times Y$, and λ is nonzero since

$$\lambda(L) = \rho(L-K) = \rho(L) - \rho(K) > \mu \otimes \nu(L) - \mu \otimes \nu(K) = 0.$$

Now let S(K) be the σ -algebra generated by K and the members of $B(X) \times B(Y)$. Each member of S(K) has the form $(P \cap K) \cup (Q - K)$, where P and Q are in $B(X) \times B(Y)$ [4, Exercise 16.2a]. Let π be that unique measure on S(K) such that $\pi(K) = 0$ and

$$\pi(H) = \mu \times \nu^*(H \cap K)$$
 if $H \in B(X) \times B(Y)$.

It is easy to see that $\pi((P \cap K) \cup (Q - K))$ must equal $\mu \times v^*(Q \cap K)$. Moreover, the formula $\pi((P \cap K) \cup (Q - K)) = \mu \times v^*(Q \cap K)$ is well defined, and the resulting set function π is indeed a measure on S(K) [1, Exercise 6.10].

We show that $\lambda|_{S(K)} \ll \pi$. Suppose $\pi((P \cap K) \cup (Q - K)) = 0$, which means that $\mu \times \nu^*(Q \cap K) = 0$. Since $\mu \times \nu(L) = \mu \times \nu^*(K)$, we have

$$\mu \times v(Q \cap L) = \mu \times v^*(Q \cap K) = 0.$$

Then

$$\lambda((P \cap K) \cup (Q - K)) = \rho((Q \cap L) - K) \le \rho(Q \cap L) = \mu \times \nu(Q \cap L) = 0.$$

Therefore, $\lambda|_{S(K)} \ll \pi$ and the proof is complete.

As a consequence of Theorem 2.1, we have the following necessary condition for the existence of a nonregular Borel extension of $\mu \times \nu$.

THEOREM 2.2. Suppose some nonregular Borel measure on $X \times Y$ extends $\mu \times v$. Then there exists a compact set K in $X \times Y$ such that $\mu \times v_*(K) = 0$ and a Borel measure λ on $X \times Y$ such that $\lambda(H - K) > 0$ if $H \in B(X) \times B(Y)$ and H contains K.

Proof. Let K be the compact set and λ the Borel measure given in Theorem 2.1. Suppose $H \in B(X) \times B(Y)$ and H contains K. If π is the Borel measure described in Theorem 2.1, then

$$\pi((X \times Y) - H) = \mu \times v^* \text{ (empty set)} = 0$$

and $\pi(K) = 0$. Then $\lambda((X \times Y) - H) = 0$ and $\lambda(K) = 0$ since $\lambda|_{S(K)} \ll \pi$. Necessarily, $\lambda(H - K) > 0$ since λ is nonzero.

Recall that a cardinal number is said to be *measurable* if there exists a set Z with that cardinality and a finite, nonzero, countably additive measure on the

class of all subsets of Z such that each singleton has measure zero. If such a cardinal exists, it is greater than the first uncountable cardinal ω_1 [6, pp. 141–143].

THEOREM 2.3. Suppose K is a compact set in $X \times Y$ such that $\mu \times v_*(K) = 0$, and suppose λ is a Borel measure on $X \times Y$ such that $\lambda(H - K) > 0$ whenever $H \in B(X) \times B(Y)$ and H contains K. In other words, suppose K and λ satisfy the conclusion of Theorem 2.2. If H is a set in $B(X) \times B(Y)$ such that $K \subset H$, then H - K cannot be expressed as a disjoint union of sets $\{U_i\}_{i \in I}$ such that each U_i is an open F_{σ} in H unless the cardinality of I is a measurable cardinal.

Proof. Suppose $H \in B(X) \times B(Y)$, where $K \subset H$ and H - K is a disjoint union of sets $\{U_i\}_{i \in I}$ such that each U_i is an open F_{σ} in H. Since λ is finite, only countably many of the U_i 's have positive λ -measure. By subtracting such U_i 's from H, we may assume without loss of generality that each U_i has zero λ -measure. Since each union of U_i 's is open in H, each union of U_i 's is a Borel set in $X \times Y$. If Z is a set with the same cardinality as I, then there is a natural correspondence between the class of all unions of the U_i 's and the class of all subsets of Z. Since $\lambda(H - K) > 0$ and $\lambda(U_i) = 0$ for each $i \in I$, the measure λ induces a finite, nonzero, countably additive measure on the class of all subsets of Z such that each singleton has measure zero. Hence, the cardinality of I is measurable in this case.

Theorems 2.2 and 2.3 can be combined to give the following conditions under which $\mu \otimes v$ is the only extension of $\mu \times v$ to a Borel measure on $X \times Y$.

COROLLARY. Suppose for each compact set K in $X \times Y$ there exists a superset $H \in B(X) \times B(Y)$ and a disjoint collection of sets $\{U_{i}\}_{i \in I}$ such that

- (1) U_i is an open F_{σ} in H for each i in I,
- (2) $H K = \bigcup \{U_i : i \in I\}, and$
- (3) cardinality of I is not a measurable cardinal.

Then $\mu \otimes v$ is the only extension of $\mu \times v$ to a Borel measure on $X \times Y$.

The conditions given in the corollary may at first seem contrived and unlikely to occur in practice. Let us therefore look at an example where these conditions are satisfied. Let X = [-1, 1) with the smallest topology containing sets of the form [-b, b) or X - [-b, b), where $0 \le b \le 1$. Then X is a compact Hausdorff space and $B(X) \times B(X)$ is properly contained in $B(X \times X)$ [5, pp. 172–173]. If K is any compact set in $X \times X$, let

$$H = K \cup \{(x, y) : (-x, y) \in K\}.$$

It can be seen that H is a compact G_{δ} containing K and that each vertical cross-section of H - K is an open F_{σ} in H. That is, $(H - K) \cap (\{x\} \times Y)$ is an open F_{σ} in H for each x in X.

Under the assumption that c is not a measurable cardinal, we can thus express H - K as a disjoint union of sets $\{U_i\}_{i \in I}$ such that each U_i is an open F_{σ} in H and such that the cardinality of I is not a measurable cardinal. Hence, if μ and v are (necessarily regular) Borel measures on X, then $\mu \times v$ has only one extension to a Borel measure on $X \times X$.

The referee has observed that if the set H in the preceding corollary is compact, then H - K is weakly θ -refinable. In other words, each open cover of H - K can be refined by a sequence of families V(n) of open sets such that if $x \in H - K$, then there exists n(x) such that x is in some member of V(n(x)) and only in a finite number of members of V(n(x)). Of course, the members of each V(n) can be arranged to be contained in one of the U_i 's of the corollary. By the reasoning of [3, Theorem 3.9], each locally zero Borel measure on H - K is 0 on H - K. Now choose a set M in $B(X) \times B(Y)$ such that $K \subset M \subset H$ and such that $\mu \otimes v(M - K) = 0$. If ρ is an extension of $\mu \times v$ to a Borel measure, than ρ_M is locally zero on M - K. Hence $\rho(M - K) = 0$ so that $\rho(K) = \mu \otimes$ v(K). These ideas lead to the following strengthening of the corollary to Theorem 2.3.

THEOREM 2.4. Suppose for each compact set K in $X \times Y$ there exists a superset $H \in B(X) \times B(Y)$ such that H - K is weakly θ -refinable and such that the cardinality of each discrete subspace of H - K is not a measurable cardinal. Then $\mu \otimes v$ is the only extension of $\mu \times v$ to a Borel measure on $X \times Y$.

3. Sufficient conditions for a nonregular Borel extension of $\mu \times \nu$

THEOREM 3.1. Suppose K is a compact set in $X \times Y$ such that $\mu \times v_*(K) = 0$ and $\mu \times v^*(K) > 0$. Let S(K) be the smallest σ -algebra of subsets of $X \times Y$ containing $B(X) \times B(Y)$ and K. Let π be that unique measure on S(K) such that $\pi(K) = 0$ and such that $\pi(H) = \mu \times v^*(H \cap K)$ if $H \in B(X) \times B(Y)$. If there exists a nonzero Borel measure λ on $X \times Y$ such that $\lambda|_{S(K)} \leq \pi$, then $\mu \times v$ can be extended to a nonregular Borel measure on $X \times Y$.

Proof. Suppose λ is a nonzero Borel measure on $X \times Y$ such that $\lambda|_{S(K)} \ll \pi$. If $F \in B(X) \times B(Y)$ and $\mu \times v(F) = 0$, clearly $\pi(F) = 0$ so that $\lambda(F) = 0$. Hence, $\lambda|_{B(X) \times B(Y)} \ll \mu \times v$. Choose a set G in $B(X) \times B(Y)$ such that $K \subset G$ and such that $\mu \times v^*(K) = \mu \times v(G)$. Then $\pi(X \times Y - G) = \mu \times v^*$ (empty set) = 0, so that $\lambda(X \times Y - G) = 0$. Hence, $\lambda(G) > 0$ since λ is nonzero. Since $\pi(K) = 0$ and since $\lambda|_{S(K)} \ll \pi$, we have $\lambda(K) = 0$. Hence, $\lambda(G - K) > 0$. However, $\mu \otimes v(G - K) = 0$, so that λ is not absolutely continuous with respect to $\mu \otimes v$. From Theorem 1.1, we see that $\mu \times v$ can be extended to a nonregular Borel measure on $X \times Y$.

Under what conditions can there exist a nonzero Borel measure λ on $X \times Y$ such that $\lambda|_{S(K)} \ll \pi$, where S(K) and π are the σ -algebra and measure given in Theorem 3.1? If π can be extended to a Borel measure on $X \times Y$, then that

extension will serve as the measure λ . Such an extension is possible for example, if the domain of completion of π includes the Borel sets of $X \times Y$. More generally, we have the conditions of the following theorem:

THEOREM 3.2. Let π be the measure described in Theorem 3.1. Let π^S be the smallest (countably additive) measure on $B(X \times Y)$ such that $\pi^*(E) \leq \pi^S(E)$ for all Borel sets E in $X \times Y$. If $0 < \pi^S(D) < \infty$ for some Borel set D, then there exists a nonzero Borel measure λ on $X \times Y$ such that $\lambda|_{S(K)} \ll \pi$. Hence, $\mu \times \nu$ can be extended to a nonregular Borel measure on $X \times Y$ in this case.

Proof. Of course, $\pi^{S}|_{S(K)} \ll \pi$. Now suppose $0 < \pi^{S}(D) < \infty$ for some Borel set D. Let $\lambda = \pi_{D}^{S}$. That is, $\lambda(E) = \pi^{S}(D \cap E)$ for all E in $B(X \times Y)$. Then λ is a nonzero Borel measure on $X \times Y$ such that $\lambda|_{S(K)} \ll \pi$.

REFERENCES

- 1. S. K. BERBERIAN, Measure and integration, Macmillan, New York, 1965.
- 2. D. H. FREMLIN, Products of Radon measures: a counter-example, Canad. Math. Bull., vol. 19 (1976), pp. 285–289.
- 3. R. J. GARDNER, The regularity of Borel measures and Borel measure-compactness, Proc. London Math. Soc. (3), vol. 30 (1975), pp. 95–113.
- 4. P. R. HALMOS, Measure theory, Van Nostrand, New York, 1950.
- 5. R. A. JOHNSON, A compact non-metrizable space such that every closed subset is a G-delta, Amer. Math. Monthy, vol. 77 (1970), pp. 172–176.
- 6. S. ULAM, Zur Masstheorie in der allgemeinen Mengenlehre, Fund. Math., vol. 16 (1930), pp. 140-150.

WASHINGTON STATE UNIVERSITY PULLMAN, WASHINGTON