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ON THE HOMOTOPY THEORY OF
TOPOGENIC GROUPS AND GROUPOIDS

Introduction

In [1], following a line ofdevelopment begun by Quillen [12] and pursued by
Kan and Thurston [6], a new connection between group theory and homotopy
theory was described. This is only one of a number of analogous relations
between homotopy and various algebraic theories: simplicial sets, small
categories [8] and monoids [10] are examples. Among these however, group
theory is evidently unique in its intrinsic interest: there is reason to hope for a
profitable flow of information between these two domains.

This paper is intended as a step in the exploitation of this connection. Its
primary concern is to show how some fundamental notions and constructions
of homotopy theory may be paralleled within group theory. It is of course our
hope that these may prove useful for the development of group theory. A first
indication of how this might happen is provided by a characterization entirely
within group theory of the groups of Quillen’s algebraic K-theory.
To be somewhat more precise, we shall introduce our homotopy theory in

what we call here the category of topogenic groups, that is to say groups with a
distinguished perfect normal subgroup. This homotopy theory corresponds to
that of pointed connected CW complexes. It is obviously desirable to have a
non-pointed, not-necessarily-connected theory as well. This is provided by the
category of topogenic groupoids. Both of these categories are described in
Section 1 below, and the connection with homotopy theory alluded to above is
set forth in Section 2. In Section 3 we present in more detail our program for
introducing homotopy theory in these categories; this is mediated by two
notions of "fibration", viz. weak fibrations and Kan fibrations.
Weak fibrations are designed to exhibit the homotopy fibres, and more

generally homotopy pullbacks, of morphisms of topogenic groups and group-
oids. The principal result is an existence theorem (8.3) which, inter alia, allows
a purely group-theoretic characterization (Section 9) of homotopy groups of
topogenic groups and thus in particular of Quillen’s algebraic K-theory. In the
text this existence theorem is deduced from the theory of Kan fibrations. An
alternate version, with some advantage of economy, appears in Appendix B.
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This description of the homotopy groups appears as a generalization of the
Schur multiplicator, and thus also generalizes Milnor’s description ofthe group
Kz(A), for a ring A, in terms of the Steinberg group (cf. Kervaire [7]). In
Appendix A below we review some of the relevant facts about central exten-
sions and comment, in the light of later developments, on some terminology
and notation.
Kan fibrations are defined by a homotopy lifting property, in analogy with

the corresponding notion in the category of simplicial sets. The analogy is less
than perfect, but many of the maneuvers of homotopy,theory survive the
transition. In particular, for Kan groups (the analogue of Kan complexes)we
can parallel the topological constructions of homotopy groups and function
spaces, in virtue of a "homotopy extension" theorem (Section 12)which is
among our principal results.

1. Topogenic groups and groupoids

We denote by ffd the category of groupoids and homomorphisms (i.e. func-
tors) between them and by ffp the full subcategory of groups. A groupoid is
uniquely a coproduct of connected subgroupoids; if each of these is a group we
shall say that the groupoid is totally disconnected.
A congruence, in the sense of category theory, in a groupoid F is determined

by the morphisms in F congruent to some identity, and thus by a totally
disconnected subgoupoid @ F, containing all the objects of F and subject to
the condition that for any s: x ---, y in F, s-l(y, y)s (x, x). We identify
with the congruence and write F/@ for the corresponding quotient groupoid. In
particular, a congruence in a group is just a normal subgroup.
A topogenic 9roupoid F is a groupoid F provided with a congruence F all of

whose groups are perfect. These, provided with the obvious morphisms, viz.
homomorphisms 4: F -o A which restrict to 4: F ---, A, form the category
d. Topogenic 9roups are just topogenic groupoids which happen to be
groups, and are the objects of the full subcategory agp ad.
Thefundamental 9roupoid functor r: ffd ---, ffd takes F to F/F. Its restric-

tion rl: p ---, @ is the fundamental 9roup functor.
All four of these categories are complete and cocomplete. The structure of

limits and colimits in ffd and ffp is well understood. In order to describe those
in ffd and ap@ we introduce the categories @d of totally disconnected perfect
groupoids and ’ of perfect groups. Colimits in these are just colimits in ffd
and ap; limits may be constructed in the larger category and reflected into the
smaller one by taking the largest perfect subobject. Limits and colimits in
and ffp are then completely specified by the following proposition.

PROPOSITION 1.1. (i)
A --, (A, A).

The functor F-- FI: d--,d has the left adjoint
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(ii) The functor r r: has the left adjoint A-- (A, q)), whereO
is the discrete groupoid on ob F, and the right adjoint A- (A,/), where [k is the
largest perfect totally disconnected subgroupoid of A.

(iii) The functor : d -, d has the right adjoint A-- (A, O).
Entirely analogous statements hold for fqp. We shall in general use the

functor A (A, A) to embed d in f#d; in the same way we imbed in ffp
and thus regard a perfect group P as a topogenic group.
We shall frequently have occasion to distinguish in Cd, Cp, Cdg cp the

subcategories ifqd, of injective morphisms. From the theory of free products
with amalgamation in group theory and its obvious extension to groupoids we
get the following assertion.

PROPOSITION 1.2. Ira pushout in fgd (f#p) has its two initial morphisms in
ifgd (iffp) then the other two are also in iNd, (icp).

We shall refer to such diagrams as i-pushouts. In ap the corresponding
notion is better known as a "free product with amalgamation".

Finally, intermediate between id and ffd, or ffd and ffd are the
categories Y(qd, Yffd containing the morphisms which as functors are faithful,
i.e. injective on each of the groups F(x, x).

2. The classifying space and the Quillen functor

We shall write CW for the category of CW complexes and cellular maps and
CW for the category of pointed connected CW complexes and basepoint
preserving cellular maps. The corresponding homotopy categories are HoCW
and HoCW’. They are at once quotient categories with respect to the homo-
topy congruence and categories of fractions with respect to homotopy
equivalences.
The fundamental groupoid functor g: CW ffd has its usual sense except

that for neatness we restrict ob gX to be the set of O-cells of X. The fundamen-
tal group gl: CW’-, ffp is also the usual one. A local coefficient system on a
CW complex X is a functor A: zX ---, Ab. For a pointed connected CW com-
plex X this is equivalent to a g X module; we shall not distinguish the notions.
A mapf: X - Y is a homological equivalence if for all local coefficient systems A
in Y it induces isomorphisms H(X; a gf)H(Y; a), where H(-;A) de-
notes homology with respect to the’ local coefficient system A.
The well-known theorem of J. H. C. Whitehead asserts that f: X ---, Y is a

homotopy equivalence if and only if it is a homological equivalence and gfis an
equivalence of groupoids.
The classifying-space functor B: ffd CW takes a groupoid F to the geome-

trical realization of its nerve (cf. [14]). Thus, canonically, BF F; all higher
homotopy groups are 0. Restricted to ffp, B takes its values in CW. We use the
same letter for the functor ffp - CW, which is nothing but the "classical" bar
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construction, as well as the composition of either with the canonical functor to
the homotopy category, relying on the context to indicate which one is
intended.
The homology of a groupoid F with coefficients A: F --* ab is H(BF, A).
The Quillen functor B+: HoCW may be introduced by the following

theorem, which summarizes results of the literature [12], [9].
THEOREM 2.1. There exists a functor B +" add-, HoCW, supplied with a

natural transformation br: BF -* B+F, characterized up to canonical isomor-
phism by either of the following equivalent conditions:

(i) br: B+F is universal for f: BF -, X such that rf is trivial on F1;
(ii) br is a homological equivalence and induces an equivalence ofgroupoids

rF rB + F.
Furthermore B+F has in CW a representative BF X such that by is re-

presented by the inclusion and X is a three-dimensional complex with
X BF. IfF isfinitely generated (countable) then X may be taken to befinie
(countable).

In the pointed case B+" apN HoCW and b are treated in entirely
analogous fashion.

If follows from the Whitehead theorem that if 4" F A in a3p then

B+"B+FB+A
if and only if for any A" A ab it induces H(F, Ab) H(A, A)and
rub" rF---, rA is an equivalence of groupoids. We shall call such morphisms
weak homotopy equivalences. The pointed case is entirely analogous.

Denoting the categories of fractions with respect to weak homotopy equi-
valences by Ho d, Ho ap we get from B +, functors

B+" Ho Nd--, HoCW,/+" Ho p---, HoCW.
THEOREM 2.2. The functors B+ are equivalences of categories.
This proved in the connected case in [1]; the other follows at once.
There is a slightly sharper characterization of morphisms in the homotopy

categories (cf. [1 ]).
PROPOSITION 2.3. Any morphism B + F B+ A is of the form (B + )- X(B+)

where is a weak homotopy equivalence.
We record, finally, the following important property orB+: p HoCW.
(2.4) If G, K are topogenic groups with K Go and G= K then

B+K B+ G is the covering space corresponding to K r 1G. In particular
K= K G gives the universal covering.

3. Homotopy theory in d and

In view ofTheorem 2.2 it becomes resonable to ask whether, in some sense, it
is possible to construct in fd and rNp/the kind of homotopy theories fami-
liar in categories of spaces or simplicial sets. Among the senses which come to
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mind the foremost is that formalized by Quillen under the name of "model
category" [13]. While we shall not attempt to formulate a theorem asserting that
these categories cannot be provided with such a structure, a number of con-
siderations, not least among them the existence of arbitrarily large simple
groups, make it seem most unlikely that this might be done. Alternate propo-
sals, e.g. "h-c categories" [4], seem even less promising.
What, then, is to count as "doing homotopy theory" in ffd and adp?

Without in the least attempting to be exhaustive we may pose, as a start, two
test questions.

(i) in Ho ffd
_
HoCW and Ho adp

_
HoCW there exist certain homo-

topy limits and colimits, viz. homotopy pullbacks and pushouts: among these
are the homotopy fibres and cofibres. Can these be identified within add and
p?

(ii) In any model category there is a homotopy congruence such that for
large classes of suitable objects the morphisms in the homotopy category are
just the homotopy classes of morphisms in the model category. Does a similar
situation obtain in our categories?
We shall, in the course of this paper, answer both of these questions in the

affirmative.
Let us begin by identifying the homotopy pushouts and pullbacks in HoCW

and HoCW’. Since the pointed and unpointed cases are completely parallel we
shall confine our attention to the latter. Furthermore, in the interest of brevity,
we shall replace HoCW by the equivalent category Ho Y-, where Y- is the
category of spaces of the homotopy type of a CW complex.
By a c-pushout in Y- we mean a pushout in which at least one of the two

initial maps is a cofibration. The smallest class of commutative squares in
Ho Y-, closed with respect to isomorphism of diagrams and containing the
images of the c-pushouts in ,Y-, is the class of homotopy pushouts on Ho #/-. We
shall describe this situation by saying that the homotopy pushouts are deter-
mined by the c-pushouts in ,Y-. The homotopy pullbacks in Ho Y- are in analo-
gous fashion determined by the)pullbacks in ,Y-, i.e. by the pullbacks in ,- in
which at least one of the two terminal maps is a fibration.
We shall show next that the homotopy pushouts in Ho

Ho ffp
_
Ho Y-" are in the same sense determined by the i-pushouts in

and ,C#p,/, thus dealing with half of question (i). The other half needs more
work. We shall in fact introduce below two notions of fibration--weak fibra-
tions and Kan fibrations--and show that.fipullbacks in either sense similarly
determine homotopy pullbacks.

Finally, associated with the Kan fibrations we shall discover a class of
topogenic groups--the Kan groups--whose homotopy theory is particularly
simple, giving us an appropriate answer to question (ii).

Returning to homotopy pushouts we now prove the following assertion.
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THEOREM 3.1. The i-pushouts in d3 (p3) determine in the associated
homotopy category the family of homotopy pushouts.
We may confine ourselves to the case of ad3, the other being analogous. The

theorem is immediately implied by the following three lemmas.

LEMMA 3.2. B + takes i-pushouts in d@ into homotopy pushouts in
HoCW

_
Ho -.

Suppose that

1 2

F0 F F F2 Fo

is a pushout with 7, 72 injective and let

B (BF BF Q BF BF)
be a pushout in CW.
By a standard argument, has the homotopy type of BF. Further, represent

B+?, B+?z by inclusions of subcomplexes and construct the pushout

B + (B+F0 B+F Q+ B+F2 B+F0).
There is then a morphism B B+ composed of maps b representing br,, O,
1, 2 and q:

It follows from the generalized van Kampen theorem that Q + has fundamen-
tal groupoid equivalent to F and from the exactness of the Mayer-Vietoris
theorem with local coefficients that q is a homological equivalence, so that
q: Q Q+ represents br: BF B+F.

LEMMA 3.3. Any groupoM can be imbedded in an acyclic one.
Since any groupoid imbeds in a connected one we may as well begin with a

connected groupoid F. Choose x ob F and imbed F(x, x)in an acyclic group
D. Then the pushout of F F(x, x) D is acyclic.

LEMMA 3.4. Iff: B+F X in HoCW then there is an injection : F A in
d such that f B + in (B+F HoCW).

In view of Theorem 1.1 we may as well suppose that f= B+ for some

: F O. Let : F A imbed F in an acyclic A and set

?= < >: r--,O x A.

4. On the equivalence/+ some nonfunctorial constructions

We proceed next to a closer analysis of the equivalence of categories asserted
in Theorem 2.2. For brevity we confine ourselves to the pointed case. In [1]
there was constructed a functor L: i#g" ffp, where i3(" is the category of
pointed connected simplicial complexes, and a natural transformation
t: BI2K K], where ]K is the geometric realization, such that for each K,
tK is a homological equivalence and n K is surjective. It follows that the kernel
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L1K of nltr is perfect. Thus we have defined a functor L" i,)/’o _. (p and tK
factors canonically as

bLK K
BLK B+LK JKJ

with tK an isomorphism.
The functor L has the further property that if K is a countable simplicial

complex then LK is a countable group.
While we cannot compose B+ and L in the other order we shall attempt to

achieve a similar end by means of the following nonfunctorial construction.
Suppose that G is a topogenic group. Then b" BG B+G may be lifted in
many ways) to i.. That is to say we may find/"/G /+G in i#g" such that
]/G] is isomorphic in HoCW to b6" we shall allow ourselves to write, by a
harmless abuse of notation, ]/1 b. It follows from 2.1 that if G is countable
then/+G may be chosen countable as well.
Now t(G)" BLBG G BG and, setting e, n t(/G): L;G G we

have t(/G)= B%. Let MG= LBG and MG= ,(G). Since t(;G)is a
homological equivalence MG is perfect and we have constructed a topogenic
group MG and a morphism %" MG G in ffp.

It follows immediately from the definition of B+G that L/ takes MaG into
L/+G and thus defines a morphism fl" MG LB+G.

Let us now consider the following diagram in HoCW’"

BLObG BeG t(BG)

-(B+ G)

We make the following claim.

LEMMA 4.2. The diagram 4.1 commutes and B+fl, B+% are isomorphisms.
The two squares commute because of the naturality of b. Further, each

instance of b is a homological equivalence, thus also BLa. Similarly t(BG) is a
homological equivalence. By construction, n B+fla and nl B+% are isomor-
phisms. It follows from the Whitehead theorem that B+ fla and B+e are iso-
morphisms. Finally, the commutativity

(4.3) i-( + G)B + B+

follows from the universal property of b(MG), since -(/+ G)b(L+ G) t(B + G)
and, by the naturality of t, t(B + G)(BL)= b t(G), so that

(+G)(B +G)b(MG) (B + eG)b(MG).
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The constructions we have just introduced enjoy the following naturality
property. Suppose 4" W G in p and let the following commutative dia-
gram in i,/-, lift the corresponding diagram in HoCW’"

bw

Then L/q5 takes MIW into M1G and thus defines Mc" MW--, MG. The
diagram

(4.4)

W W

L;+ W MW W

[3G G

L:+G MG G
commutes.

5. Relative homotopy and conjugacy

We shall have to deal with relative as well as absolute homotopy. If 4) and
are morphisms G W inp agreeing on U c G we should like to be able to
say what it means for B+b and B+O to be "homotopic tel B+ U". Since B+

takes its values in HoCW rather than CW this does not a priori make sense,
but we can explicate it in the following way.

If A is in CW we denote by CW (rel A) the category of CW complexes
containing A as a subcomplex with, as morphisms, maps extending the identity
on A. Homotopy rel A, i.e. stationary on A, is a congruence in this category.
The category HoCW" (rel A) is also the category of fractions with respect to
maps such that X Y is a homotopy equivalence.
CW (rel A) is itself a covariant functor of A: if 9: A --, B then A X goes to

its pushout along 9. If 9 is a homotopy equivalence this gives rise to an equi-
valence of categories HoCW" (rel A) --, HoCW" (rel B).

Similarly we define, for a topogenic group K, the category ffp(rel K) whose
objects are topogenic groups containing K as a subgroup. Now let us fix, in
CW, a model for B+K D BK. We may define a functor

Br+e, p(rel K) HoCW’(rel B+ K)
by observing that, for G D K in ffpA, a morphism

(5.1) B+K w BGB+G
which restricts to the obvious ones on B+K and BG is universal in
HoCW’(rel B+K) for morphisms f such that (rtlf)G 1. The argument, by
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obstruction theory, is identical to the one for the absolute case, since the map of
5.1 is easily seen to be a homological equivalence.

This whole construction is, up to equivalence of categories, independent of
the choice of a model for B + K. Thus we shall allow ourselves to write

Bt: p(rel K) HoCW’(rel B+ K)
even when no special choice is envisaged. We may now express the notion of
relative homotopy of morphisms 4, q as above by interpreting it simply as
B+, Br+e, .

It would be possible to proceed analogously in C#d and CW. But relative
homotopy is the nontrivial case is always pointed so that there would seem to
be nothing to be gained by this generalization.
That there is a connection between conjugacy of homomorphisms and hom-

otopy seems intuitively obvious. We shall begin now to explore this connection.
Here however it is useful to distinguish the unpointed case, i.e.
B/ d HoCW.

PROPOSITION 5.2. /fb, O: F A in (d and there exists a natural transfor-
mation dp then B+dp B + .

Such a natural transformation would give a morphism F x I --, X in Cd
where I is the indiscrete groupoid on two objects. It is clear however that
B + (F x I) B+ F, via the projection, is an isomorphism.
The existence of such a natural transformation, which is of course always an

isomorphism, is a congruence in fide, as well as in the subcategories YCd,
f#d. We shall write Hof#d, HoYf#d, HoCd for the corresponding
quotient categories.
A caution is necessary here. If F and A are groups then a natural transforma-

tion q if, where qS, : F --, A, is just a conjugation C for some x A with
C,q5 #. From its existence it does not follow that B/p B/ff where B+ is
the "pointed" functor f#p HoCW. This last relation we shall do better to
understand by considering it as a special case of relative homotopy, to which
we next proceed.
The functor

(OK)

U (K UxK)
from p to p(rel K) has the right adjoint G--ZG where ZG is th
centralizer of K in Go and ZG is the largest perfect subgroup ofZG c G.
We may refer to Z as th centralizer functor. The bijtion

(5.3) ,: Cp(U, ZG) Cp(rel K)(U x K, G)
is defined by multiplication in GO

If K is centerless--i.e, the center of K is trivial--then also

(5.4) (t,a: p(U, ZG) iCp(rel K)(U K, G).
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In fp(rel K)we introduce a congruence "c making b, " G --. W congru-
ent (b --c O(rel K)) if there is an x ZIW such that Cx b. In the pointed
absolute case, i.e., in fp, this means that Cxb for some x e W1. This
congruence restricts to ifp(rel K) and we may thus construct the quotient
categories Hofp(relK), Hoip(relK). We write HoCp for
Hof#p(rel 1); but note that even if U, G are groups, Hofd’(U, G) and
Hop(U, G)are not in general the same.
The bijection 5.4 induces one on the quotients as well"

(5.5) -(t," HoiCp(U, ZG) UoC/Cp.(rel K)(U K, G).
The connection between conjugacy and relative homotopy, finally, is ex-

pressed by the following proposition.

PROPOSITION 5.6. If dp c (rel K) then Br+el
For its proof we shall need the following lemma.

LEMMA 5.7. If F is a free 9roup, P is a perfect 9roup and : F P is a
homomorphism then d/ may be factorized as F D P with D acyclic. If F is
countable then D may also be taken to be countable.
Choose free generators for F. For each generator x we can find finitely many

elements ux, i, Utx,/of P such that 6x Flux, i, /’/%, i]" Let F1 be the free group
generated by the set {(x, i), (x, i)’}; define 1: F I-*P by (x, i)ux, i,

(x, i)’-U’x,i and th: F - F1 by x --, Fill(x, i), (x, i)’]. Then 1 b q and the
image of th is contained in IF1, F1]. Iterating this construction by similarly
factorizing 1 we arrive at a sequence F F1 - F2"" whose colimit is the
required D.

Returning now to 5.6, observe that we need only prove that for G in
Cp(rel K) and x Z1G, B+Cx I+G. By 5.7 we can find an acyclic D, a
homomorphism : D Z1G and an element e D such that q x. In the
pushout

<K O>
K KxD

G , W

in Cp, B+ <K 0) is an isomorphism, hence also B re!
+ 0. Define p o, P 1" W G

by poO plO 1, pod9 7 prK, plo9 7" where means multiplication in
G, which gives a homomorphism because maps D into the centralizer ofK.
Then BrelP0+ Breip1.+ But poCol,)O 1 and Pl Co1,)0 Cx.
There is a connection between the pointed and the unpointed cases which we

may express in the following way. First we notice that for K, G in
nlG G/G operates on HoCpK, G)(on Ho’p(K, G))with orbit
space Hoc (#dS(K, G)(resp. HocYd(K, G)). This is analogous to the familiar
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operation, for X, Y in CW’, of rtl Y on HoCW’(X, Y), whose orbit space is
HoCW(X, Y).
PROPOSITION 5.8. If K, G are cp then B + induces a B + G-equivariant

map H% iCSp(K, G) HoCW’(B+ K, B+ G) and

Hot icSp(K, G) HoCW’(B+K, B + G)

Hotff#d(K, G) HoCW(B+K, B+G)
commutes.

6. B + countable factorizations

We have observed above that B and B +, as well as the functor L out of which
we constructed a "homotopy inverse" of B + preserve countability. The factori-
zation lemmas below will also be needed. For the first, compare Kan-
Thurston [6].
LEMMA 6.1. If G is a countable subgroup of the 9roup G then there is a

countable GI Go G such that HGo HG is injective.
Using for example the standard resolution we see that HG is countable,

hence also the kernel of HGa HG. But each cycle belonging to a class in this
kernel in fact bounds in some subgroup of G containing G and generated by
finitely many additional elements. Thus there is a countable G c:_ G2 G such
that the kernel of HG -, HG2 is the same as that of HG HG. Iterating this
procedure we get a sequence G G2 ’’" whose union Go has the required
property.

LEMMA 6.2. Suppose that X is a countable CW-complex, G is a topogenic
group and f: X B + G. Then there is a countable W G such that :/’factors as
XB+WB+G.
We may take for B + G a CW-complex BG w Y where Y is a 3-dimensional

complex with Y BG. Choosing a representative for fin CW we see that its
image lies in BU w Z where U is a countable subgroup of Go and Z is a
countable subcomplex of Y with Z B(U c G). With the aid of 6.1 we can
find a countable WG with WU and W U cG such that
HW HG is injective.

In particular n B + W 0 and n2 B+ W H2 W1 2B+ G H2 G1 is
injective. An easy obstruction-theoretic argument gives the factorization.

COROLLARY 6.3. Suppose that X is a countable CW-complex, U is countable,
O: U G is an inclusion of topogenic groups, fo, fx: X - B+ U and (B + O)fo
(B+O)f. Then there is a countable

UWcG
such that (B + o)fo (B + o)f,.
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In our discussion of Kan groups below we shall want the following applica-
tion of these lemmas.

PROPOSITION 6.4. Suppose that K is a countable topogenic group, that U and
G are in p(rel K), and that U is also countable. If

f: B+ U - Br+e! G
in HoCW’(rel B+ K) then there is a countable K W c G such thatffactors as
Br+e, U --, Br+e, W -- Br+el G.

7. Weak fibrations in

We introduce now a notion of weak fibrations in p and fd; for con-
venience we begin with homomorphisms in /, the category of perfect groups,
corresponding under B/ to the category of 1-connected CW-complexes.
A normal subgroup N of a group G is homologically central if the operation

of GIN on the integral homology HN of N is trivial. Thus for example a
homologically central abelian subgroup is central. IfN is homologically central
in G it follows immediately that N/[N, N] H1 N is homologically central in
G/[N, N], and thus central.
An epimorphism b: U V of perfect groups is a weak fibration if both its

kernel NO and N [N, N] are homologically central in U.

PROPOSITION 7.1. If U V is a weak fibration in then N is perfect, so
that N (N, N) is a topogenic group.
From the homological centrality it follows that the commutative diagram

Hz(N/N1)

Hz(N/N

H2(U/N) HEV

HI N . HNO

0 0

H(N/N)

has exact rows and columns. But also (cf. for example [7] or Appendix A)

H2(U/N1) H2 V

is injective. Thus H N 0.

LEMMA 7.2.
space.

If dp: U V is a weak fibration in @ then B+N is a nilpotent
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From the homological centrality of N it follows that IB/N N/NI
operates trivially on the homology of B /N1, its universal covering space. Nil-
potency follows [11].

PROPOSITION 7.3. If d?" U V is a surjective homomorphism of perfect
9roups with kernel No and N [N, NO], and I is a perfect normal subgroup of
N, then the followin9 are equivalent"

(i) 1 N and dp is a weak fibration"
(ii) B + (N, ) B+ U is the homotopy fibre ofB +.

Furthermore when these conditions hold then any subyroup M such that
N M No is homologically central.

It is convenient to work in y-’, the category of pointed spaces of the homo-
topy type of a pointed CW-complex, instead ofCW. If b is a weak fibration we
may construct in ,Y-’a commutative diagram

BN BU BV

F B+ U B+ V

in which the rows are fibrations with their fibres (we have of course labeled
maps and spaces as their images in Ho ,-). The Serre spectral sequences of the
rows have constant coefficients and the comparison theorem implies that
Hf: HBN HF.

Since B + U is 1-connected rt F is abelian and thus rt F" No
rt F vanishes

on/ N. Thus f factors in Ho oY-’as
f

BN - B+N F

and Hf is once more an isomorphism. But B+N is nilpotent by 7.2 and F, as
fibre of a fibration of 1-connected spaces, is also nilpotent [5] it follows from
Dror’s generalization of the Whitehead theorem [3] that fis a homotopy equi-
valence and from the universal property of BN B+N that the composition
B+N F B+ U comes from the inclusion N U.

Conversely if B+N - B+ U is the homotopy fibre of B+b then, since

H2 V rt2 B + V re, B + (N, I) N/,

A7 [N, N] Na. But/ is perfect, hence/ N1. It remains only to show
that all N M No are homologically central.

Referring to 3.4, this time with F B+N, we see that the operation of
V rta BV on HN HBN HB+N factors through rt by 0. Thus No is
homologically central in U, N/N is central in U/N and any N M No is
normal.
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For any such M let us construct in -" the diagram

W B+N B(N/M) B+ (N/M, l)

B+U B+(U/M)

B+V B+V
by taking u and v to be fibrations in the obvious homotopy classes, fi and b their
fibres, and the starred square a pullback, so that n is a fibration with fibre ft. We
have identified b and by out previous argument, the construction assuring us
that is the fibre of vu.

But B(N/M) classifies covering spaces. Thus, up to homotopy, fi is the
covering of B+N corresponding to the subgroup M/N N/N rta B+N.
Thus W= B+(M, N1) and, as above, U/M operates trivially on
HB+ (M, U1) HM.

COROLLARY 7.5. /f

U U

V1 V

is a pullback in and 40 is weak fibration then so also is ok1.
Recall that U is the largest perfect subgroup of the pullback W in Np. IfNo

is, as above, the kernel of 4 in Np and N [N, N] then NO --, W --, V1 and
N/N --, WIN V1 are extensions, the latter being central. It follows that
[W/N1, WIN2] is perfect. But

N -* [W, W] --} [WIN1, WIN1]
is also an extension so that [W, W] is perfect. Thus U1 [W, W] and bl is
surjective. Its kernel is Nl No c [W, W] N1, with [N, N] N1. The
conditions concerning homological centrality follow from 7.3.

Proposition 7.3 allows us to cast the the light of hindsight on some results of
Kervaire [7]: cfl Appendix A.

8. Weak fibrations in (#d@ and

Let us recall the notion of a fibration of groupoids [2]. A morphism b: F A
in f#d is a fibration if it has the "path-lifting" property: for any x eob F and
s e mor A with domain qSx there is a mor F with domain x such that
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4)t s. Note that when F, A are groups this means simply that q is surjective.
By a weak fibration in ajd we mean a morphism t: F--} A such that

b: F--*A is a fibration in aid and, for each x ob F, 41: Fl(x, x)
Al(gx, 4)x) is a weak fibration in . The weakfibrations in ffp are just the
weak fibrations in ffd which lie in the subcategory, i.e., the morphisms
4: G K with th surjective and 4 a weak fibration in .
From 7.5, attending to the structure of pullbacks in ffd (cf. 1.1), we deduce

easily the following statement.

PROPOSITION 8.1. A pullback in Cd/ (CSpo) of a weak fibration is again a
weak fibration.

In either category we define thef-pullbacks to be those pullback squares with
one of the two terminal morphisms a weak fibration. Among our objectives is
the following theorem (compare with 3.1) which completes our answer to
question (i)of Section 3.

THEOREM 8.2. The f-pullbacks in fd (Cp) determine in the associated
homotopy category the family of homotopy pullbacks.

This is easily seen to be a consequence of the following two statements:

THEOREM 8.3. Any morphism dp in Cd (in Cp with rt dp surjective) can be
factored as a weak homotopy equivalence followed by a weak fibration.

The proof of this is deferred to Section 11 below.

PROPOSITION 8.4. B + takes f-pullbacks in d (fp) into homotopy pull-
backs in HoCW (HoCW’).

Suppose that

F1 F

(8.5) }1 }

is a pullback in fgd and that 4) is a weak fibration. We can construct in - a
commutative square

(8.6)

B+I--1 B+F

B+A1 B+A

lifting the image of 8.5 under B+ (#d ---, HoCW
_
Ho -, and such that both

B/4) and B/bl are fibrations. We must show that the canonical map of B+F1
to the pullback X in 8.6 is a homotopy equivalence.
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We proceed via a sequence of reductions. First, since both B + and pullbacks
preserve coproducts we may without loss of generality suppose that A 1, A and
F are connected. If ob A1 x x e ob A then

(Al(X1, x1) Al(x1, x1) ---) A and (A(x, x), Al(x, x)) A,

as well as the pullbacks of these inclusions along 4 and 4 1, are full, and so are
weak homotopy equivalences. Once more without loss of generality, we may
assume that A1 and A are topogenic groups.

In order to show that the fibre map B+F1 --* X over the connected space
B + A, is a homotopy equivalence it is enough to show that it induces a homo-
topy equivalence on the fibre. Thus we may in fact assume A1 1.
The components of F1, in this case, are easily seen to be isomorphic to one

another and to be in bijective correspondence with the cosets of the image of
F(y, y)/Fl(y, y)---, A/A1, that is to say of

rrl(B+F, y) rtl B+A.

But the same description applies to the components of X, which is now the
fibre of B+F --, B + A. Thus, we may assume that F is also a topogenic group
and (k is surjective, i.e. is a fibration in (#p’, and F is thus also a group.

Finally, recall that the universal coverings of B+F and B+A are B+F and
B+A with B+ 4) lifting to B + 4 a. The fibre of this map is the covering space of
X belonging to the kernel of rtl X rt B+F F/Fa. But by 7.3 this is just
B+(ker q51, F1), the covering group in both instances being the kernel of
F/F A/A. Thus B+ (ker 051, Fa) ) is a homotopy equivalence, whence
B+F- X.

9. Homotopy groups of topogenic groups

If G is a topogenic group it seems natural to refer to the homotopy groups of
B+G as homotopy groups of G (but cf. Appendix A). Thus for example
re1 G G/G1, in accord with our convention above. We shall see that these
homotopy groups may be described completely within the context of group
theory.
We cannot of course expect an easy computation: these nlG are just as

general as homotopy groups of spaces. At most we might hope for information
in special cases, such as the topogenic groups (GI(A), (A))where Gl(A)is the
general linear group, i.e. GI(A)= [.), Gl(n, A) of a ring A and d(A)is the
subgroup generated by elementary matrices. Here of course we have rt,,(Gl(A),
g(A)) K,,(A), n 1, 2, In any case, we exhibit here a new description of
these groups.

If G is a topogenic group then B+ G is the universal covering of B + G, so that
rcqB+G rtqB+G for q > 1. Thus we may as well confine our attention to
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perfect groups. If P is a perfect group we define a topogenic resolution of P to be
a chain complex

X X Xn-
d2

X2 X1 1 1

of nonabelian groups such that X P and
(i) X, is acyclic for n > 1,
(ii) X is exact in ,
(iii) each dq is a weak fibration onto its image Bq_ X.
It follows at once that B X is the derived group ofZqX, the kernel (in ffp) of

d and thus that Hq X is abelian for all q and trivial for q < 2.

THEOREM 9.1. Every perfect 9roup P has a topogenic resolution X and, for
any such resolution, gP HX for all q.

Since B+X, is contractible for n > 1 it follows from 7.3 that B+ (Z,X, B.X)
has the homotopy type of "- 1B + P, which implies the latter conclusion. The
existence of topogenic resolutions follows, of course, from 8.3 or Theorem B1
of Appendix B.

10. Kan fibrations

A prefatory remark would seem to be in order. The homotopy category of
the category of simplical sets, which is equivalent to HoCW or Ho -, appears
naturally as a category of fractions but not as a quotient category. However for
the subcategory of simplicial sets satisfying Kan’s extension condition the dual
identification is correct.

These "Kan complexes" may be identified as the relative injectives with re-
spect to a set of morphisms, viz. the inclusions of cones on the boundary in
simplices; in fact they are equally well the relative injectives with respect to all
inclusions which are weak homotopy equivalences.

This state of affairs has been formalized by Quillen under the name of"model
categories". In fact this theory, following the lead of Kan’s original treatment,
identifies more generally the "relative injectives" over a fixed object as fibra-
tions over that object, the Kan complexes being those fibred over the terminal
object.
The categories of topogenic groups and groupoids do not lend themselves to

a fully analogous treatment. It is nonetheless profitable to pursue the analogy
as far as it will go.
We shall describe as test morphisms in ffd5 the injective weak homotopy

equivalences (I)---, 0 with both and 0 countable. Up to isomorphism these
constitute a set and we shall allow ourselves to speak as though in fact there
were only a set of them. The test morphisms in ffp are defined in exactly the
same way.
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We shall say that b: F A in ffd is a Kanfibration if the following "homo-
topy lifting condition" holds: for any commutative diagram

(10.1)

in which ff is a test morphism and 7 is faithful (i.e. injective on each of the sets
(I)(x, y)) there is a faithful p: 0 --. F with bp 2, pq 7.

If F --. 1 is a Kan fibration we say that F is a Kan 9roupoid or a groupoid of
Kan type. These are thus characterized by an extension condition: ICd(ff, F)
is surjective for ff a test morphism.

PROPOSITION 10.2. The following conditions on a morphism : F- A are
equivalent:

(i) b is a Kan fibration;
(ii) b: F A is afibration ofgroupoids and the homotopy lifting condition

of 10.1 holds for test morphisms in ajp;
(iii) rb: rtF ztA is a fibration ofgroupoids and the homotopy lifting condi-

tion holds for test morphisms in Cp.
To see that (i) implies (ii) it is sufficient to consider test morphisms 1 --. 0

where 0 is the indiscrete groupoid with two objects. For the reverse implication
observe first that it is sufficient to consider (and thus 0) connected. If further
ff is bijective on objects then a lifting of any O(x, x) extends uniquely to one on
all of 0; if q is full then the fact that 4)o is a fibration of groupoids provides a
lifting in d, which however must preserve the congruences, i.e. take 01 to F 1.
But any q factors in this fashion.

Evidently (ii) implies (iii). To see that (iii)implies (ii)it will be enough to
show that for any x ob F, Fl(x, x)---, Al(bx, tpx)is surjective. But for any
s A(4x, qSx) there is, by 5.7, a homomorphism D A(4x, tpx)with D acy-
clic countable whose image contains s. Then the lifting condition applied to the
test morphism 1 D provides an element in Fl(x, x) mapping onto s.

PROPOSITION 10.3. The pullback in Cd (Cp) of a Kan fibration along a

faithful morphism is again a Kan fibration.
This is, essentially, an immediate consequence of the definition. But notice

that the condition that the pullback be along a faithful morphism is essential
(cf. 13.5 below).
The notion of Kan fibration is, of course, stronger than that of weak

fibration.

THEOREM 10.4. A Kan fibration in (d ((p) is a weak fibration.
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In view of 10.2,3 we may confine our attention to a Kan fibration p: U --* V
where U and V are perfect groups. We must show that p is surjective and that
both the kernel N of p and its derived group [N, N] are homologically central
in U. The former statement is implied by 10.2(ii). The latter is clearly a con-
sequence of the following assertion: if K is a countable subgroup of N and
x U then for some y ff N, C K Cy]K.
Now by 5.7 there is a homomorphism 6: D --, V with D acyclic together with

an element d D such that 6d px. Applying the lifting condition of 9.1 to the
test morphism (K, 1) (K D, D) we get 0: K D -o U, extending the inclu-
sion of K in N and satisfying pO 6pro. Thus for any x U there is an
x’ xO(1, d)-1 in N such that Cx, K Cx {K.

Since U is perfect we may write x H[ui, vi]. Let K be the smallest group
containing K which is normalized by all ui, vj. Then K1 is still countable and
there are u’i, vj in N such that

C,,,,IKI=C,,ilK1, C,,IKI=C,jlK1.
If we set y r[u’, v’] [N, N] then C

11. Kan fibrations, continued

Among the characteristic properties of a model category is the fact that any
morphism can be factorized into a weak homotopy equivalence followed by a
fibration. We shall show that ffd and ffp possess the analogous properties.

If F is a groupoid and F # denotes the morphism category of F then the
domain and codomain functors 60, 61 F" ---, F are both equivalences of group-
oids and (6o 61): F # -o F x F is a fibration of groupoids. For any 4): A --, F
we may construct the pullback

The unit functor v: F -o F # is right inverse to 6oand 61 and thus, together with
1 A, defines a right inverse # of 2, which is ofcourse an equivalence of categories.
But 61, q# is a fibration of groupoids and 61, b #/t 6vck .

If A and F are supplied with perfect congruences these extend canonically to
congruences on A # and F#; if q preserves the congruences so also do 6i, b u

and t. We have accordingly proved the following lemma.

LEMMA 11.1. Any morphism in,d factors as qqt with q an injective weak
homotopy equivalence and dp a fibration of groupoids.
We may now proceed to the proof of the following theorem.
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THEOREM 11.2. Any morphism in Cd may befactorized as dp where is an
injective weak homotopy equivalence and dp is a Kan fibration.
By 11.1 we may start with a morphism 0: F A with 0 a fibration of

groupoids. Let J be the set of commutative diagrams in

with z a test morphism oftopogenic groups and injective and define F by the
pushout in

F F1
It is easy to see that 7 is an injective w.h.e., that F is provided with a unique
0" F A such that 0 7 0 and 02 (2.), and that 0 is a fibration of
groupoids.
We now define, for any countable ordinal e,

F (colim F)<
and set F, col F. If 7,: F F, and 0,: F, A are defined to be the
appropriate colimits then they provide the required factorization of 0.

COROARe 11.3. If : GK is a morphism in Np such that
1 G K is surjective then may be factorized in Np as an injective

weak homotopy equivalence followed by a Kan fibration.

COROAR 11.4. Any topo#enic #roupoid (topo#enic #roup)ybe imbedded
in a Kan #roupoid (#roup) by a weak hotopy equivalence.
The constructions above are of course all functorial in the appropriate

senses.
We remark that 11.2,3 in conjunction with 10.4 proves Proposition 8.3 and

thus completes the proof of Theorem 8.2.

12. The homotopy extension theorem

We turn next to the second question raised in Section 3, and show that when
K is a countable topogenic group and G a Kan group then morphisms
B+ K -, B+ G in HoCW" can be represented as homotopy classes of morphisms
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K --, G, and not merely as classes of fractions. Analogy--albeit partial--with
the classical topological state of affairs suggest that we describe Theorem 12.2
below, which expresses this fact, as a homotopy extension theorem.
We shall need the following "general position" lemma.

LEMMA 12.1. Suppose that

K -. U W, V K

is an i-pushout of countable topogenic groups, that G is a Kan group, that
alp" W G and that d?, dp-fi are injective. Then there is an injective " W G
such that c and q c ck (rel K).

Let

factor b through its image E and suppose that D is an acyclic group with
1 4: d D. In the i-pushout

(K O)

K KxD

E M,

0 is a weak homotopy equivalence so that e extends to an injective/" M G.
Define if" W- m by ’ 0b’, ff’] Ctl,d)OqS’-[3. Then if’ is injective and
we may set

THEOREM 12.2. Suppose that " K --. U and 7: K --. G in f#p, that U is
countable, and that G is a Kan group. Then B + induces a bijection

Bre-+" Hoe cp(rel K)(U, G)- UoCW’(rel B+ K)(Br+U, Br+IG).

We begin by showing that ip(rel K)(U, G)maps onto

HoCW’(rel B+ K)(Br+, U, Br+,G).

Suppose, accordingly, that f: B + U B+G in HoCW and that fB+o B +7.
We must find an injection if" U G such that fro 7 and B+b f.
By 6.4 there is a countable subgroup r W--, G, containing the image of 7,

such that f factorizes as

6 B+l

B + U B+ W B+G
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with gB+v B +
o9, where 7 uo. Using mapping cylinders as needed we may

construct in (" a commutative diagram
Bt0 /]090

;Uo , BKo BW

(12.3)
B+v B+o

B+U ,----- B+K B+w

which lifts the corresponding diagram in HoCW" defined by the data above.
We apply to 12.3 the constructions of Section 4. Since MW is countable we

may imbed it in a countable acyclic group, say by 6: MW D. Then 6(Mo9)
imbeds MK in D and we may construct the i-pushout

(eK 6(Mo9) la Mv

MK K x D p MU MK

and define p: P ---, U by pe vprr, pp @. Note that p is a weak homotopy
equivalence.
By imbedding the pushout in a countable acyclic group E we may, further,

construct a commutative square
<K O>

K U E P K

in ip.
We now assemble these constructions into a commutative diagram of count-

able groups in

<pr> I
mo
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Since G is a Kan group we may construct injections of the terms of 11.4 as
follows. First, i" W G extends to i" W D G, since (W 0) is a weak
homotopy equivalence. Similarly i’(e,w6) extends to 2" LB+W--,G. Next,
using the general position Lemma 12.1, we find 0" PG such that
0 i’( x D) and 0 2(LO)fl (rel MK). Finally 0 extends to ’U x
E G. We claim that (U a) is the required morphism.
That o i 7 follows at once from the commutativity of 12.4. If we apply

B+ to 12.4 all the vertical arrows become isomorphisms and, by 4.2, the
following equalities hold"

(B + <W 0>)-’B + <w 6>(B+fl)-’ ?(+ W)
(12.5) (B + <K 0>)- 1B+ (e 6(Mm)>(B + fl)-’ (+K)

(B+ <U 0>)-’B+<p >B+p(B+ flv)- (+ U).
Furtheore (B + O)(B +)= B+ (2(LO)v) by 5.6 so that, in view of the acycli-
city of E,

B + (B + O)B + <U > (B+ O)(B +p)-’

(B + O)(B +g)(B + %)-’
(B+2)(B+LO)(+U) (by 4.3)
(B+2)?(B+ W)y (by the naturality of 0
(B + i)y f (by 12.5).

It remains only to show that if 4, 4’" U G are injective morphisms extend-
ing and Br*+ Brl, then 4 ’ (rel K). Let us construct i-pushouts

K U V , U K,
<K 0>

K KxD W U K

with D acyclic and 1 # d D. The morphism is a weak homotopy equiv-
alence and 6(1, d) centralizes the image of K in W. If 0" F W is defined by
Ov , Or’= Cs,o then it lies in fp(rel K).
By the general position Lemma 12.1 there is a " V G in p(rel K)such

that 6v , v’ #(tel K). SinceB B’ there is an f" B + W B+ G
in UoCW(rel B+ K) with f(B + O) B +. Our surjectivity result, applied in
p(rel ), implies that f= Br for some " W G with 0 . But then

Ov’= K).
The unpointed analogue of 12.2 follows easily.

THEOREM 12.6. /f A is a locally countable topogenic groupoid and F is a
groupoid of Kan type then B + induces a bijection

Hoc Yfqd(A, F) HoCW(B+A, B+ F).
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Since both functors take coproducts in the contravariant variable into pro-
ducts we may, without loss of generality, suppose A connected. Thus restricted,
both functors preserve coproducts in the covariant variable, and we may ac-
cordingly suppose F connected as well. But in this case we may evidently
replace A, F by the groups A(x, x)= (A(x, x), Al(x, x)), F(y, y), for any x, y.
Thus we may as well assume that both A and F are groups. The conclusion now
follows at once from 12.2 and 5.8.

13. Some applications of the homotopy extension theorem

In Section 9 above we gave a description within ffp of the homotopy
groups of a topogenic group. We now give a quite different one. From [1] we
may deduce the existence of topogenic groups S I=(Z, 1), $2,...,
geometrically finite and thus countable, with B+ S, of the homotopy type of S".

Since any topogenic group G imbeds by a weak homotopy equivalence in a
Kan group ( we may describe its homotopy groups in the following way.

PROPOSITION 13.1. n,B+G Hociffp(S,,), i.e. n,G consists of 1
conjugacy classes of imbeddings of S, in (.

We have here omitted the description of the group operation in

HoeiffP@(S., ),
which may however easily be supplied.
Of course this gives us yet another "algebraic" description of algebraic

K-theory.
If F is a Kan groupoid then B+F may be supplied with a basepoint by

choosing any x ob F; we see immediately that

(13.2) n,(B+F, x) Hoc Wp(S,, F,(x, x)).

Cohomology with constant coefficients, at least for countable groups, may be
treated in the following way. For any abelian group A and n 2, there is a
Kan group K(A, n) such that B+K(A, n) has the homotopy type of the
space K(A, n).

PROPOSITION 13.3. If W is a countable 9roup then

H"(W; A) Hoc Wp((W, 1), K(A, n)).
In other words, cohomology classes are just conjugacy classes of imbeddings

of W in K(A, n) K(A, n) a. Once again, we have omitted the description of the
group structure. We omit also a description of cohomology with coefficients in
a module as conjugacy classes of cross-sections of a suitable Kan fibration.
We observe next that inner automorphisms are highly transitive in Kan

groups.
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PROPOSITION 13.4. If G is a perfect Kan group then any isomorphism of
countable free subgroups of G is the restriction of an inner automorphism. In
particular, any two elements of infinite order are conjugate..

This is in general false for elements of finite order, e.g. in the group
K(Z/m, 3). But the transivity is sufficient to ensure the following fact.

PROPOSITION 13.5. A perfect Kan group is simple. Hence any perfect group
imbeds by a weak homotopy equivalence in a simple group.

If N is a proper normal subgroup of the perfect Kan group G then either all
elements of infinite order in G are in N or they are all in G- N. We may
exclude the former case at once, since if x G N is of order n we may imbed
Z/n x D, with D a torsion free acyclic group, in G with a generator ofZ/n going
to x. If 1 4: d e D goes to y then xy is an element of infinite order in G N.
But the latter case is similarly excluded. Suppose x N is of order n. Then

there is an injection Z/n Z G taking a generator y of Z/n to x. But the
normal subgroup of Z/n Z generated by y contains elements of infinite order.
We conclude with a partial converse to a theorem of [1], which asserts that

algebraically closed groups are acyclic.

PROPOSITION 13.6. A perfect acyclic Kan group is algebraically closed.

For if G is such a group then B+G is contractible. Thus if K W are
countable groups any imbedding of K (i.e. of (K, 1)) in G extends to an
imbedding of W. But this clearly implies algebraic closure.

14. Function spaces

Although the categories CW and - do not have function spaces the category
HoCW is cartesian closed; the adjoint -(X, to the product functor x X
may be described as the functor taking a space Y to the geometric realization of
the singular complex of the function space yx in the category of compactly
generated spaces. We shall see there that under favorable circumstances this
function space can be directly computed within the category of topogenic
groupoids.

Let us begin by recalling that the category aid of groupoids is cartesian
closed, the adjoint to the product being given by the groupoids FA of functors
and natural transformations from A to F. If A and F are topogenic groupoids
we define a topogenic groupoid ’(A, F)= (/(A, F), o////I(A, F)) by letting
(A, F) be the full subgroupoid of 1a containing fide(A, F) as its objects
and, for 4): A F, taking as ’I(A, F)(b, 4))the largest perfect subgroup of

PROPOSITION 14.1. If A is a topogenic 9roupoid then x A is left adjoint
to #(A, --): (d d. Thusd is cartesian closed.
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This is a straightforward, if tedious, verification.
The subcategory Sfd containing the faithful morphisms is closed under

products in f#d containing the faithful morphisms is closed under products in
fd but these are not in general products in the subcategory. They do however
make Sffd a monoidal category. While Yf#d is not monoidal closed a frag-
ment of such structure does nevertheless exist. Let us define, for A, F in Cd,
’(A, F) (///(A, F), /I(A, F)) to consist of the full subcategories of
//i(A, F) containing the faithful morphisms A F. The following statement
is easily verified.

PROPOSITION 14.2. If A is connected and centerless then

f/(A, -)" fffd fffd

is right adjoint to x A.
Both hypotheses are necessary, the first because is not a product in fd,

the second as in 5.4. Pursuing the latter point we observe further that if K and
G are topogenic groups and b" K G is injective then G can be considered as
an object of Cp(rel K) and

(14.3) ’(K, G)(b, b)= ZG
where Z is the centralizer functor of Section 5.
Now for A, F in Cd we have

IU(A,r) e ad(//(A, F), ///(A, F)) ad((A, F) x A, F)
HoCW(B+(A, F) x B+A, B+ F)
HoCW(B+’(A, F), -(B + A, B+ F))

giving us a natural transformation B+//(A, F) -(B+A, B+F). This restricts
to a map WA,r" B+ S//(A, F) Y-(B+A, B+F) which we shall think of as a
natural transformation in the covariant variable, restricted to Yffd.

THEOREM 14.4. Suppose that A is locally countable and centerless and that F
is a Kan 9roupoid.

(i) If A is connected then f/g(A, F)is a Kan groupoid.
(ii) In 9eneral, WA, r: B+ fc’(A, l")--, ’-(B+A, B+l") is an isomorphism in.

HoCW.
Let us start by observing that since both functors take coproducts in the

contravariant variable to products in HoCW it is sufficient to consider con-
nected A in (ii). But then both preserve coproducts in the covariant variable.
Thus we may also, without loss of generality, suppose F connected, and indeed,
just as in 12.6, that A K, F G are topogenic groups.

It follows immediately from 12.6 that WA, V maps the components of
B+ ’(K, G) bijectively onto those of -(B+K,B+G). We may pick
basepoints by choosing an injective b: K --, G; and complete the proof of the
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theorem by showing that s’(K, G)(b, 4))= ZG is a Kan group and that for
q= 1,2...,

rB+ZG r(-(B+ K, B+ 15/), )
where is the basepoint orrespondin to 4), i.e. the map B/ dp: B+K B+ G.

Suppose first that U V is a test morphism. Then by (5.4),

becomes
zG)-, zG)

’ffp(rel K)(V x K, G) ’ffp(rel K)(U x K, G).
But U x K V x K is also a test morphism, so that this is surjective. This
completes the proof of assertion (i).
By 12.2, 13.2 on the other hand

r,B+ZG Hoc ip(S,, ZG)

H% ’ffp(rel K)(Sq x K, G) by 5.4

HoCW’(rel B+ K)(S x B+ K, B+ G)
HoCW’(Sq, -(B+ K, B+ G))
rq(-(B + K, B + G), ).

This gives a reasonably perspicuous construction of a large class of un-
pointed function spaces within r#d. A similarly functorial construction of
pointed function spaces does not seem easily attainable; indeed the same
difficulty already arises for the smash product. However the pointed function
space is just the homotopy fibre of the canonical map ofthe unpointed function
space to the codomain, so that it may nevertheless be expressed "within" ffp
as the homotopy fibre of the inclusion ZG --, G.

Appendix A. Central extensions

Kervaire’s paper [7] on the Steinberg group and the Schur multiplicator is a
standard source for the homology theory of central extensions, and in particu-
lar for the statement cited above (Section 3). We should like here to sketch an
alternate route to some of these results, and to comment, in the light of sub-
sequent developments, on some of the terminology.

Suppose that A E G is a central group extension with G perfect. Apply-
ing the standard classifying-space functor B we get a fibration BA --. BE --. BG
whose Serre spectral sequence is just the Hochschild-Serre spectral sequence of
the extension, providing Kervaire’s principal tool in investigation the homo-
logy of the extension.

But if we recall that B preserves products we may conclude that BA is an
abelian topological group and that (since A x E--. E is a homomorphism)
BA BE BG is a principal fibre bundle. Thus BE- BG is induced by a
homotopy class of mapsf: BG BZA . K(A, 2), and BE, is the homotopy fibre
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off The E2-term of the Serre spectral sequence associated with this fibration is,
in low degrees,

H4E
H3E 0
HzE 0 A @ HzE
HIE 0 A(R)H1E 0
Z 0 A 0 H4(A, 2).

From this we can read off the exact sequence

A (R)HIE --.HzE ---H2G -. A HE 0.
In particular if E is perfect then H2E-- H2 G is injective. The "universal"
central extension has A H2 G and 1, giving H E 0, H2 E 0 the fur-
ther exact sequence

H4E -- H4G H4(A, 2) H3E -- H3G ---0.

Kervaire proposes to call this universal central extension the "universal
covering" of the perfect group G and write accordingly triG-HzG,
2 G 2 E H3 E. In our present context it seems clear that this numbering
is unfortunate: a perfect group G ought rather to be regarded as a simply
connected topogenic groupoid so that rt G 1, rt2 G 2B+ G H2 G and
H3E, in the universal central extension, is rt3G rc3B+G. The interpretation
of E, then, is not the universal covering, but the 2-connected covering.

Appendix B. An alternative existence theorem for weak fibrations

Theorem 8.3 asserts the existence of "sufficiently many" weak fibrations in
ffd and ffp. We outline here a very different argument for a variant of this
theorem.

THEOREM B1. If A is a topogenic 9roupoid and p:X --. B+F in Ho - then
there is a weak fibration ok: F A provided with a homotopy equivalence
f: X B+F such that (B+q)f= p.
We may without loss of generality suppose that A is a topogenic group K

and that p is represented by a fibration in . The pullback of p along
bit: BK B+K is then of the fibre homotopy type of a fibre bundle associated
with the universal covering of BK and thus with structure-group K. We may
further suppose that the fibre is the geometrical realization VI of a simplicial
complex V on which K operates.
The universal covering of BK, on the other hand, is just B/(, where/(o is

the indiscrete groupoid whose objects are the elements of K, the covering
projection being Bri, where q’/o Ko identifies K as the orbit-space in ffd of
/(o under the obvious action of K. Thus the bundle in question is
(BI x Vl)/K --, BK.
Now in [1] there was constructed a functor TO: iK d (there denoted by

L), together with a natural transformation BT -- in CW which is always
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a homological equivalence. If we set TV then has a K action and we
may construct the "associated bundle"

4,0

(/o x O)/K= F K.
The natural transformation BT provides a K-equivariant map
v" B VI and we have thus a fibre map g,

BF X

b
BK B+K

which induces a homological equivalence on the fibre and thus, since b K is a
homological equivalence, must itself be a homological equivalence, by the
comparison theorem for the Serre spectral sequences.
Now let F and O be the congruences in F and induced by the

compositions

FnBF nX

0 nBO n IV I.
Then F (F, F1), (O, 01) are topogenic groupoids and g, v induce
homotopy equivalences B+F X, B+O- ]V

Furthermore 4)(F1) K since F K K/K nlK factors through
ng, so that 4)o induces 4)" F K. We shall have completed our argument when
we show that 4 is a weak fibration in ffd,. Since 4 is evidently a fibration of
groupoids, we need only show that for any x ob F,

4)x" 1-’l(x, x) K
is a fibration in .

In the diagram

ol(x, X) rl(x, x) K

O(x, x) F(x, x) K

gO(x, x) rF(x, x) K/K’
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the columns and the second and third rows are exact. A diagram-chase shows
that bx is surjective.
Now B+b is, up to homotopy, the universal covering of

(B+F, x) B+K.

Thus its homotopy fibre is the covering space ofB + (tI)(x, xj)correspondin to
the kernel of D(x, x)/l(x, x) F(x, x)/F(x, x), which is to say that it is just
B+ (Fl(x, x) c D(x, x), tI)l(x, x)). The conclusion now follows from 7.2.

COROLLARY B2. If K is a topogenic group, p" X B+K in HoCW" and rtl
f is surjective then there is a weak fibration cA" G K in (p provided with a
homotopy equivalence f" X B+G such that (B+dp)f p.
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