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RANDOM FOURIER SERIES FOR CENTRAL FUNCTIONS
ON COMPACT LIE GROUPS

BY

A. H. DOOLEY

I. Introduction

The theory of random Fourier series of functions defined on the unit circle H
is based on the following two results, due originally to Littlewood (cf. [12, V
(8.4)]).

(I) Suppose that for any choice of numbers ft, {1, -1} E fl,a,, e’’x is a
Fourier-Stieljes series. Then E [a, 12 < .

(II) Suppose < Then for any p < , there exist coefficients
/3, {1, -1} such that fl, a,,e’"x is the Fourier series of a function in L(II).

Powerful extensions of these results to arbitrary compact groups are due to
Figa-Talamanca and Rider [6], [7]. In this case,f L (G)is uniquely represented
by its Fourier series

f(x) do tr (Aoa(x)) where Ao ff(x)a(x-1) dx.

Here, G denotes a maximal set of pairwise inequivalent representations of G.

(I’)_ Suppose that there exists a set M of positive Haar measure in
f# =VI, q/(d,) such that for U (U,), M,, d, tr (U,A,r(x)) is a
Fourier-Stieljes series then do tr (Ao A*) < o.

(II’) Ifo do tr (Ao A*) < , then for almost every U f#,

do tr (UoAoa(x))

is the Fourier series of a function in p<o LP(G)

Here, for a , do denotes-the dimension, and q/(do) denotes the do x do
unitary group.

If G is abelian, the group f# 1-Io ’(do)= 1-Io H may be replaced by
the group I-Io c {1, 1}; Figa Talamanca [5] has shown that in the nonabelian
case, we may analogously replace c by [-Io c O(do), where O(do)is the real
do x do orthogonal group. It has been known for some time that one cannot
replace HO(d) by certain smaller groups (in particular (cL[5, Section 3]) the
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product of the groups of orthogonal do do matrices with entries + 1 does not
work).

In this article, I am concerned with functions in the convolution centre of
L--such a function has Fourier series

where

f(x) E

Z.(x) tr (a(x))
The main theorems are"

and
1 f f(x)z,(x-’)dx.a -a G

THEOREM 1. Let G be a compact connected Lie group, and let (a) be
a sequence of complex numbers. Suppose that there exists a set M of
positive measure in ,vt=l-ld {1,-1} such that if fl=(fl),eGe M,

d flaZ(x) is a Fourier-Stieljes series. Then d] a 1 < .
THEOREM 2. Let G be a compact connected Lie group and suppose that

(a, is a sequence of complex numbers such that d a]2 < . Then for
almost all fl (fl) e ,
is the Fourier series of a.Nnction in

2 rank G
Lp where ca d G-rank G"p<2 +ea

These theorems do not hold for arbitrary compact groups; they have a
number of interesting consequences for multipliers and lacunarity, some of
which are discussed in Section 3.

2. Proof of the theorems
Our first lemmas state the situation for general compact groups, and isolate

the "randomness" techniques.

LEMMA 3. Let G be a compact #roup, and let (a.). be a sequence ofcomplex
numbers. Suppose that there exists a set M of positive Haar measure in

’ l-[z {-1, 1} .such that if fl= (fl.)e M, d.fl.a.z, is the Fourier
series of an inte9rable function. Then

E Iz ( )l = dx< . (1)
G

Proo A standard Baire category argument shows that there exists K e R
such that for all (B.) e M,

j Z dflaz"(x) dx<K"
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Integrating over M and using Fubini’s theorem, we obtain

However [8, (36, 2)] the fla are a A(2)set, so that we have

Z daflaaaZa(X) dfl -< 2’/2 Z daflaaa)(,a(x) dfl (3)

It is shown in [12, V 8.3] that for any > 1, there is a finite set F ( such
that

y dBaz(x) dB daz(x)l. (4)
dF

Now

The first summand on the right hand side of the above expression is the
integral of a continuous function and hence is bounded. But (2), (3)and (4)
combine to show that the second expression on the right hand side is bounded
by

LEMMA 4. Let G be any compact group, and let (aa)a be a sequence of
complex numbers such that

)p/2
Then for almost all fl (fla) off, Za e, daflaaaxa is the Fourier series of a

function in LP(G).

Proof Since [6] the projections form a A(p)set in , there is a constant
B(p) such that for all x e G,

G

B(p) Ida z,(x)l 2
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Thus

Hence for almost all fl d, I do flao)o(x) [’ dx < oo. |

Theorems 1 and 2 will result from an examination of conditions (1)and (5)
using the Weyl integration formula (cf. [11])" If G is a compact connected Lie
group and T is a maximal torus For G, then for any central f, we have

where W denotes the Weyl group, and q is a certain trigonometric polynomial
on T. It is shown in [1] that ]r q(t)l dt < co provided that

2 rank G
r < e dim G rank G"

I shall also need the Weyl character formula--associated to a G there is a
unique character ;go} e 7 such that q. )] r >, w w;(;o, where the ;w
are certain fixed elements of 7 (independent of a).

Proof of Theorem 2. To prove the theorem, we first show that if

dZlG]2< oo, then (G) satisfies (5)for all 2 < p < 2 + e. So suppose
< 2 + e.. Then

We apply H61der’s inequality with < r < r.o/(p- 2) to see that this expres-
sion is dominated by

w .E d.a.q(t) z.(t) dt dt

Since r(p 2) < e, it suffices to show that E- Id.aq’zl L(T) for all
q < o; in fact, this function is in L(T), for by the Weyl character formula
q )(.. <_ wl;thus

It remains to apply lemma 4 to deduce that for almost all/7 e ,
doa<,floZo LP(G);

let M, be the set of measure zero in vg for which doaoo;g, : LP(G) and
choose any strictly increasing sequence Pi-+2 + e. For /7 LJMp,
Y’,doa,,7., is a member of LP(G) for all i, and hence belongs to
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Proof of Theorem 1. To prove Theorem 1, I will show that if

then
Again, I apply the Weyl integration formula to write

2 [daz(x)[2 dx= [W--- 2 [daq(t)Z(t)[2 [q(t)[ dt.

Since [ql is nonzero almost everywhere, this certainly implies that

for almost every
measure and for some M > O, we have

[daq(t)Z(t)[2 < M for all e E,

and integrating over E, I obtain

2 dl al2 jlq(t);(t) 12 dt < M),,r(E). (6)

An application of the Weyl character formula enables us to write

q(t)Z(t) [2 wo wW( W
sgn wz’)wz’)"w) )"

Since the action of W on T preserves the Haar measure, we may suppose that
E is invariant under the action of W, so (6) becomes

f w M2r2_dl sgn wzt’(t)wZt"’(t)Ztw,(t)dt < wl
(g). (7)

aeG E

The remainder of the proof consists in finding 6 > 0, such that for a outside
some finite set,

fe ww sgn wX’(t)wX((t)Xtw(t) dt (8)

For G 5’(2), T T, a a. (the representation of dimension n), we have

Z sgn wz’"’(t)wz")(t)Z,w,(t)= 1 e2ira,

and (8) results’ from the Riemann-Lebesgue lemma. I generalize this proof to an
arbitrary compact connected Lie group.
To reduce the technicality of the proof somewhat, I shall assume that G is

simply connected. To see that this assumption is justified, recall that we can



550 A.H. DOOLEY

write G A x G 1, where G [G, G] is semisimple, and A is abelian. A maxi-
mal torus for G is then A x T1, where T1 is a maximal torus for G 1. The Weyl
group of G is the same as the Weyl group of G1 and has the trivial action on A.
Thus it suffices to consider G semisimple. Now every compact connected semi-
simple Lie group G1 is finitely covered by a compact simply connected Lie
group, (71. A maximal torus for G is the image under the quotient map of a
maximal torus 1 for (1 (the kernel of the quotient map is contained in ).
Again the Weyl groups of G1 and dl are identical, the action on T1 being the
quotient of the action on

Since G is supposed simply connected, there exist characters Z 1, Z of T so
that the characters Z{} are precisely the characters of the form l-I-
n e N. We write r r{. ,} if m has this form.
Now, for w W, let Zw, Zjwz. Then we have Zw I-IT= zw, ; hence for

O" O’(n nl),

Z{}wz{}Z{} I-I Z7j+ lwzJ+I I-I Z,,,j+l (9)
j=l j=l

Note that if w 4: e, then at least one of the Zw, is a nontrivial character.
I shall now prove"
LEMMA.

inf f. 2 sgn w 1-I Z"w,,{t) dt > o.
(nl nl) N +1 W

(10)

By (8) and (9), this will be sufficient to conclude the proof of the theorem.

Proof oj’the lemma. I shall prove (10) by an inductive argument.
Let W {w W" Zw, 1 ifj > s}, s 0,..., I. Then W0 {e} and Wt W.

My induction asserts that

inf f. sgn w I-I Z, j(t) dt > O.
nN+1 wWs j=l

Since , 1 for all j, the first step is trivial. Thus suppose that 0 < s < l, and
that

inf f Z sgn w I-I z,j(t) dt >s
(nl hi) N +! Ws j=

Then for (n l, nl) e N+I,

j[ Y
weWs+ j=l

J2 Z sgnwI-Iz,J{t) dt’+ fe wweWs j=l s+l\Ws

f: E sgn w l-I Z,(t)dt
Ws+ \Ws j=l

sgn w [-1 Z, g(t) dt
j=l
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Now by the Riemann-Lebesgue lemma, there exists N such that for any
w W+I \W and for any (nl, n) with nk > N for some k < s + 1,

l-I X, )(t) at <

Thus, if (nl, nt) satisfies n N for some k s + l, we have

sgnw Z,(t) dt 2 1 >0

It will thus suffice to show that there exists ;+ > 0 such that
s+l

WeWs+ j=l

provided that n) N for j 1, s + 1. But

I 2 sgnw HZ,/nNN j= 1,...,s+l
e+ j=l

is a finite set of trigonometric polynomials; each element of this set must have
nonzero integral over E since it is an integral linear combination of distinct
characters, one of which is the identity character.

This completes the proof of the Lemma and hence the theorem is proved.

3. Remarks

(a) Theorems 1 and 2 remain valid if we replace 1-I, {1, 1} by 1-I, T.
(To see this, we note that the randomness arguments of Lemmas 3 and 4 are
valid for this group.)

(b) If we let ZL (resp. ZM) denote the convolution center of Lp (resp. M,
the space of measures of G), and ZE(d) (resp. ZEo(()) the center of the space
E(t) of [8, (28.34)] then it is a consequence of Theorem 1 that if G is a
connected Lie group, the set of multipliers /(ZEo, ZM) is equal to ZE2. (The
notation /(), is explained in [8, (35.1)]).

(c) It is not hard, using (b) together with the argument of[8, (36.15)] to see
that if < p < 2, then ,//(ZC(G), ZEP(())-- ZE2p/(2-P)().

(d) A central p-Sidon set is a subset R of d for which ZCR(G) ZEP(G),
where ZCR(G) denotes the convolution center of the space of continuous func-
tions whose Fourier transform is zero off R. These sets have been studied in [2],
[3].

LEMMA 5. If G is a compact group for which Theorem 1 holds then"
(i) Every central Sidon (- 1-Sidon) set satisfies (ZLIR)_ E2 (i.e. is central

A(2)).
(ii) Every central p-Sidon set satisfies (ZLR)_ EZP/tz-P)(() (i.e. is of type

central V(, 2p/(3p 2))in the sense of [2]).
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Proof Since (i) is the case p 1 of (ii), I prove only (ii). Since Theorem 1
holds for G, we have /g(ZC, ZEp) ZE2p/t2-P)(t).
Suppose f ZL(G). Then for any 9 ZC(G),f . l ZCR(G). Thus since R

is central p-Sidon, f. 9 ZEP(G) We have shown that

f e /g(ZC, ZE’)
and so we have finished. |

Example 6. The following construction generalizes that of [10, Example 1]
to give a class of compact groups for which Theorem 1 does not hold.

Let H be any compact group, and suppose that H has an irreducible rep-
resentation r/such that I .1 is not constant. (Almost every compact nonabe-
lian group has such a representation.) Let G, H H (n times), and let
G H= G,. Then r/. r/(R)...(R) r/is an irreducible representation of G,, and
if ft," G G, is the projection, then a, r/, n, is an irreducible representation
of G. It is shown by Parker [9] that R {a," n N} is a central Sidon set in t.
On the other hand, if R were a central A(2) set, there would exist a constant K
so that K < Ilzo. 1. Now Ilzo, II1 IIz. I1 and since g, is nonconstant, we
have IIZ, II1 < IIz. 1, and this is a contradiction.
We may choose H connected, so that G is connected.
The following theorem was proved in [4] for p 1, but is new for p > 1 (cf.

also [3]).

COROLLARY 7. If G is a compact connected 9roup, then G is not a central
p-Sidon set for any p < 2.

Proof By the well known structure theorem for compact connected groups,
we may write G G G2 where G is a compact connected Lie group. If G is
central p-Sidon, then so is (. But this implies, by (ii)ofLemma 5, that ( is of
type central V(, 2p/(3p 2)), which contradicts [2, (6.12)]. |

I would like to thank Professors Robert Edwards and Garth Gaudry, and
Dr. John Price for helpful discussions concerning this work.
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