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GEOMETRY NEAR A C.R. SINGULARITY

BY

GARY A. HARRIS

This paper is concerned with the local geometry of a real-analytic submani-
fold of C in the vicinity of a C.R. singular point. The concept of local generic
embeddability near a C.R. singularity is introduced in Section 1. Unlike the
C.R. situation, not all non-C.R, real-analytic submanifolds of C are locally
generically embeddable. Hence a new concept, pseudo-generic embeddability,
is developed. The section concludes with a description of generic embeddability
in the context of the theory of analytic local rings. Unfortunately this descrip-
tion is in terms of some dimensions which are not generally computable by
known methods. Therefore the emphasis of this paper is Sections 2 and 3 where
a simple scheme is developed to study these concepts for two-dimensional
real-analytic submanifolds of Ca.

In Section 2 the problem of determining all generically embeddable real-
analytic two-dimensional submanifolds of Ca is solved by "reducing" the given
submanifold to a special form, Form VI, for which the solution is trivial,
Theorem 2.6 and Corollary 2.7. It is interesting that this reduction process need
not be biholomorphic. It must only not affect certain algebraic properties
which are necessary and sufficient for generic embeddability. This is made
precise in the detailed development which follows.

In Section 3 a further reduction in form Form IX, yields numerical invariants
which determine a large class of pseudo-generically embeddable submanifolds
which are not generically embeddable, Theorem 3.6 and Theorem 3.7. More-
over these invariants provide an explicit calculation of the order at the origin
of the smallest complex subvariety into which the submanifold can be holo-
morphically embedded, Proposition 3.8.

1. Let M denote the germ at 0 of a k-dimensional real-analytic submanifold
of Cn. We will make no notational distinction between M the germ, and M a
particular representative. We will use the same abuse of notation for holomor-
phic functions and mappings. Let be the germ at 0 of a real-analytic paramet-
rization of M and let ill be the complexification of . Assume (0) 0.

For convenience we will say that is associated with M, denoted M, and
the rank of, denoted rkdb, is defined as the maximum value of rk[c3,/c3zj(z)]
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for z arbitrarily near 0. In [3] the author shows that rktb depends uniquely on
M up to biholomorphic equivalence. Hence the following definitions are
reasonable.

(i) M is C.R. at 0 provided rk[Oi/Ozj(’)] is constant arbitrarily near 0.
(ii) M (not necessarily C.R.) is generic in C" provided rktb n.

It is also shown in [3] that (i) agrees with the definition of C.R. usually found in
the literature and (ii) means that M is generic in the usual sense off its C.R.
singular set.
The problem of determining the local restrictions to M of ambient holomor-

phic functions is solved in [3] assuming the hypothesis "M is generic in C"’’.
Hence the following question is natural.

Question. Suppose rkdb s < n. Does there exist a biholomorphic mapping
H: C C such that H(M) C x {0} c C?

DEFINITION. If such H exists we say that M is generically embeddable at O.

Results of Tomassini [5] yield that M C.R. at 0 implies M is generically
embeddable at 0. However this is not necessarily the case in general, as
demonstrated by the following example which provided the initial motivation
for this study.

Example 1.1. M {(x + iy, (x + iy)y, (x + iy)yer) [(x, y) R2}.

As seen in [3], M is a local uniqueness set for holomorphic functions on C3

and hence is not generically embeddable.
Let C denote the ring of convergent power series centered at 0 s C" with

indeterminates z l, z,. We will also think of C as the germ at 0 of holomor-
phic functions on C". For any n-tuple (ba, b.) with b Ck and
bg(0) 0 for all 1, 2, n, let , denote the homomorphism from C, to Ck
defined by ,(f) =f for anyf C.. Clearlyf C, vanishes on M, denoted
f (9(M), if and only iff ker , for M .

The question of generic embeddability can now be stated somewhat more
algebraically. The will henceforth be omitted as all maps are assumed to be
holomorphic.

Question. Suppose (I): Ck C is a holomorphic mapping with tI)(0) 0
and rkO s < n. Does there exist a biholomorphic mapping

H (Ha, H,): C" C"

such that (Hs+ a, H.)C, ker ,? (H+ , H.)C. denotes the ideal in C.
generated by H+ ,..., H..

Notice that generic embeddability in the C.R. case follows immediately from
the Implicit Function Theorem.
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The above question naturally leads to some standard concepts from alge-
braic geometry.

DEFINITIONS. Let /be any ideal in Cn, //the maximal ideal of Cn, and c5"
//,//2 the usual mapping. Define jg/--dimc (/) and cgz’ -=
dimc /fi/g/[1, pg. 100].

THEOREM 1.2 Suppose M . Then j#(ker tb,) n s if and only ifM is
locally holomorphically embeddable in C but not in C 1.

Thus a purely algebraic statement of the general question can be given.

Question. Given a homomorphism ," C--, Ck under what conditions
does

9 rk =- rk(O,(w ),.. q),(w))jg(ker q,) n- rkO,. ,
where wl, w are the coordinates for C.

In general jg(ker ,) <_ n- rkc, with Example 1.1 yielding strict inequality.
An answer to this question can be viewed as a generalized implicit function
theorem in the non-constant rank situation. Namely suppose rkq), r.
jg(ker (I),)- n- r if and only if (after reindexing if necessary) for each

r + 1,..., n there exists Gi 6 Cr so that i Gi(tl tr).
Necessary and sufficient conditions for the existence of such G’s are

developed in [3, Theorem 3.5], thus answering the question. However the con-
ditions given in [3] are so complicated as to make general application prac-
tically impossible. A tractable solution for two dimensional submanifolds of C3

is given in Section 2.
An interesting geometric phenomenon is exhibited by the following example.

Example 1.3. (z, zw, (zw)2, zw2, zweW).

Clearly ker @, (z3 z22, zl z4 z22)C5 and cg(ker tI),)= 2 while
j#(ker @,) 1. is associated, after a holomorphic coordinate change in C2,
with the submanifold

M -= {(x + iy, (x + iy)y, (x + iy)Ey2, (x + iy)y2, (x + iy)er[ (x, y) R2} C.
If follows that M is biholomorphically embeddable in C4 but not in Ca.
However, M is contained in a three dimensional complex subvariety of C5 but
cannot be holomorphically embedded in any two dimensional complex subvar-
iety of C5. We are lead to the following definition.

DEFINITION. Suppose M @. Then M is pseudo-generically embeddable at
0 provided cg(ker ,) n rk@,.

Clearly generic embeddability implies pseudo-generic embeddability;
however, the above example can be used to show there are no other a priori
relations between these two concepts.
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We can now summarize this section with the following theorem which con-
sists of formal statements of well known results about analytic local rings [1,
Chapter II] and their relation to the above discussion.

THEOREM 1.4. Suppose (: Ck -- Cn is a holomorphic map associated with a

submanifold M and rk r. The following statements are equivalent:

(i)
(ii)
(iii)
(iv)

Cn/ker O, is regular of dimension r;
cg(ker (I),)= jg(ker (I),)= n r;
,(C.) C,;
M is generically embeddable at O.

As indicated above, the results from [3] yield a method for determining exactly
when jg(ker O,) n rkO,. However, in addition to being practically impos-
sible to apply, the results of [3] yield no information about cg(ker O,) or about
jg(ker (I),) if jg(ker O,) < n rk(,. Thus in Section 2 we consider the special
case of a real non-C.R, two dimensional submanifold of C3. In this case
0 < jg(ker (I),) < cg(ker (I),) < 1 and a given submanifold must be either gen-
erically embeddable, pseudo-generically embeddable, or a local uniqueness set.
Thus examples like that arising from Example 1.3 can not exist in C3.

2. Henceforth M will denote the germ at 0 of a 2-dimensional real-analytic
submanifold of C3. For submanifolds M1 and M 2, respectively holomorphic
mappings O1 and 2, we use the notation M M2, respectively 2, to
denote biholomorphic equivalence. We must guarantee that any conclusion we
make about M is invariant, thus the following straightforward proposition will
be useful.

PROPOSITION 2.1. Suppose M and M2’,(I)2; then MI , M2 if

PROPOSITION 2.2. Suppose i: cR-* Cn, i= 1, 2, and H: cR Ck are holo-
morphic mappings with p,(O) 0 and H(O) O.

(i) If H,: Ck -- Ck is injective then ker O, ker (H,o ,)=
ker ( H),.

(ii) If rkH k then H, is injective.
(iii) IfH, is injective then p " (2 if and only if dp H I)2 H.

Assume without loss of generality that M (not C.R.) is parametrized by
(x + iy, P(x, y), Q(x, y)) such that P and Q are complex valued convergent
power series in the real indeterminates x and y which vanish at 0 to order 2. For
f C2 let ordo f(z, w) denote the largest number d so that f(z, w) /a. M,
parametrized as above, is associated with the holomorphic mapping
C2 C2 given by:

Form I. (z + iw, (])1, t])2) with ord0 b(z, w) 2 2and ord0 O2(z, w) 2 2.
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We are interested in computing jg(ker tI),) and cg(ker tI),). The idea is to
"reduce" tI) in Form I to a form for which jo(ker ,) and c9(ker tI),)can easily
be computed, with each "reduction" preserving jg(ker O,) and cg(ker O,). By
a reduction in form we mean a reduction which has the following properties:
following properties:

(i) If q is a reduction of tI) then jo(ker q,) =jo(ker ,) and
cg(ker V,) cg(ker tI),).

(ii) If q/ and P are reductions of (I) and (I) respectively with (I) and (I):
of the same form then tP and Pa are of the same form. Moreover q) (I):
implies T I/2"

Holomorphic coordinate changes in C2 and C3 clearly yield reductions in
form. Thus Form I can be replaced by the following’

Form II. (Z, (2, (3) with

(i)
(ii)

ordo 2(z, w)> 2 and ordo b3(z, w)> 2,
wl2 and wlq3.

Suppose m, respectively n, is the largest integer so that wmlq 2, respectively
w143. If 4)2, respectively q3, is identically 0 we say m, respectively n, is ,
otherwise m and n are both finite. Because we are interested in the case of
non-C.R. M, either m or n must be finite. Clearly rearranging the component
functions q2 and 3 is a reduction in form. Thus assume the following"

Form III. (z, wmh, w"g) with

(i) w handw ,
(ii) l<m<n.

Form III yields our first numerical invariant by way of the following
theorem.

w"’9 and (z, wm2h Wn2g2) are bothTHEOREM 2.3. If01 (z, wmlh 1, 2 2,

of Form 11I and , 2 then m m2.

Proof Suppose ma < m2. Because tI)x O2 there exists G C3 such that
wmlhl G(z, wm2h2, Wn202). By assuming ma < m2 and w , hi we must have
Win2 X G(z, wm2h2, Wn202), but wm21w"92 since 2 is of Form III. Thus G must
have a "pure" z term which contradicts wmlG(z, wm2h2, win202 ). Hence
ma > m2. The assumption mx > m2 leads to a similar contradiction and the
theorem is proved.

If m n in Form III we can rearrange component functions if necessary
producing a further reduction in form.
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Form IV. q) (Z, wmh, wng) with

(i)
(ii)

(iii)

w ( h, w f g,
l _m_ n,
if m n then ordo h(z, 0)

_
ordo g(z, 0).

Notice, the integer n in Form IV is not an invariant for let (z, W 2, W4) and
(I)2 =(2, W2, 0). Clearly q)l "(I)2 but n =4 while //2 "--00. However
ordo h(z, 0) is invariant.

THEOREM 2.4. ordo h(z, O) in Form IV is invariant.

Proof. Suppose q) (z, wmh, vC’t/)and q2 (z, wmh2, wn2g2)are of Form
IV and q)l 2. Thus there exist G 6 C3 such that Wmhl G(z, wmh2, wn2/2).
Suppose G as z. (We are using the usual multi-index notation.) Clearly
a,o.o 0 for all j 0, 1, 2,..., o. Thus

h E a,,o z h2 "-1- E a,o,Z wn2-mg2 "[" (.(W)
j=0 j=0

Either n2 > m or ordo h2(z, 0) < ordo 02(z, 0). In either case

ordo h(z, 0) > ordo h2(z, 0).
By similar arguments we obtain ordo h(z, 0) < ordo h2(z, 0).

Let k denote ordo h(z, 0) in Form IV and define Hk: C2 C2 by Hk(Z, w)
(z, zkw). Hk is not necessarily invertible. However rkHk 2, and thus Proposi-
tion 2.2 implies that a reduction in form can be obtained by replacing I, in
Form IV by ,I Hk.

Form V. , (z, (wzk)’zkU, (wzk)#(Z, zkw)) with

(i) w X #(z, zkw),
(ii) l<m<n,
(iii) if m n then ordo (z, 0) > k.
(iv) U is a unit (i.e. U(0) :/= 0).

Define H(U): C2 C2 by

H(U)(z, w)=-(z, w//U(z, w)). (2.4.1)
H(U) is biholomorphic. Thus replacing , in Form V by H- is a reduc-
tion in form yielding the following:

Form VI. , (z, zkw’, W"g(Z, W)) with

(i) w ’ ,(ii) l<m<n,
(iii) if m n then ordo /(z, 0) > k.
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For notational convenience we have let k in Form VI denote the expression
k(m + 1) in Form V.

Remark 2.5. The reductions to Form V are all reversible in the sense that
M1 M2 if O1 02. However Form VI is not. For example let

M1 {(x + iy, x2 y2, O) (x, y) R2)
and

M2 =- {(x + iy, x , 0) ix, y)6 R2}.
The reduction to Form VI in both cases yields tI)= (z, (zw)z, 0) although
M1 M2. The reason for this is the dependence of H(U) in (2.4.1) on U.
Clearly going from Form V to Form VI for M1 and M 2 loses any information
contained in U.

We are now ready to answer the question of generic embeddability.

THEOREM 2.6. Suppose g in Form VI has the power series representation
a,a zw. M is generically embeddable if and only if

(2.6.1) a,a 0 for all (a, fl) such that either m X (fl + n)or m (fl + n)but
< (fl + n)k/m.

Proof. Theorem 2.6 follows easily by inspection of Form VI. That is, M is
generically embeddable if and only if there exists G 6 C2 such that
wng(z, W)--G(z, wmzk).

If such G exists then in Form VI can be replaced by F where F: C3 ---, C3

is defined via F(zl, z2, z3) (zl, z2, z3 G(zl, z2)). Thus Theorem 2.6 has an
immediate corollary.

COROLLARY 2.7. M is generically embeddable ifand only/fO, M O, can be
reduced in form to (z, wmzk, 0).

Remark 2.8. Because of Remark 2.5 we are not able to use Corollary 2.7 to
classify up to biholomorphic equivalence all generically embeddable real two-
submanifolds of C3. However we have classified all generically embeddable
submanifolds of C3 up to a reduction in form. That is, M is generically embed-
dable if and only if M is equivalent up to form to {(x + iy, (x + iy)kym,
0) (X, y)S R2} for some k and m.

3. The previous section solves the problem of determining when a given
non-C.R, real-analytic two-submanifold of C3 is generically embeddable. We
know that two-submanifolds of C3 exist which are not generically embeddable
but are pseudo-generically embeddable. In this section we continue the above
"reduction in form" process to develop more numerical invariants which are
relevant to the question of pseudo-generic embeddability.
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The discussion leading to Corollary 2.7 provides our next reduction in form.
Namely, we may "subtract off" all terms of w"g(z, w) in Form VI which satisfy
(2.6.1). If every term of w"g(z, w) satisfies (2.6.1) then we have generic embed-
dability; thus in this section we assume some non-zero term in w"g(z, w) fails to
satisfy (2.6.1). This yields the following reduction in form.

Form VII. (z, wmzk, w"9(z, w)) with

(i) wg,
(ii) l<_m<n<

(iii) g- a, zw where a, -0 for all (g, fl) such that m I(fl / n) and
>_ /

The integer n appearing in VII is not necessarily the same as that appearing
in VI but is at least as large. In addition, the possibility for m n is ruled out by
the following argument. If m n then, by Form VI, ordo g(z, O) > k. Moreover
w " g implies a,o 4:0 for some > k which contradicts Form VII (iii). We
now have more numerical invariants.

THEOREM 3.1. The integer n in Form VII is invariant.

Proof Suppose O (z, zRw, W"19) and (I)2 (z, zRwm, W"292) are both of
Form VII with (I)1 (I)2. Assume nl < n2. There exist G C3 with w"292 G(z,
zRwm, Z9 and either c3G/cz2(O) 4:0 or cG/cOz3(O) 4: O. Thus

w"2g 2 P(z)zRw + Q(z)wg + g(z, zkw) + (9(W+ ) (3.1.1)
where g(zl, z2)- ’.>_2 a, z]z and either P(z)or Q(z)is a unit. However
m < nl < n2 implies P(z)--0, hence Q(z) is a unit. Thus from (3.1.1) and
n < n2 we have

Q(z)w"’9 + R(z, zkwm) (9(W"’+ ). (3.1.2)
But (3.1.2) implies the lowest degree non-zero pure z term of O times w" is a
power series in z and zkw contradicting Form VII. If n > n 2 a similar contra-
diction is obtained, hence na n2.

THEOREM 3.2. ordo g(z, O) in Form VII is invariant.

Proof Suppose 01 (z, zkwm, who1) and l2 (Z, zkwm, wng2) are both in
Form VII with tI)l 2. There exists G C3 with w"9_ G(z, zkw, w"gl).
Suppose G as z. Thus

wng2 aaza’+ka2wma2+naao13. (3.2.1)
Because no term of w"o2 is a power series in z and zkw, it follows that
a.,,.o 0 for all and 2. Thus (3.2.1) yields

g2-- Z aztl+k2wmot2+(3-X)ng3"
t3_>1
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Thus

92 (Z a,,,o,, z")gx + (9(w). (3.2.2)
It follows from (3.2.2) that ordo g2(z, 0) > ordo gl(z, 0). A similar argument
yields ordo 9(z, 0) > ordo g2(z, 0).

THEOREM 3.3. Suppose g is from Form VII and # is the largest integer so

that z g, then # is invarient.

Proof Suppose O (z, zkwm, ZW") and 02 (z, zkwm, ZW"/2)are both
in Form VII with z a, z 2, and O 02. Let G a,z C3 with the
property that z"’w"O G(z, zwm, zw"2). So

ZIwnI aazal+ka2+2a3W2+na33. (3.3.1)
As in the proof of Theorem 3.2 we have a,,,.o 0 for all , g2. Thus (3.3.1)
yields

zU’ Z a,z’ +’z+"’3w+3-x),3. (3.3.2)

Because z divides the right side of (3.3.2) but does not divide O it follows that
a, 0 for all such that + kg2 + 293 < 1. Hence (3.3.2) yields

a,z,+k,z+,z,3-,WZ+t,3-1)"3. (3.3.3)
a 0

Now z + ; thus a, @ 0 in (3.3.3) for some with + kg 2 + 293 1 0.
That is there exist g, 2 and ga 0 such that gx + k2 + 293 . Therefore

x 2 2. Similar arguments yield 2 2 .
We now simply rewrite Form VII using the invariants from Theorems 3.1

and 3.3.

Form VIII. (Z, zkwm, ZtaWn]) with

(i) w , 9andz , 9,

(ii) l<m<n<,
(iii) 9 Y’, a,, z’w where a,. 0 for all (, fl) such that m I( + n) and

+ la > (fl + n)k/m.

Theorems 3.2 and 3.3 yield an immediate corollary.

COROLLARY 3.4. ordo 9(z, O) in Form VIII is invariant.

Let ordo 9(z, 0) for 9 from Form VIII. Define H: C2 C2 by Hz, w)
(z, zZw). Thus H is uniquely determined by M and Hr" C2- - C2- is injective. As
in Section 2 we can replace tI) in VIII by Ht to obtain"

Form IX. tI) (Z, 7,Pwm, ZqwnU) with
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(i) p =- k + ml and q =_ la + nl + l,
(ii) U(0) :/: 0,

(iii) 1 <_m<n< ,
(iv) u- where -0 for all (, fl) with m I(fl + n) and
+ q >_ (fl + n)p/m.

Remark 3.5. The above reduction to Form IX differs from that used in
Section 2 to obtain Form V. The reason is to yield the smallest number so that
replacing by H produces Form IX.

Clearly pseudo-generic embeddability of M will depend on the properties of
U. In general this dependence appears quite complicated and difficult to study.
However we can study a large class of submanifolds and obtain some inter-
esting results. Let denote the set of all two-submanifolds of C3 for which in
Form IX is equivalent to

THEOREM 3.6. M if and only if there exist G Ca such that U G(z,
zPwm, zqw"). U is from Form IX.)

Proof () If such G exists then F" C3 -- C3 defined by

r(z ,

is the necessary equivalence.
() Suppose M and M is associated with (z, zPwm, zqw"U) of

Form IX. Then there is H as z" C3 so that

zqwno --E aozal + Paz + qa3wmt2 + nt3"

By (iii)of Form IX we see a1,2,o -0 for all 1, 2; thus (3.6.1) yields

U E aotzl+P2+q(t3-1)WmE+n(3-1)"
3>.1

That is,

U E aZ(ZPWm)2(zqwn)3- 1.
x3>

(3.6.1)

{(x + iy, (x + iy)Py’’, (x + iy)y")] (x, y) R2}
for some m, n, p, q satisfying 1 _< m < n and if m ln then q < (n/m)p.
As indicated, members of are not generically embeddable, however we will

Notice that the existence of such G in Theorem 3.6 can also be explicitly
determined from the coefficients of U. In particular any submanifold M asso-
ciated to of the form (z, zPwm, zw"U(z)) is in ; let G z3 U(zl).
Moreover it follows from the above process that any submanifold belonging to

is equivalent up to a holomorphic equivalence of Form IX to



GEOMETRY NEAR A C.R. SINGULARITY 157

see that any submanifold contained in can be holomorphically embedded in
a two-dimensional complex subvariety of C3.

THEOREM 3.7. IfM then M is pseudo-generically embeddable.

Proof Suppose M tI) where (z, zPw", zqw") with 1 < m < n and
implies q < (n/m)p. Let r gcd (m, n) and define h and h via m rrh and
n rfi. If mln then r m, rh 1, and n/m. Let k p-qrh. Case (i)" If
k > 0 then (z’w") (zw")a’z O. Thus z z3z ker ,. Case (ii): If k _< 0
then z-k(zPwm) (ZW")=--O. Thus z[kz Z3’ ker ,. In either case,
cg(ker ,)- 1 3 rkO,. Because a reduction in form preserves cg(ker ,)
we have the desired result.
The proof of Theorem 3.7 along with a technical algebra lemma yields an

interesting result.

PROPOSITION 3.8. Suppose M and k ph- qfn as in the proof of
Theorem 3.7. The smallest complex subvariety of Ca into which M can be holo-
morphically embedded is two-dimensional with singularity at 0 of order min {fi,
fn + k} if k > 0 and of order min {th, h k}/f k < 0.

LEMMA 3.9. Supposef x" ymzk and there are no common prime divisors of
n, m, and k" then f is irreducible in C[x, y, z].

(The author thanks Professor William Gustafson for producing the proof of
this lemma.)

Proof Let ( e2i/n and 2 be a root offin an extension field of C(y, z), the
quotient field of C[y, z]. Thenf= I-IT-g (x (’2). if follows that/is irreducible
in C(y, z)[x] and thus, by Gauss’ Lemma, f is irreducible in C[x, y, z].

’z, or Case (ii),Proof of Proposition 3.8. In either Case (i), f= z- z3
f= z;kzz- Z, the lemma yields f irreducible in C[zx, zz, z3]. Hence as a
Weierstrass polynomialfis irreducible in C3 [2, page 71]. Thus ker (I), (T)C3
and the conclusion follows.
We conclude by recalling Example 1.1, namely

M {(x + iy), (x + iy)y, (x + iy)yer)l(x, y) R2}.
The above reduction in form to Form IX yields

1 1
dp (z, zw, zw2U) where U=l+w+i. w2+’’’"

As indicated in Section 1, ker (I), (0). The natural question at this point is"
"What properties of U from Form IX cause ker tI), to be the zero ideal?" We
conjecture that U being a polynomial in w is sufficient to give pseudo-generic
embeddability.
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