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HOLOMORPHIC RETRACTS IN COMPLEX »n-SPACE

BY
L. F. HEATH AND T. J. SUFFRIDGE

1. Introduction

Let B, denote the unit ball in C" with sup norm (i.e., B, is the unit polydisk in
C" centered at the origin) and let B" be its closure. A holomorphic retract of B,
or (B,) is a subset D of B, (or B,) such that the identity function on D can be
extended to a holomorphic function F: B, —» D (or a continuous function F:
B, — D that is holomorphic on B,). Thus F(B,) = D(F(B,) = D)and F « F =F.
The function F is called a holomorphic retraction on B, (or B,). In [3] Rudin
gives the example (z, w) — (z, h(z)) (Where h is an arbitrary holomorphic func-
tion from the unit disk into itself) as an example of a retraction on B, and he
points out that the retracts of B, are unknown, n > 3. In this paper, we show
that the retracts of B, are all essentially of the type given in Rudin’s example. In
particular, let J be a subset of {1, 2, ..., n} of cardinality p <n and let
M={ze B, z;=0if j¢ J} ® B,. For 1 < j < n, let F; be holomorphic on M
and bounded by 1 with F(z) = z; whenever j € J. If

1) D ={(Fy(z), F4(2), ..., F.(2)): z € M}

then clearly D is a retract of B,. What is not so clear is that conversely, if D is a
retract of B, then D has the form (1).

Notice that, as in the case of the Euclidean ball in C" [3], even though the
retracts of B, are rather simple—aside from a permutation they are the graphs
of holomorphic functions from B, to B,_ ,—the retractions may be quite com-
plicated. For example, if 0 <t < 1 and F(z, w) is an arbitrary holomorphic
function (complex valued) on B, such that |F(z, w)| < (1 — ¢t)/2 when
(z, w) € B, the function

() [(1 = t)z + te"w + (z — ew)?F(z, w)](1, e™*)

is a holomorphic retraction of B, onto {z(1, e"*): |z| < 1}.

The holomorphic retracts of B, are also given by (1) except of course the
functions F; are continuous on B, and the possibility exists that some of the F
may be constants of modulus 1. A non-trivial example of a holomorphic retract
on B, is the map

3) (z, w)—> (1, zw).
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In [4] Shields proves that if f and g are continuous functions on the closed
disk of the complex plane and are holomorphic on the open disk and map the
closed disk into itself and if fo g =g o f, then f and g have a common fixed
point. This result was extended to polydisks in C2 by Eustice [2] and to the unit
ball of a finite dimensional complex inner product space by Suffridge [5). In
each case, the method of proof was to consider the closure of the iterates f! = f,
fr=fof, .., fr=fof"! of f (denoted by I'(f)) and to conclude that this
compact topological semigroup (I'(f)) contains a unique idempotent. The
problem thus reduces to a study of idempotents in the semigroup of maps that
are holomorphic on the open unit ball, continuous on the closed ball and map
the closed ball into itself. The operation in this semigroup is, of course, function
composition. It is clear that the idempotents in this semigroup are retractions
of the closed unit ball and conversely.

In this paper, we find all holomorphic retracts of B, and B, (as remarked
above). We also find all holomorphic retractions on B, and B,, i.e., we find all
holomorphic idempotents on B, and B, as described above, and we extend the
result of Shields concerning common fixed points of commuting holomorphic
maps to C".

2. Linear retractions on B,

Let ¢: B, — B, be a biholomorphic map (i.., ¢ is holomorphic and one-to-
one, maps B, onto B, and has a holomorphic inverse). As observed by Eustice
[2], F: B, - B, is a retraction if and only if ¢! < F - ¢ is a retraction. Given
a € B, it is well known and easy to see that the function ¢, defined by

4) Bu(2) = (Wi, Wy s i)y Wy =(2; + a))/(1 + a;z))

is a biholomorphic map of B, onto B, and ¢, ! = ¢_,. If F is a retraction and
0 € F(B,), then F(0) = O (because F is the identity on F(B,)). Otherwise, assume
a € F(B,) and replace F by G = ¢; * - F o ¢, so that G(0) = 0. Thus, in order
to determine the retractions of B,, it is sufficient to determine all those retrac-
tions F such that F(0) = 0. Note also that if F and G are as above, then F(B,) is
of the form (1) if and only if G(B,) is of the form (1).

Assuming F is such a retraction of B, i.e., F(0) = 0) we may expand F in a
power series F(z) = L(z) + (1/2)D*F(0)(z, z) + -*- where L = DF(0): C" —» C"is
linear. Clearly, F « F = F = L o L = L. Further, applying Schwarz’s lemma we
see that |F(z)|| < |z| (the norm is sup norm) so for z € B,, 0 < ||z| and A
complex, 0 < A < 1, we have

IF@G/z)) < 4] and (VAF@AE/|2]))] < 1.

Letting A — 0 we conclude |L(z)| < |z|| so L (restricted to B,)is a retraction of
B,. As we will see, the nature of F is determined by L so we first determine all
linear retractions of B,.

Consider a linear map constructed as follows. Let {J, J,, ..., J;4,} be a
partition of {1, 2, ..., n}. Let M, ={ze C": z; =0if j¢ J,}, k=1,2, ..., I + 1
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and write C"=M,; + M, + -+ M,,,. For each k, 1 < k <l we wish to
choose a vector y, from M, that satisfies
_ 0 ifjé¢J,

Y= (Vik> Y2ko -+ > Vuk)s '?jkl =1 ifjeJ,
(we are ignoring M, , for the moment). Also, for each k, 1 < k < | we wish to
define a linear functional on C" thatis 0 on M;if j + k. Let {a;:je J,} be a
finite sequence of positive numbers such that ) ;_,, a; = 1 and let
(5) T;c Z) Z y}kajkz

jedk

where 7;, denotes the complex conjugate of y;,. Note that

IT;c I = Zle-lklvlklalklzll = Zjelk ;k|12|| ”Z”
Also, if we replace z; on the right hand side of (5) by y;, Ti(z) we obtain

Z )’,ka,k()’,ka Z)) - Z a;kT;t(Z) ’I;C(Z)

jeJk JjeJk
Thus we have shown that the linear map T(z) = Y i- Ti(z)y, is a retraction of
B,. Further, if we now change the coordinate y;, j€ J;.,, 1 <k < so that
Yh=1 || < 1, j € Jpyy, then T is still a retraction of B,. We will show that
every linear retraction is of this form.

THEOREM 1. If L (restricted to B,) is a linear retraction of B, then there exists
(i) apartition{J, J,,...,J;4 1} of {1,2,..., n}for somel(weallow J,,, =0

but J, #0 if 1 <k <),

(i) vectors v = (Vixs Yak> s Yk} 1 < k < | such that

0 ifjgJ,uJ ! .
7] = | ifj’:]: "1 and k;lyjd <1 ifjed,

and

(iii) linear functionals T,, 1 < k <, given by Ty(z) =Y ;< s, 7 ;i 2; where
a>0ifjeJ and Y., a; =1 such that

©) LE)= 3 Tehn

In case L = 0, we take | = 0 so that (ii) and (iii) above are vacuous and the right
hand side of (6) is taken to be 0.

Proof. If L #0,choose w € L(B,), |w|| >0andletJ c {1,2,...,n}be such
that je J= |w;| = ||w|. For 1 <j < n, let L; denote the jth coordinate func-
tion of L. Then L{z) = Y%, Bz, and |L,(z)| < |z|. Thus, |L;|| <1 and
Yi=1 |Bix] < 1. However, w; = L,(w) so j € J implies

0wl =1L < 3 1l ol < T (Bl vl < vl = ]
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Thus equality must hold throughout (7) and we conclude Y-, |Bu| =1,
Bu=0if k¢ Jand

(8) Bjka = 'ﬁjklea J kel
Claim. For some j e J, §;; > 0.

Proof of claim. Fix j e J so that some f8,; # 0 and choose p € J to maximize
| B,;|- Since

kzjﬂpkzk = L,(z) = L,(L(2) 2 BocLi(z) = 3. Y BoiBraZes

keJ qelJ

we conclude

©) lﬁw'l = =

j| < ,,g,'ﬁ""l |Bis| < k;JIBPkI [Boil = |Boil-

Thus equality must hold at each step of (9) so in particular, |8, #0=
| Bij| = |By;l|- Setting k = j yields |B;;| = |B,;| and using (8) yields B;; > 0.

With g € J fixed so that f,, > 0, let J, = J be such that 8,; # 0if and only if
j € Jy. Forany k € J,, the proof of the claim shows that 8, > | B, |, 1 <j<n.
Further, applying the proof of the claim with j = p = q yields |8,,| = f,,when
ke Jy (i, |Bal| # 0= |Big| = Bag)-

LetM, = {ze C":z;=0ifj ¢ J,} and let z € M, satisfy z; = w;, when j e J;.
Arguing as in the derlvatlon of (7) and (8) with w; replaced by L{z), je J,
shows that for k€ J,, ; =0 if j ¢ J,. Thus, we have shown that B,; # 0 if j,
k € J;. Otherwise, for some k € J,, let J; satisfy f,; # 0 if and only if j € J',.
Since i, #0, g € J; so B,; =0if j # J; by the above proof. By the choice of ¢
we conclude J; = J,.

We may now apply the proof of the claim with p=je J; and ke J; to
conclude |B;;| = B;; and by (8), Bwi = |Bi|w; = Buw;, k. je J1.

In the notation of the statement of the theorem we want a;; = f;;,j€ J, and
Ti(2) = Y je s, 7j1a; z; Where y;; = wijwy, je J ;.

If J, ={1, 2, ..., n} the proof is complete.

Otherwise, set Ml {ze C":z;=0ifje J,} ~ C?for some q < n. Clearly,
L(M7{) = M7. Let L“’ denote the restriction of L to M. Then [V is a retraction
of B, and we may continue as above to define J,, ..., J,;yz, coonandT,,..., T,
as in the statement of the theorem where either | )i, J, ={1, 2, ..., n} or
LY =0. Of course, as soon as J; is identified, 1 < j < I, this determines that
Yik=0whenj¢ J, 1 <k<l

If ( Jiz=1 Ji ={1, 2, ..., n} the proof is complete (with J,, ; = 0). Otherwise, it
remains to set J,.; ={1,2, ..., n} —  Ji=, J, and to determine L;, j€ J, .

Forl<k<l+1letM,={zeC":z;=0ifj ¢ J}. Then L(M,,,) = 0. Let
j€Ji41 and 1 < k < I If we determine the value of L; on M, for each such j
and k then L will be known. Let y; = (Y14, ..., ym) be defined by y,, =y, if
p¢Jic1, Y =0if pe Jy,, (note that y,, is not yet defined for pe J,,,). If



HOLOMORPHIC RETRACTS IN COMPLEX n-SPACE 129

z € M,, since L is a retraction and L(M,, ,) = 0 we conclude
Lj(z) = L{(L(z)) = LTiz)yi) = Tu(2)L,(v)-

Thus, set y; = Ljyy) and the proof is completed by observing that
Yk=1 |7jx] < 1 because |Lj(z)| < ||z|| and hence ||L;| < 1.

It is interesting to observe the properties of the matrix A associated with a
linear retraction L according to theorem 1. By replacing Lby s o L - ¢~ ! for an
appropriate permutation of coordinates o, we may assume

J1={1,2,.-.,n1}, J2={n1+1,.--,n2},...,
Jl+l ={n,+ 1, ey n}.
Then A has the form

[ A, 0 i
A, 0
0
A=
0 0
A
| B 0

where each A4; is a square matrix with the following properties:

(i) each element on the main diagonal is positive,
(i) each row of A4; is a multiple of the first row
(iii) the I' norm of each row of 4; is 1.

Further, each row of B is a linear combination of the preceding rows of A.

3. Holomorphic retractions on B,

We now return to the problem of finding all holomorphic retractions on B,,
We will prove the following theorem.

THEOREM 2. Suppose F: B, — B, is a retraction and F(0) =0. If L is the
linear part of F, then by Theorem 1, L(z) = Y%=, Tdz)y, where T, and y, are
described in Theorem 1. Using the notation of Theorem 1, there exist functions
Gy, Gy, ..., G;: B,— B, and functions H;: B,— B, j € J,,,, such that the
coordinates F; of F satisfy F(z) = G(z)yu if j€ Jin 1 < k <l and

Fi(z) = H{(G\(2), Ga(2), .., Gi2)) ifje Jisy.

The functions H;, j € J,,, are arbitrary (except that the range is in B,). The
Sfunctions G, 1 < k < |, are arbitrary except for the following:
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(i) the linear part of G, is T, and
(i) the non-linear part of G, satisfies
(G — T)(2) = Z ()_’jkzj — Yar2g)Vjnz; — ?pkzp)gp.q(z)
pqeti—{j}

where j is a fixed element of J,.
Thus, the nonlinear part of G, has a second order zero on

Til2)

=1 forall jeJ,

{ze B,:forall g€ Jy, z, = yu Tz} = {z € B,:

Using Theorem 2, we can prove the following characterization of the retracts
of B,.

THEOREM 3. Suppose D is a retract of B,. Then there exist J = {1,2, ..., n}
and functions

Fi:M—-B,1<j<n, where M={zeB,:z;=0 ifj¢J}
such that F(z) = z; for j € J and such that

D ={(Fy(z), Fy(2), ..., Fy(2)): z e M}.

Proof of Theorem 3. As noted in Section 2, it is sufficient to prove the result
under the assumption F(0) =0 (where F is a retraction such that F(B,) = D
and D is assumed to contain 0). We set J = {j,, j, ..., j;} Where j, € J, (the same
notation as in Theorems 1 and 2) and the theorem clearly follows.

Proof of Theorem 2. As remarked before, the linear part of F is a retract
and is therefore given by Theorem 1. We may assume

J1={1,2,.‘.,n1}, J2={n1+1,...,n2},...,
Jl+l ={n,+ 1,..., n}

(otherwise, replace F by 6! o F o ¢ where ¢ is an appropriate permutation of
coordinates). We know

Li(z) =ayz; + 130222+ + Ty, Gy 2,

where the g, are the positive numbers a,, and the n, are the y,, of Theorem 1.
Setting z, = n,z;, 2 < k < n, (denote the set of such z € B, by M) we have
Fi(z) =z, + Y21 P,j(z) where P,; is a homogeneous polynomial of degree j.
Using the fact that |F,(z)| < |z, | when |z| = |z, | we readily see that
P,,(z) =0 on M. For example, with z, = A,z;, n; <k <n,ze M we have

P1,2(z) = th('ln1+l’ ey )“n)
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and for |z, | small, we must have

zy 4 Py 5(2)

24

1> = |14 20h(Any 111 -0 A)|-

Hence h = 0.
We wish to show F(z) =n,F,(z) where L(z) =n,L,(z), 2 <k <n, (ie,
F(z) € M). Write

Fi(z) = Li(z2)ni + .;izpkj(z)

where 2 < k < ny, and P,; is homogeneous of degree j. As shown above for F,
P,;=0on M. Let p be a minimum such that for some k, 2 < k < n;, we have
Py, # ni P1,(z). We now use the fact that F(z) = F;(F(z)) and F(z) = F,(F(z)).

By definition of p and the fact that P,; and P,; are zero on M, we conclude
that P, (F(z)) and P,;(F(z)) consist of terms of degree >j+p—1>p.
Therefore,

Plp(z) = Ll(Plp(z)’ P2p(z)’ (RN Pn,p(z))
and
Pkp(z) = Lk(Plp(Z)’ ey Pn,p(z)) = "kLl(Plp(z)’ LERXY
Pn,p(z)) = "kplp(z)'

This contradicts the choice of p and completes the proof of the existence of G,
in the theorem satisfying (i). A similar argument for J,, ..., J; completes the
proof of the existence of the G, in the theorem.

Now consider F,, pelJi.; (p fixed). Since L,(z)=Yi-1 7 Ti(2),
Yi=1 || <1, we may write

F,(z) = éthk (2) + h,(2)

where h, consists of terms of degree > 2. Let g be a maximum positive integer
such that F, can be written as

q-1 <)
Fp = ZQk(Gl» G, ..., Gl) + ZRk
k=1 k=q
where R, is homogeneous of degree k > ¢g. Then
q-1 ©
Fp = FP(F) = kZIQk(Gl, Gz, ey G,) + Z Rk(F).
= k=q
We conclude that R,(z) consists of the terms of degree g in R (F). These terms

are clearly R (L). In view of the nature of L, R (L) is some function, say S, of
(T}, Ty, ..., T,). However, it is now clear that S(Ty, T, ..., T;) consists of the
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terms of degree g in S (G,, G,, ..., G;). Hence we may write
q-1

Fp = kZIQk(GIa G2a LERE] G) + Sq(Gl’ GZ’ ey G) + Z Rk - Sq(Gla vy G)
= k=q

where the last quantity consists of terms of degree > g + 1. This contradicts the
choice of g and proves that F(z) = H,(G,(z), G2(2), ..., G\(z)) for some H,.
It remains to prove that (ii) holds for Gy, ..., G;. We can take

Q0
Gi(z) =ayzy + 1022, + -+ + 1, By Zny + ZZPkl(Z)
k=

and Set '-’kzk = Zl, 3 S k S nl, ﬁ222 = ei‘bzl. FOl‘ Such a 2z,

G1(2) = z1 + azz4(e” — 1) + z4(e” — 1) f(2)
since P,y(z) =0 on M ={z € B,: #j,z, = z;, 2 < k < n,}. Statement (ii) will
follow if f(z) = 0 when ¢ = 0.

Observe that |G(z)| < |z, | for the z under consideration if we assume that
|z;| < |z | for j > n,. Therefore

|1+ ay(e® — 1)+ (% —1)f(z)] < 1.

We conclude that (a,+ Re f(z))(cos ¢ — 1) —sin ¢ Im f(z) <0. Now
divide by |¢| and let ¢ — O separately through positive and negative values to
see that Im f(z) = 0 when ¢ = 0. Since f(0) = 0, we must have f(z) = 0 when
¢ =0 and the proof is completed by the following observations. Fix z,,
1> |z, | >0 and expand

g(Z2, ey Zn) = Gl(zl, ey Zn) - Tl(zl’ ey Zn)

about the point (1,24, ..., Ny, 2y, W, 415 -+ -, W,) Where w, .y, ..., w,are chosen
so that |z, | > |w;|, n, <j < n. Clearly

g(”zzl,? M ’1”121, Wn1+l’ vesy W") = 0‘

We have shown above that dg(n, z,, ..., w,)/0z, = 0 and by a similar argument
0922y, ..., w,)/0z;=0,3 <j<ny.

Since w,, 4y, ..., w, are arbitrary, it follows that derivatives of all orders of g
and 0g/0z;(2 < j < n,) with respect to the variables z;, n; < k < n are zero at
the point under consideration. Thus (ii) is proved for G, — T;. A similar
argument for G, — T;, 2 < k < I, completes the proof.

Example. Suppose F is a retraction of B, and F(0) =0. Then (see [2])
except for a possible permutation of coordinates F is one of the following:

(1) (Zl’ 22) - (21, 22)’
(“) (zb 22)_'(21’f(21))’ . R i
(i) (zy, z5) = [tzy + (1 = t)e™ "z, + (672, — 2,)?*f (24, 2,)](1, €*) where
isrealand 0 <t < 1,
(iv) (21, 22) = (0, 0).
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The reader might find it helpful to determine the retractions of B; assuming 0
maps to 0. Aside from permutations, there are seven different types of such
retractions: The identity has three dimensional range, there are two different
types with two dimensional range (i.e., a two manifold, not necessarily affine),
there are three different types with one dimensional range and the zero map is
the seventh type.

4. Holomorphic retractions on B,

Now assume F: B, — B, is continuous, F restricted to B, is holomorphic and
F is a retraction. If F(B,) < B,, then Theorem 2 applies and we have the
additional condition that all functions involved extend to continuous functions
on B,. Therefore, we assume F(B,) ¢ B,. This means |F{z)| =1 for some j,
1 <j<nand ze B, so by the maximum principle, F(z) = C; (constant) for
some j. By replacing F by 6™ o F o ¢ for an appropriate linear map o that
permutes coordinates, we may assume

F=(Cy, Cs ..., Co, Finy, .., F)
where |C;| =1,1<j<kand F;: B,—> By, k+1<j<n. Let
M={zeC:2z;=0,1<j<k}~B,_,.
Then F: M — M defined by
(10) F=G=(0,0,...,0,G, Gy, ..., G,_})

where Gj(zx+ 15 -+ -5 2n) = Fxs (C1, Cas -5 Cyy Zis 1, -+, 2,) i @ retraction (that
does not necessarily take 0 to 0). Thus, the nature of G was determined in
Section 3. It now follows that

k
Firjz1s 225 ooy 20) = GilZkr 1 -5 2a) + Zl(zp = Cp)hyi(2)
=
for some complex valued holomorphic h,; defined on B,. For 1 < p < k, set
(11) Hy(2) = (0,0,...,0, h, (2), hy,(2), ..., hy,_(2)),

(12)  F()=(Cy, Cy, ..., C 0,0, ...,0)

k
+ G(zys 1 -5 20) + 2, (2, — C,)H (2).
p=1
We have proved most of the following theorem.

THEOREM 4. If F: B, — B, is a holomorphic retraction on B, (continuous on
B, and holomorphic on B,), then there is a permutation of coordinates such that if
Fisreplacedbyc™' o F o o, then F is given by (12) where G and H ,are given by
(10) and (11) respectively and G is a retraction of

M={z:2;=0,1<j<k}~B,_,.
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If each of the functions involved is continuous on B, then a necessary and sufficient
condition on the functions H, for F given by (12) to be a retraction is that

k
G(Zks1s -5 Za) + Y. (2, — C,)H(2) = G(M) for all z € B,.
p=1

Proof. All that remains to complete the proof is to check F=F - F to
verify the last statement in the theorem. This easy verification is left to the
reader.

Note that the map

(21, 22) = (€%, €™ %z, 25) = (€7, 25 + (21 — €¥)(e™"2,))

is an idempotent on B, that has zero linear part. This can only happen for
retractions on B, when the map is constant.
The following theorem clearly follows from Theorems 3 and 4.

THEOREM 5. Suppose D is a retract of B,. Then there exist
Jce{l,2,...,n}, M={zeB, z;=0 ifj¢J}

and functions F;: M — By, 1 <j < n, such that F(z) = z; if j € J and such that
D ={(F,(z), F4(2), ..., F,(z)): ze M}.

5. Common fixed points of commuting maps

We will prove the following extension of Shields [4] and Eustice [2] results.

THEOREM 6. Let f and g be continuous maps of B, into itself that are holomor-
phic on B, and assume f o g = g o f. Then f and g have a common fixed point in B,

Proof. Assume the theorem is true for all positive integers k < n. Following
Shields method [4], let T'(f) be the closure of the iterates of f (i.e., set f! =1,
fr=fof"n=213,..., s0 I'(f) is the closure of {f":n=1,2,...} in the
topology of uniform convergence on compact subsets of B,). Then I'(f) con-
tains a unique idempotent H that is therefore a retraction of B, (see [6]).

If D= H(B,) then since f(z) =f(H(z)) = H(f(z)) € D whenever z€ D, f
maps D into D and similarly g maps D into D. Suppose D # B,. Then

M={zeB,z;=0 ifj¢J}
given by Theorem 5 has dimension k < n. Define f: M - M by
f = (fb fZ’ LR fn)

where f; = 0if j ¢ J and fj(z) = f{(F1(2), Fa(2), ..., F,(z)) when j € J (where F,,
F,, ..., F, are given by Theorem 5) and define § similarly, Then f and §
commute and have a common fixed point ¢ = (¢, ¢5, ..., ¢,) € M by the
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induction hypothesis. Clearly, (F,(c), F(c), ..., F,(c)) is a common fixed point
for fand g.

If D = B,, then H is the identity and f is a biholomorphic map of B, onto
itself (see [6]). Then f(z) = (¢,(z.,), P Az,), -+ Pul2z.,)) Where 74,75, ..., 7,152
permutation of {1, 2, ..., n} and each ¢ is a linear fractional transformation
that maps the unit disk onto itself. Note that if P is the fixed point set of f then
g(P) = Pfor ze P=g(z) = g(f(z)) = f(g(2)). Thus, if 7; # j, for some j, P lies
on the manifold z; = ¢,(z, ) and the induction hypothesis implies that fand g
have a common fixed point. Therefore, we need only consider the case

f(Z) = (¢1(Zl)’ ¢2(22)’ tes ¢n(zn))'

If any of the ¢ has a unique fixed point ¢; in the open disk, then again, P lies on
a manifold of dimension < n and the induction hypothesis yields a common
fixed point. If some ¢ ; has two fixed points on the boundary, then the iterates of
¢; converge to one of these points (see [1], [7], and [8]) contradicting the
assumption that I'(f) contains the identity. The only remaining case is f the
identity. Clearly, any fixed point of g is a common fixed point for fand g in this
case. This completes the proof.
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