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O. Introduction

After the existence of a non-Lebesgue measurable set had been proved, the
problem of the existence of a total (i.e., defined for all sets), finitely additive,
congruence invariant measure (with values in [0, oo]) in R was considered. By
congruence (or isometry) of R" we mean a distance-preserving bijection from
R to R; in R there are only translations and reflections about a fixed point.
In 1914, Hausdorff [9, p. 469] (see also [21, pp. 74 and 97]) constructed a para-
doxical decomposition of the 2-sphere (a construction central to the more
well-known Banach-Tarski paradox [3] (see also [24]))which implies that no
such measure exists in R" if n

_
3. And in 1923, Banach [2] proved that such

measures do indeed exist in R and R2, and can be chosen to extend Lebesgue
measure. To prove this for R, Banach developed the ideas of the Hahn-Banach
Theorem to extend Lebesgue measure to a total, finitely additive, translation
invariant measure v. Then it suffices to define #(A)= (v(A)+ v(-A)). (See
[19, p. 193] or [12, p. 359] for details.) The measure in R2 was obtained by
applying a clever integration technique to the measure in R.
The modern approach to these classical theorems of Banach uses the notion

of an amenable group, invented by von Neumann [17]. In that paper von
Neumann realized that Banach’s techniques generalize to any group bearing an
appropriate measure; such groups are called amenable. This yielded total
measures in higher dimensions" if G is an amenable group ofcongruences ofR",
then a total, finitely additive, G-invariant extension of Lebesgue measure exists.

Banach’s theorem for R raises the following question, which motivated the
work of this paper. Can a total, finitely additive extension of Lebesgue meas-
ure be invariant under translations, but not reflections ? More generally, letting
Inv (#), for/ a total finitely additive extension of Lebesgue measure in R, be
the group of congruences with respect to which/ is invariant, we have the
question of which groups arise as Inv (/), for some #. The following theorem,
which is proved in Section 3, gives a necessary condition for a group to be
realized in this way, which is applicable to most of the interesting cases (in
particular, it follows that all groups of congruences of R or R2 are realizable).

THEOREM 1. If G is an amenable group of congruences of R" then there is a
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total, finitely additive measure l in R which extends Lebesgue measure, and is
such that Inv (p)= G.

The converse to this theorem is true as well, with a further assumption on G
(see Theorem 5).

Since any group of congruences in R or R2 is amenable, this shows that, in
dimensions 1 and 2, all groups are realizable in the sense described above. Note
that, in other contexts, things may turn out quite differently in that invariance
with respect to one group is sufficient to imply invariance with respect to a
larger group. For instance, one may ask whether a countably additive, transla-
tion invariant measure on the Borel subsets of R that assigns measure one to
the unit interval is necessarily invariant under reflections. In this case the
answer is yes, because Lebesgue measure is the only such measure.

There are still some unresolved problems related to the classical theory.
Foremost is the problem of formulating a converse to von Neumann’s theorem,
e.g., if G is a group of isometries of the n-sphere (Rn) and a finitely additive
G-invariant measure on the n-sphere (Rn) exists, then what can be said about
G? Must G be amenable? Part of the importance of this question stems from
two results, a recent theorem of Tits [27] and a classical result of Tarski [25].
The former provides an excellent characterization of amenable groups of
Euclidean isometries (namely, such a group is amenable iff it has no free
non-Abelian subgroup) while the latter asserts that the existence of a G-
invariant measure on the n-sphere is equivalent to the non-existence of a para-
doxical decomposition of the sphere using transformations in G. Thus the lack
of a converse to von Neumann’s theorem is a major gap in our knowledge of
which groups of isometries of the n-sphere allow a paradoxical decomposition
to be constructed.

After summarizing the classical theory in Section 1, we prove, in Section 2,
two results relating to these problems. First, we show that if a G-invariant
measure on S extends surface Lebesgue measure, then G must be amenable.
Then we show how the extraneous condition on Lebesgue measure may be
eliminated if n 3, and speculate on the possibilities for n > 3.
The author is grateful to D. Mauldin, J. Mycielski, J. Rosenblatt, and W.

Henson for many helpful remarks in correspondence on these topics, and to
William Emerson and David Ross who discovered a flaw in the original proof
of Theorem 1.

1. Amenable groups

For a group G let B(G) denote the set of bounded functions from G to R.

DEFINITION. A group G is amenable if there exists a left-invariant mean on
B(G), i.e., a function M: B(G) R such that:

(1) M(af+ bg) aM(f) + bM(g) for all a, b R and f, g B(G).
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(2) inf {f(a): a 6 G} < M(f) < sup {J(a): a 6 G}.
(3) M(f) M(, f) for any

The following theorem states some characterizations of amenable groups;
there are others (see [4], [5], [7], [11] for further equivalences and more infor-
mation on amenability and invariant means).
THEOREM 2. For a group G the following are equivalent"

(a) G is amenable.
(b) There is a finitely additive measure # defined on all subsets ofG such that

#(G)- 1 and la(A)- #(aA) for all A
_

G, G.
(c) G does not admit a paradoxical decomposition, i.e., there do not exist

pairwise disjoint sets Aa,..., At, Ba, B,,
_
G and pa, P aa,

t,, G such that G Pa Aa
(d) If V is a vector space with subspace Vo, G is a group oflinear operators on

V such that r(Vo)Vo for each aeG, p: VR is a positive-
homogeneous subadditive functional on V satisfying p(trv)< p(v) for
r G, v V, and F" Vo R is a G-invariant linear functional on Vo that
is dominated by p, then F has a G-invariant extension to a linearfunctional
F on all of V such that F(v) <_ p(v)for all v V.

Proof (a), (b). Condition (b)is the original definition of amenability used
by von Neumann 17]. For the forward implication use characteristic functions"
the reverse is just the familiar construction of an integral from a measure.

(b),(c). This striking equivalence follows from a more general theorem,
due to Tarski [25], which we discuss below. The forward implication is easy (see
Theorem 3(b) below), as the measure precludes the existence of a paradoxical
decomposition. The reverse implication is rather difficult.

(a) (d). Condition (d) is based on the work of Banach [2], who pioneered
the investigation of invariant linear functionals. In this generality the forward
implication is due to Agnew and Morse [1] and Silverman [23] (the proof
consists of an application of the Hahn-Banach Theorem, followed by an aver-
aging procedure similar to that used in the proof of Theorem 8 below). The
reverse implication is first stated in Silverman [22] (let V B(G), Vo {f V: f
is constant), p(f)= sup f, and F(U)= c iff e Vo has constant value c).

Part (a) of the following theorem contains the first important result using the
general notion of amenability. Part (b) shows that a paradoxical decomposi-
tion is the only obstacle to the existence of an invariant measure. For the rest of
this paper we use "measure" or "total measure" to mean a finitely additive
measure with values in [0, ] which is defined for all subsets of the set in
question.

THEOREM 3. Let G be a group acting on a set S.

(a) (von Neumann [17]) IfG is amenable then S bears a G-invariant meas-
ure of total measure one.
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(b) (Tarski [25, Satz 3.8;26, Theorem 16.12]) S bears a G-invariant meas-
ure of total measure one iffS admits no paradoxical decomposition usin9
mappinos in G, i.e., there do not exist pairwise disjoint sets A , A,, B ,

Bm - S and p, p,, ax, a,, G such that

S U Pi Ai U ai Bi.

Proof (a) Condition (d) of Theorem 2 may be used to construct a G-
invariant linear functional on the space of bounded real-valued functions on S,
which assigns value 1 to the function with constant value 1. This functional
then induces, via characteristic functions, an appropriate measure.

(b) The forward implication is easy, for suppose # is a G-invariant measure
with #(S)= 1, and a paradoxical decomposition exists. Let d =/(w Ai),
d2 t() Bg). Then d + d2 _< (S)"- 1, but

1 l(S)= l(w piAi) < la(piAi)= E la(Ai)= d.
Similarly 1 _< d2, a contradiction. The reverse implication is an intricate argu-
ment using results from the theory of decomposition types, Slightly weaker
versions of this result have been rediscovered recently [6], [20]. Emerson’s
approach [6] is noteworthy since he uses the yon Neumann-Dixmier criterion
for amenability to obtain his results. Moreover, since the cancellation law
stated on page 226 of [6] is in fact valid in the discrete case (see [13, p. 131]; this
has been observed independently by Emerson), so is Conjecture 3.1 of [6], from
which the full theorem of Tarski follows.
The problem of formulating and proving a converse to Theorem 3(a) is

intriguing (see Greenleaf [8, p. 18]). The straightforward converse fails, since if
there are any s S that are fixed by the action of G, then any measure on the set
of such points s is G-invariant, whether or not G is amenable. The following
proposition, the method of proof ofwhich appears in von Neumann [17, p. 99],
gives a condition on the action which is sufficient for the converse to hold. It
appears in [8] for actions assumed, in addition, to be transitive.

PROPOSITION 1. IfG acts on S freely, i.e. 9s :/: s for any s S, 9 G-{l}, then
G is amenable iff there is a G-invariant measure # on S with #(S)= 1.

Proof By Theorem 3(a) we need only prove the reverse direction, so let #
be a G-invariant measure on S. Let E

_
S be a choice set for the orbits of the

action and define if: S G by setting if(s) a, where s a(E). The freeness of
the action implies that ff is well defined; moreover, /(as)= a(s). Now, it is
easy to check that the measure v on G defined by v(A)= #(if-(A))is left-
invariant, and hence G is amenable.
We now summarize some more elementary facts on the structure of amen-

able groups.

Jan Mycielski (Finitely additive invariant measures (III), to appear) has recently obtained a
very neat and short proof of Tarski’s theorem.
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THEOREM 4.

(a)
(b)

(d)

(Banach [2]) ,4belian groups are amenable.
(von Neumann [17]) Finite groups are amenable. IfH is a normal sub-
group of G, and H, G/H are both amenable, then G is amenable; thus any
solvable group is amenable. A free group on two generators is not
amenable.
(Day [4], Flner [7]) ,4 subgroup of an amenable group is amenable.
(Day [4]) ,4 group is amenable iffall of itsfinitely generated subgroups
are amenable.

These results suggest the following conjecture, which is still unresolved.

DAY’S CONJECTURE. A group is amenable iff it does not contain, as a
subgroup, a free group on two generators.

However, it is a consequence of the main theorem of Tits [27] that this
conjecture is valid for any matrix group over a field. For connections between
Day’s Conjecture and the Burnside Problem is group theory, see Mycielski
[15], [16].

2. Amenability and Euclidean spaces

DEFINITION. Let G, denote all congruences (i.e., distance-preserving bijec-
tions) in Rn. Let (fin be the subgroup of Gnconsisting ofthose tr Gnthat fix the
origin; (gn consists of all orthogonal linear transformations ofRn. Each congru-
ence is an affine map (see [10, p. 307]) and so is a composition of a linear map
and a translation. Hence we may define a canonical homomorphism
zr: Gn (9n by r(tr) where r zl for some translation z. The identity in Gn
or any other group is denoted by 1.

It is easy to see that G1 and G2 are solvable, and hence amenable. The next
theorem summarizes many of the known results for amenability of groups of
congruences and contains two new results (c -fand b - c). If/ is a measure
on Rn, Inv (#, Gn) denotes (tr Gn: p is cr-invariant); similarly we use
Inv (#, (-gn). We use m to denote Lebesgue measure as well as the surface meas-
ure on the sphere induced by Lebesgue measure (where a set A is assigned the
Lebesgue measure of (x: x A, 0 _< _< 1), suitably normalized so the whole
surface has measure one). Finally F2 is used to denote the (isomorphism class
of the) free group on two generators.

THEOREM 5. Let G be a subgroup of Cn. Then the following are equivalent
(and are all true if n 1 or 2).

(a) There is a total G-invariant measure in R" that extends Lebesgue
measure.

(b) There is a total, G-invariant measure on S , the surface of the unit
sphere in R", that extends surface Lebesgue measure.
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(c)

(e}
(f)

G is amenable.
G admits no paradoxical decomposition (see Theorem 2(c)).
G has no free sub#roup on two 9enerators.
There is a total measure on R" such that # extends Lebesgue measure
and Inv (#, (9,)= G.

Proof. (a) (b). The measure on R" induces one on S"- by the adjunction
of radii, as described above.

(b) (c). Suppose G is not amenable. Then by Theorem 4(d), some finitely
generated (and hence countable) subgroup H of G fails to be amenable. Let

D {x e S: there exists tr H-{1} such that a(x)= x}.
Since the fixed points (in R") of any tr (9,-{1} form a linear subspace of R" of
dimension at most n 1, and since H is countable, it follows that re(D) O.
Now, let/ be a measure as in (b). Then #(D)= 0, so/(S D)= 1. But H

acts freely on S- D, so Proposition 1 implies that H is amenable, a
contradiction.
(c) (d). This is due to Tarski and was stated in Theorem 2 above.
(c) (e). This follows from Theorem 4. To see that the free group F2,

generated by a, b is not amenable, let W(a)consist of those (reduced)words
beginning with a; similarly define W(a-), W(b), and W(b-). These four sets
are pairwise disjoint, and F2 a- W(a) W(a ) b- W(b) W(B- ),
whence F2 fails to satisfy (d) and so is not amenable.

(e) =,. (c). This follows from Theorem 4 and Tits’ proof[27] of the conjecture
of Bass and Serre that a group of matrices over a field of characteristic 0 either
has a free subgroup on two generators, or has a normal solvable subgroup of
finite index.

(c) (f). This is just Theorem 1, to be proved below.
(f) (a). Trivial.
There are two directions for possible generalizations of this theorem. First,

assume G is a subgroup of G,. We then have (c), (d) (e) (which is true for all
groups) and the trivial implications (f) (a) (b). Theorem 1 shows that
(c) (f) is valid here, and (e) (c) follows from the previous case (if G satisfies
(e), so does n(G); hence n(G) is amenable, and since Ker r, which consists of
translations, is Abelian and G/Ker rt n(G), G is amenable too). We are left
with the question of whether the existence of a measure as in (a) implies that G
is amenable. So long as this is unknown, we can ask whether Theorem 1 can be
improved to yield (a) (f), rather than the ostensibly weaker (c) (f).

Or, we may remove the requirement that the measures extend Lebesgue
measure (an assumption which was central in the proof of (b) (c)). Note that,
by Theorem 3(b), this question is equivalent to asking for which subgroups G of
C, does S admit a paradoxical decomposition using transformations in G.
Hausdorff’s original theorem [9, p. 469] (combined with Tarski’s Theorem
3(b)) implies that such decompositions exist if G (9+, where n > 3. Moreover,
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von Neumann observed [17, p. 80] that Hausdorff’s proof implies that (n+,
n _> 3, has a subgroup isomorphic to F 2. It is tempting, in view ofTheorem 5, to
conjecture that containment of F2 is a (necessary and) sufficient condition for
the existence of a paradoxical decomposition. However, a simple counterex-
ample shows that, for n _> 4, this is not the case.
Choose a, z (- to be a free basis for the group they generate and define if,

z’ + (n _> 4) to be extensions of a, z which are equal to the identity in
dimensions other than the first three. Then G (tr’, z’) is isomorphic to F2,
but G leaves (pointwise) fixed the points on Sn- beginning with three zeros.
Thus any total measure on this latter set (e.g., one giving measure one to sets
containing a fixed point) is G-invariant.

However, for n 3, containment of F2 does characterize the groups with
respect to which S2 admits a paradoxical decomposition. In order to prove this,
we first state and prove a modification of a theorem due to von Neumann [17]
(see also [8, p. 18]).
THEOREM 6. If a group G acts on a set S, and G has finitely many nonamen-

able subgroups H1, Hn with the property that for no s S do there exist

hi Hi-(l}, <_ n, such that hi(s) s, then there is no total G-invariant measure
on S.

Proof. Suppose/ is a G-invariant measure on S. Let D consist ofthe points
in S that are fixed by a non-identity element ofH i. Then the hypothesis ensures
that S=(S-D1)(S-D) .’. (S-Dn), whence #(S-D)>0 for
some _< n. But H acts freely on S Di, which contradicts Proposition 1.

THEOREM 7. For G <_ (3 the following are equivalent:

(a) G is amenable (equivalently, G has no subgroup isomorphic to f2).
(b) There is a total G-invariant measure on S2 (equivalently, S2 admits no

paradoxical decomposition using transformations in G).

Proof. (a) (b). See Theorem 3(a) above.
(b) (a). 2 First, assume G _< (, i.e., G consists of rotations of S2 about an

axis through the origin. We prove the contrapositive. Suppose G is not amen-
able; then, by Theorem 5, there are two rotations a, z G such that a, z form a
free basis of a, z), which is isomorphic to F 2. It is easy to see that rz, G2’l2,
aaz3, a4z4 freely generate a free group of rank 4 (see [14, p. 43, example 12]),
and hence

H H2 - F2 where H1 (rz, O’2’2 and H2

T. J. Dekker has informed the author that (b)= (a) of Theorem 7 follows from the methods of
T. J. Dekker and J. de Groot, Decompositions ofa sphere, Fund. Math., vol. 43 (1956), pp. 185-194.
Actually, their methods show that if F _< G then S admits a paradoxical decomposition with
respect to G. My proof above, that if F _< G then S bears no G-invariant measure, is simpler, but
then Tarski’s theorem must be used to conclude that a paradoxical decomposition exists.
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Moreover, no element of H1 commutes with any element of H2, unless one of
them is the identity. It follows that no rotation in H 1-{1} has the same axis as a
rotation in n2-{1}, whence the fixed points, on S2, of n 1-{ 1} and n2-{1} are
disjoint. Thus Theorem 6 implies that S2 bears no G-invariant measure.

If G < (-93 then G c (9 is the kernel of the homomorphism into {-1, + 1}
given by the determinant map. If there is a G-invariant measure, then it is
G (9 -invariant, whence, by the above paragraph, G (9 is amenable. Since
G/G (9 is finite, it follows from Theorem 4 that G is amenable.

In light of Theorems 2 and 3(b), one may interpret this theorem as stating
that S2 admits a paradoxical decomposition under the action of G iff G admits
a paradoxical decomposition under the (natural) action of G on itself.
The counterexample to this result for n _> 4 given above suggests the follow-

ing conjecture:

CONJECTURE. Suppose G <_ (gn is such that whenever T
_
S is closed

under the action of G then G IT (i.e., {a IT: a G})is nonamenable (equiva-
lently, contains F2). Then S"-a bears no G-invariant measure.

We conclude this section with a result which isolates the use of amenability
in the proof of Theorem 1 ((c) (f) of Theorem 5).

THEOREM 8. Suppose / is a Gn-invariant family of subsets of R (i.e.,
or(A) 5’ whenever A 5’, cr Gn), G is an amenable subgroup ofGn, and v is a
total measure on R with Inv (v [,/, Gn) G. Then there is a total measure/ on
R such that tl/= v I/and Inv (/, Gn)= G.

Proof. Let M be a left-invariant mean on B(G). For C_ Rn, define
fc: G [0, ] by fc(tr)= v(tr-1C). Define/ by setting/(C) M(fc) irf is
bounded, and hence in B(G), and letting/(C) otherwise. Then/ is a total
measure and, since fc= (fc), the G-invariance of/ follows from the left-
invariance of M. Moreover, if A thenfa is a constant function with value
v(A); therefore/ extends v[ /. Finally, since v is not invariant under any
congruence not in G, the same is true of/, whence Inv (/, G,) G as required.

3. Proof of Theorem 1

In order to produce, a family ’ as in Theorem 8, we need a set A such that
{;ta: a G,} is linearly independent over the vector space of Lebesgue measur-
able functions. Not every non-measurable set has this property, for ifA

_
[0, 1]

is non-measurable and symmetric about 1/2, then ZA Z A 0. To obtain A we
prove the following lemma, which generalizes the construction of a Bernstein
set (which is a set of reals such that it and its complement meets every uncount-
able closed set of realsmsee [18, p. 23]).

In what follows, c denotes 2, the cardinality of the continuum, m* denotes
Lebesgue outer measure, and I denotes [0, 1]", the unit cube in R
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we use ) #(A)to denote [,,) {a(A): a ,}; similarly for (-] #(A). Finally, #*
denotes # {1}.

LEMMA. There is a set A
_

I such that for any closed subset C of I with
re(C) > O, and any disjoint, finite (possibly empty) subsets a, p

_
Gn-{1},

(i) (C- A)- 5(A)-= 0,
(ii) if C

_
#(In), then C 0 #*(A)- (A) g: O.

Proof. Let {(Ca, , 3)" < } enumerate all triples (C, , p) such that
C
_

I is a closed set of positive Lebesgue measure, and #, are disjoint, finite
subsets of Gn-{1}. Such an enumeration exists because there are only c closed
sets (see [18, p. 23]) and because Gn c (there are only c affine transforma-
tions on Rn). Note that, by the Cantor-Bendixson Theorem (see [12, p. 72]), any
uncountable closed set, and hence each C has cardinality . For each e < , we
Shall define, by induction, two members of C: x and y However, if Ca is not
contained in 0 (In), then xwill not be defined. The set A will then be defined
as {z-(x): x is defined, z #*, 0 < c} and will be disjoint from {y: 0 < }.
Conditions (i), (ii)will be verified by y, x respectively.
For t 0, if Co c_ 0 #o(I), choose Xo s Co so that Xo : p’c-(Xo) for any

p 5o, z s #. Choose Yo Co so that Yo 4: pz- (Xo) for any p s 5, z #; if
Xo is undefined, any Yo Co will do.

In general, if C
_

#(I") then choose x s C to satisfy"

(1) x : zp-(y), any fl < , p 3, z #*.
(2) x =/: pz- (x), any
(3) x 4: pz-l(x), any p e t, z e #*.
(4) x =p zp-l(xa), any fl < , p e a, z e #*.

Then, even if x is undefined, choose y e Ca satisfying"

(5) y 4: pz-(xa), any

To see that these choices can always successfully be made, note that all
conditions except condition (3) exclude possibilities from Ca which, as noted
above, has cardinality . To handle condition (3), note that the points of
which are not a fixed point of any congruence p’c- with p e/5 , z e #* have the
same Lebesgue measure as Ca (see proof of (b) (c) of Theorem 5), and hence
contain a closed set D with re(D) > 0. Since DI , the desired point x may
be found in D.
Now, if

A {z-(x)" x is defined, z #*, < c},
then, since x e C

_
O*(ln), each z-(x) I and A c_ I,. Moreover, A

satisfies (i) and (ii). For suppose C, a, p as in the lemma are given. Choose e < c
such that C C, # #, and p p. For (i), note that y e C. Ify e 5*(A),
then either y pz-(x,) for some fl < a, p e 5*, e #, contradicting condi-
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tion (5), or y, pz-’(xa) for some fl > a, p #*, z #, contradicting (1). For
(ii), if C

_
6(I") then x, is defined and lies in C #*(A), since for any

z #*, z-l(x,) A whence x z(A). Finally, if x, U #(A) than either
x pz-t(xa) for some fl < , p , z #, contradicting (2); or x, pz-(x)
for some p #, z #*, contradicting (3); or x,= pz-(xa) for some fl _> ,
p #, z #, contradicting (4). This completes the proof.

COROLLARY. If A is as in the lemma, then for any finite disjoint sets
(r,p_Gn,

(1) m*(N a(A)- U #(A))= m(N #(I")), and

(2) m*([,_J 5(I")- f3(A))= m(U (I)).

Proof Let A be as in the lemma. To show (1), assume # :/: 0, for otherwise
(1) reduces to oo oc. Now suppose #(A)- U fi(A)

_
E where E is open

and m(E)< m( #(I")). Let C #(I")- E and choose any a #. Then
a-1(C)

_
I" and so we may apply property (ii) of the lemma to

a-’(C), {a-’z’zsa-{a}} and {a-’p’ps/3)

(for C, #,/5) to get a point x. Then a(x) C, a(x) N #(A)and a(x) U 3(A),
a contradiction to C E 0.
For (2), assume 3 q: 0, for otherwise (2)reduces to 0 0. Suppose

U (I")- U #(A)_ E

where E is open and m(E)< m([,_) (I’)). Let C U (I’)- E, choose any
p , and apply (i) of the lemma to p- 1(C), {p- lz’z fi {p}) to get a point x.
Then p(x) C, x df A so p(x) p(A), and x p-lz(A)for any z p- {p} so
p(x) z(A) for any z e p {p}. Hence p(x) U p(A), a contradiction.
Now, let Xo be the real vector space consisting of all Lebesgue integrable

real-valued functions on R’. Let X be the vector space of all real-valued func-
tions on R" which are bounded by some function in X o. For f, g X, let f < g
mean that f(x) < O(x)for each x R".

THEOREM 9. Let A be as in the lemma.

(a)

(b)

The set {Z,a" a 6 G,} is linearly independent over Xo, i.e., no function in
this set lies in the subspace of X spanned by the rest of them tooether
with Xo.
If g Xo is such that g >_ =t PiZA + E= qZoA, where P > O,
q < O, and 5= {a x, a} is disjoint from {p, p,}, then
j g dm >_ ET’=a Pi"

Proof (a) Suppose o’A is in the space spanned by X0 U {Z pA: P q: a}. Then
7.,a "f’=i PiZp,a Xo for some reals Pi, and congruences Pi, where p q: a.
Since a bounded measurable function is uniformly approximable by simple
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functions (see [12, p. 159]), there is a simple function k= S,:tF., (where E is
Lebesgue measurable)such that, for any x R",

(*) XA(X)- Z Pi)(,o,A(X)- E SRXVk(X)I < }"
NOW, choose k I such that m(E I")> O; then choose a closed set

C _c E I" such that m(C) > O. Apply the lemma to - (C), O, {- xp" 1,
m} for C, #, fi to get, by (ii), a point

x6a-x(C) A- U a-

and, by (i), a point (a-’(C)-A)- a-’pi(A). Then a(x) 6C
a(A) {pi(A)" Em}, and a(y) (C a(A)) {pi(A)" E m}. We may
now apply (,) to a(x) and a(y) to obtain 1- s,] < } and ]0- s,] < }, a
contradiction.

(b) Case 1. O. For each nonempty S {1,..., m}, let Ws be the set

{i In" S} {aiI"’i m, S}.
Many of these sets may be empty, but they are pairwise disjoint and Lebesgue
measurable, so 9 dm sw 9 din. Note that

ieS

By property (1) of the corollary above,

m*{ise,A- A)= m(i@siI)
and since each Ws is a Lebesgue measurable subset of s I’, it follows that

Hence m({x e Ws" O(x) 2s P})= m, and so I 0 dm 2 (2s P) (m).
This implies that

iS i= iS i=1

since, for each i, i s mWs m(ai I")= 1.
Case 2. 0. Simply note that

pi 0})a U pr. 9
which by property (2) of the corollary, equals m( I"). So

m({x UI"’g(x)<0})=0 and m({xR"- I"’g(x)<0})=0

whence g dm O.
We now use Theorem 5 and the Hahn-Banach Theorem to conclude the

proof of Theorem 1.
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THEOREM 1. IfG is an amenable subgroup ofG,, then there is a total measure
in R" extending Lebesgue measure and such that Inv (p, G,)= G.

Proof Let A be as in the Lemma and let X be the subspace of X spanned
by X0 and {)(,a" a G,}. Define p" X R by p(f)= inf { 9 dm g Xo and
g > f}. Note that for eachf X there is some 9 Xo such that g > f. It is clear
that p(fa + f2)< P(f)+ P(f2), and that p(f)= p(f) for any real > 0.
Define a linear functional F on X1 by setting F(f)= fdm iff X0, and
letting F(Xa) 1 if a G, and 0 if a G, G. Then extend F linearly to all of
X; by Theorem 5(a) this successfully defines a linear functional on X .
We wish to apply the Hahn-Banach Theorem to extend F to all of X, and so

we must verify that V(V)<p(f) for any fX. IffX thenf=h+
E PiZa,A -[- E qjz,.a, where h Xo, Pi > O, qj < O, and {oi} {pj} O. Then
F(f) < h dm + E Pi, whence it suffices to show that p(f) >_ h dm + E Pi.
Suppose g Xo and g >f Then g-h>,pi)+ qxo and Theorem
9(b) may be applied to yield that g-h dm> p. Hence gdm>
I h dm + , p, showing that p(f) > F(f).
Now, the Hahn-Banach Theorem yields a linear functional F on X which

extends F and is dominated by p. Then F(f)>O if f>0; for
F(f) -F(-f)>_ -p(-f)>_ O. Define a total measure v on R" by setting
v(B) F(),), if gn X, and letting v(B) oe otherwise. Then if we define to
consist of the Lebesgue measurable subsets of R", together with the sets aA for
a G,, s/and v satisfy the hypotheses ofTheorem 8 (since Inv (v I, G,) G).
Thus there is a total measure/ extending v],, and with Inv (/, G,) G. Since
v] extends Lebesgue measure, this completes the proof.

It is a consequence of this theorem that, for example, Lebesgue measure on
the line has a total, finitely additive extension that is invariant under rational
translations, but no others (or all translations, but no reflections). Note that if
G is a subgroup of (9, then, by (a) (c) of Theorem 5, the existence of a
measure as in Theorem 1 implies that G is amenable.
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