SINGULAR MEASURES AND TENSOR ALGEBRAS

BY

SADAHIRO SAEKI

Let X and Y be two compact (Hausdorff) spaces, and let

$$V = V(X, Y) = C(X) \otimes C(Y)$$

be the tensor algebra over X and Y [8]. We denote by V^{\sim} the space of all $f \in C(X \times Y)$ for which there exists a sequence (f_n) in V such that $f_n \to f$ uniformly and $\sup_n ||f_n||_V < \infty$. Then V^{\sim} forms a Banach algebra with norm $||f_n||_{V^{\sim}} = \inf \sup_n ||f_n||_V$, where the infimum is taken over all sequences (f_n) as above (cf. [9] and [10]). The algebra V^{\sim} is often called the tilde algebra associated with V. Notice that the natural imbedding of V into V^{\sim} is an isometric homomorphism (cf. Theorem 4.5 of [5]).

For infinite compact spaces X and Y, C. C. Graham [1] constructs a function $f \in V^{\sim} \setminus V$ such that $f^n \in V$ for all $n \ge 2$. In the present note, we shall prove that a natural analog of Theorem 2.4 of [7] holds for V. Let r be a natural number and let E be a subset of Z'_+ . As in [7], we shall say that E is *dominative* if (a) it contains all the unit vectors $(1, 0, \ldots, 0), \ldots, (0, \ldots, 0, 1)$ and (b) whenever $(m_j) \in \mathbb{Z}_+^r, (n_j) \in E$, and $m_j \leq n_j$ for all indices j, then $(m_j) \in E$.

THEOREM. Let X and Y be two infinite compact spaces, and let E be a dominative subset of \mathbb{Z}_{+}^{r} . Then there exist functions f_{1}, \ldots, f_{r} in V^{\sim} such that

- (a) $f_1^{m_1} \cdots f_r^{m_r} \notin V$ if $(m_j) \in E \setminus \{0\}$, (b) $f_1^{n_1} \cdots f_r^{n_r} \in V$ if $(n_j) \in \mathbb{Z}_+^r \setminus E$.

In order to prove this, let Γ be a locally compact abelian group with dual G. We denote by $A(\Gamma) = M_a(G)^{\wedge}$ the Fourier algebra of $\Gamma(cf. [3] \text{ and } [4])$.

LEMMA 1. Let Γ be an infinite locally compact abelian group, let F be a finite dominative set in \mathbb{Z}_{+}^{r} , and let $\eta > 0$. Then there exist $f_{1}, \ldots, f_{r} \in A(\Gamma)$ such that

- $\|f_j\|_{A(\Gamma)} < 3$ and $\|f_j\|_{\infty} < \eta$ for all indices j, (i)
- $\begin{aligned} \|f_{1}^{m_{1}}\cdots f_{r}^{m_{r}}\|_{\mathcal{A}(\Gamma)} &> 1 \text{ if } (m_{j}) \in F \setminus \{0\}, \\ \|f_{1}^{n_{1}}\cdots f_{r}^{n_{r}}\|_{\mathcal{A}(\Gamma)} &< \eta \text{ if } (n_{j}) \in \mathbb{Z}_{+}^{r} \setminus F. \end{aligned}$ (ii)
- (iii)

Proof. We may assume that $\eta < 1$. We first deal with the case where Γ is discrete or, equivalently, G is compact (and infinite). By Theorem 2.4 of [7], there exist probability measures μ_1, \ldots, μ_r in M(G) such that the measure

Received November 1, 1978.

^{© 1981} by the Board of Trustees of the University of Illinois Manufactured in the United States of America

 $\mu_1^{n_1} * \cdots * \mu_r^{n_r}$ is singular (resp. absolutely continuous) if and only if $(n_i) \in F$ (resp. $(n_i) \in \mathbb{Z}_+^r \setminus F$). Choose a compact set K in Γ such that

(1)
$$\bigcup_{j=1}^{r} \{ \gamma \in \Gamma \colon |\hat{\mu}_{j}(\gamma)| \geq \eta \} \subset K.$$

Then there exists a measure v in $M_a(G)$ such that $0 \le \hat{v} \le 1$ on $\Gamma, \hat{v} = 1$ on K, $\|v\|_{M(G)} < 1 + \eta$, and

(2)
$$\| [\mu_1 * (\delta_0 - \nu)]^{n_1} * \cdots * [\mu_r * (\delta_0 - \nu)]^{n_r} \|_{M(G)} < \eta$$

for all $(n_i) \in \mathbb{Z}_+^r \setminus F$, where δ_0 denotes the unit point measure at $0 \in G$. The existence of such a v is an easy consequence of Section 2.6 of [4] and our choice of μ_1, \ldots, μ_r . (Notice that F is a finite set and $\eta < 1$.) If $(m_i) \in F \setminus \{0\}$, then the measure

(3)
$$[\mu_1 * (\delta_0 - \nu)]^{m_1} * \cdots * [\mu_r * (\delta_0 - \nu)]^{m_r}$$

is not singular and its singular part is $\mu_1^{m_1} * \cdots * \mu_r^{m_r}$. It follows that the measure in (3) has norm strictly larger than 1. Therefore there exists a measure $\tau \in M_a(G)$ such that $\|\tau\|_{M(G)} \leq 1$ and

$$\|[\mu_1 * (\delta_0 - \nu) * \tau]^{m_1} * \cdots * [\mu_r * (\delta_0 - \nu) * \tau]^{m_r}\|_{M(G)} > 1$$

for all $(m_i) \in F \setminus \{0\}$ (cf. Theorem 1.9.1 of [4]). It is now easy to check that the functions $f_i = \hat{\mu}_i (1 - \hat{\nu})\hat{\tau}$, $1 \le j \le r$, have the required properties.

The general case can be proved by passing to the Bohr compactification of G. Since we only need the result for discrete Γ , we omit the details.

Lemma 2. Given a finite dominative set F in \mathbb{Z}_{+}^{r} and $\eta > 0$, there exists a finite discrete space H and $g_1, \ldots, g_r \in V(H, H)$ such that

- (i) $\|g_j\|_V < 3 \text{ and } \|g_j\|_{\infty} < \eta,$ (ii) $\|g_1^{m_1} \cdots g_r^{m_r}\|_V > 1 \text{ if } (m_j) \in F \setminus \{0\},$
- (iii) $\|g_1^{n_1}\cdots g_r^{n_r}\|_V < \eta$ if $(n_i) \in \mathbb{Z}_+^r \setminus F$.

Proof. Let Γ be an infinite, discrete, abelian, torsion group, and let f_1, \ldots, f_n $f_r \in A(\Gamma)$ be as in Lemma 1. There is no loss of generality in assuming that every f_i has finite support. (Notice that the measure τ in the proof of Lemma 1 can be chosen so that $\hat{\tau}$ has finite support.) Since Γ is a torsion group, we can find a finite subgroup H of Γ such that $f_i = 0$ outside of H for all j = 1, ..., r. Then the restrictions of the f_i to H satisfy conditions (i)–(iii) in Lemma 1 with H in place of Γ . We define $g_i \in V(H, H)$ by setting

$$g_i(x, y) = f_i(x + y)$$
 for $x, y \in H$ $(j = 1, 2, ..., r)$.

By the well-known (P, M)-mappings theorem (see [2] or [3; p. 588]), the functions g_i have the required properties.

SADAHIRO SAEKI

Proof of the theorem. This is now routine. Let X, Y and $E \subset \mathbb{Z}'_+$ be as in the hypotheses of the present theorem. For each natural number p, let H_p be any finite space for which there exist g_{1p}, \ldots, g_{rp} in $V(H_p, H_p)$ satisfying the conclusions of Lemma 2 with $F = E \cap \{0, 1, \ldots, p\}^r$ and $\eta = 2^{-p}$. Let $N_p = \text{Card}(H_p)$. Since X is an infinite compact space, there exists a sequence (X_p) of compact subsets of X such that

$$X_p \cap \left(\text{the closure of } \bigcup_{k=p+1}^{\infty} X_k \right) = 0 \quad (p = 1, 2, \ldots)$$

and such that each X_p contains at least N_p interior points. Similarly there exists a sequence (Y_p) of compact subsets of Y which satisfies the same conditions as (X_p) . It follows from our choice of H_p that there exist f_{1p}, \ldots, f_{rp} in V(X, Y)such that

(1) $\|f_{jp}\|_{V} < 3$ and $\|f_{jp}\|_{\infty} < 2^{-p}$, (2) $\|f_{1p}^{m_{1}} \cdots f_{rp}^{m_{r}}\|_{V} > 1$ if $0 \neq (m_{j}) \in E \cap \{0, 1, ..., p\}^{r}$, (3) $\|f_{1p}^{n_{1}} \cdots f_{rp}^{n_{r}}\|_{V} < 2^{-p}$ if $(n_{j}) \in \mathbb{Z}_{+}^{r} \setminus E$, (4) $\operatorname{supp} f_{ip} \subset X_{p} \times Y_{p} \ (j = 1, ..., r)$.

For the proof of this fact, the reader is referred to the proof of Lemma 4.4 in [5]. Finally we define

(5)
$$f_j = \sum_{p=1}^{\infty} f_{jp} \quad (j = 1, ..., r).$$

Notice that the series in (5) converges uniformly by (1). Moreover, the functions f_j belong to V^{\sim} by (1) and (4), since the sets $X_p \times Y_p$ are pairwise "bidisjoint" (cf. [1; Lemma B], [5; Lemma 2.2] and [9; Lemma 2]). Now let (n_j) be any nonzero element of \mathbb{Z}_+^r , and let $g = f_1^{n_1} \cdots f_r^{n_r} \in V^{\sim}$. By (4) and (5), we then have

(6)
$$g = \sum_{p=1}^{\infty} f_{1p}^{n_1} \cdots f_{rp}^{n_r}$$

Therefore (3) guarantees that g is in V if $(n_j) \notin E$. In order to prove that g is not in V if $(n_i) \in E$, notice that g vanishes on

(7)
$$K = \left(X \setminus \bigcup_{p=1}^{\infty} X_p^0\right) \times \left(Y \setminus \bigcup_{p=1}^{\infty} Y_p^0\right),$$

where D^0 denotes the interior of D, and that K is a set of synthesis for the algebra V, as is easily seen. Therefore the required conclusion is an immediate consequence of Lemma B of [1] (see also [6; Proposition 2.2]). This completes the proof.

Remarks. The functions in the theorem and in Lemma 1 can be chosen to be nonnegative. Moreover our result holds for

$$V_0 = C_0(X) \otimes C_0(Y),$$

where X and Y are two infinite locally compact spaces (cf. [10]).

REFERENCES

- 1. C. C. GRAHAM, On a Banach algebra of Varopoulos, J. Functional Analysis, vol. 4 (1969), pp. 317-328.
- C. S. HERZ, Remarques sur la note procedente de M. Varopoulos, C. R. Acad. Sci. Paris, vol. 260 (1965), pp. 6001–6004.
- 3. E. HEWITT and K. A. Ross, Abstract harmonic analysis, Vol. II, Structure and Analysis for Compact Groups; Analysis on Locally Compact Abelian Groups, Springer-Verlag, New York, 1970.
- 4. W. RUDIN, Fourier analysis on groups, Interscience Tracts in Pure and Appl. Math. no. 12, Interscience, New York, 1962.
- 5. S. SAEKI, Homomorphisms of tensor algebras, Tôhoku Math. J., vol. 23 (1971), pp. 173-199.
- On restriction algebras of tensor algebras, J. Math. Soc. Japan, vol. 25 (1973), pp. 506-522.
- -----, Singular measures having absolutely continuous convolution powers, Illinois J. Math., vol 21 (1977), pp. 395-412.
- 8. N. TH. VAROPOULOS, Tensor algebras and harmonic analysis, Acta Math., vol. 119 (1967), pp. 51-112.
- 9. -----, On a problem of A. Beurling, J. Functional Analysis, vol. 2 (1968), pp. 24-30.
- 10. -----, Tensor algebras over discrete spaces, J. Functional Analysis, vol. 3 (1969), pp. 321-335.

Tokyo Metropolitan University Tokyo