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UNIQUENESS THEOREMS FOR MINIMAL SURFACES
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Introduction

There are three basic uniqueness theorems in the theory of compact minimal
surfaces in R3. The first theorem is due to Rado [19] and states that if , is a
Jordan curve which admits a one-to-one orthogonal or central projection on a
convex plane curve, then 7 bounds a unique minimal disk which is a graph over
the plane. The second theorem due to Nitsche ([14] and also [5]) states that
a smooth Jordan curve with total curvature less or equal to 4g bounds a unique
minimal disk and the disk is immersed. A third theorem which follows from
convergence properties for minimal disks is that any C2 Jordan curve
sufficiently C2 close to a fixed plane C2 Jordan curve bounds a unique minimal
disk which is a graph over the plane (see [4] and [24]).

In this paper we generalize these three theorems to show that the curves
above bound unique compact minimal surfaces. In the case of a Jordan curve
with total curvature less than or equal to 4g, we need to make the additional
assumption that the curve lies on the boundary of a convex set. It is still not
known if this additional assumption is needed. The tools used in the proofs are
the maximum principle for minimal surfaces, the geometric Dehn’s lemma in
[11], Nitsche’s uniqueness theorem [14] and the manifold representation of
smooth immersed minimal disks in R3 [24]. Except for Theorem 2, the results
in this paper also appear in the author’s book "Lectures on Plateau’s Problem"
[9] published by I.M.P.A. A generalization of Theorem 3 using a completely
different approach also appears in [12].

1. Generalization of a theorem by Rado

The following well-known geometric inequality will be one of our basic tools
for proving uniqueness theorems.

MAXIMUM PRINCIPLE.
f2 D R where

Suppose M and M 2 are 9raphs oftwo C2functionsfl,

(1) D is the unit disk in R2,
(2) m has zero mean curvature,
(3) M and M2 are tangent to the xy plane at the origin,
(4) A (P) -< fz(P)for atl p D.
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Then the mean curvature ofM2 at the origin in R3 is nonpositive with respect to
the normal vector (0, O, 1). Furthermore, ifM 2 also has zero mean curvature,
then M1 Mz.

Actually the last statement in the above maximum principle is what is
usually referred to as the maximum principle for minimal surfaces. It geome-
trically states that an open minimal surface M1 in R3 can not locally lie on one
side of an open minimal surface M2 in R3 at a point of intersection. This last
statement continues to hold if M1 and M2 have branch points.
The following theorem was proved by Rado [19] in the case the topology of

the minimal surface was restricted to be the disk. Note that convex will always
be used in the weak sense.

THEOREM 1. Let ? be a Jordan curve in R3 with a one-to-one orthogonal
projection onto a convex plane Jordan curve. Then 7 is the boundary curve of a
unique compact minimal surface and this surface is a graph over the plane.

Proof Suppose ? has a one-to-one orthogonal projection onto a convex
Jordan curve ;’ in the xy plane R2. The curve ?’ is the boundary curve of a disk
D in R2. Geometrically the curve 7 lies on the boundary of the solid cylinder
C {(x, y, z)]z R and (x, y) D}. Since C is a convex set, the maximum
principle for harmonic functions implies that the interior of any compact mini-
mal surface f: M ---, R3 with boundary curve ? lies in the interior of the solid
cylinder C.
We will now show thatf(M) is a graph above the xy plane. Iff(M)is not the

graph of a continuous function, then by elementary differential topology there
is a point q int (D) with rt-l(q) f(M), consisting of at least two points
where rt: R3 -. R2 is orthogonal projection onto the xy plane. Let

Pl, P2 rt-l(p) c f(M)

be two points with the z coordinate of p greater than that of pl. Then the
surfaces f(M)and f(M)+ (Pz- Pl)intersect in the point p. Thus there
is a nontrivial vertical translation (0, 0, t) so that the intersection of
(f+ (0, O, t))(M) and f(M) is nonempty.

Let

T max {t e R l(f+ (0, 0, t))(M) f(M)=/= 0}.

Note that T > 0 and exists by the compactness off(M). Now let p be an
element in the intersection (f + (0, 0, T)(M)) cu J(M). Since (f + (0, 0, t))(OM)
is disjoint from 7 for all > 0, p must correspond to two points P3, P4 int(M)
with f(P3)= (f+ (0, 0, T))(p4)= p. By our choice of T, the immersed surfaces
f(M) and (f + (0, 0, T))(M)must locally lie on one side of each other near the
point p. (Otherwise the surface (f+ (0, 0, T + e))(M)would intersectf(M)for
some small e > 0 which contradicts the definition of T.)
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The maximum principle now implies that the surfaces

f(M) and (f + (0, O, T))(M)
have the same images on open neighborhoods U3 of P3 and U, of P4.
Unique continuation properties for analytic maps imply that the intersection of
these surfaces is also an open subset off(M). On the other hand, the inter-
section of the surfaces is also a closed subset off(M) in the interior of the
surface. Sincef(M) is connected, the intersection must be all off(M). However,
this contradicts the fact that f(OM)is disjoint from f+ (0, 0, T))(M). This
contradiction proves the surface f(M) is a graph and hence M is a disk D’.

Iffl,fz D’--, R3 are two distinct minimal surfaces which are different graphs,
then there is a nontrivial vertical translation (0, 0, t) so that

(fl + (0, O, t))(O’) c f2(O’)
is nonempty. The argument used above gives a contradiction and this proves
the theorem.

Remark. As the Gauss map for an open minimal surface is an open
mapping, the projection map onto the xy plane of the unique minimal surface
given in the above theorem has nondegenerate Jacobian on the interior of the
minimal surface (see also [18]). Theorem 1 holds in the greater generality where
the minimal surface with boundary curve ? is allowed to have branch points. If
a Jordan curve ? in R3 has a central projection onto a convex plane curve, then
a similar proof shows ? is the boundary curve of a unique branched minimal
surface.

THEOREM 2. If? is a Jordan curve in R3 which has a monotonic orthogonal or
central projection onto a convex plane Jordan curve, then ? is the boundary curve

of a unique compact minimal surface and the interior is a graph over the plane.

Proof We will give a proof of the theorem in the case that the Jordan curve
? projects orthogonally and monotonically onto a convex plane Jordan curve
; R2. The proof of the second case of the theorem is similar and will be left to
the reader.

Let rt" R3 -- R2 be the orthogonal projection and C rt- a(/) be the cylinder
over . The Jordan curve ? is the uniform limit of Jordan curves {1i N}
which project in a one-to-one way onto ? and which lie on the part of C above
the Jordan curve ?. Similarly, ? is the uniform limit of Jordan curves {flli N}
which project in a one-to-one way onto ? and which lie on the part of C below
?. By the previous theorem the curves i and fli bound unique minimal surfaces
which are disks D,, and D/,, respectively. Also these minimal disks are graphs
over the disk A bounded by ;.
Now pick three points Px, P2, P3 on ? and points r, ri2 ri3 on 0 and points

Sil si2 si3 on i which converge to p, P2, P3, respectively. After picking the
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three points on ai and three points x 1, x 2, x3 on the boundary of the disk D,
there is a unique conformal harmonic map f,: D R3 of finite area which
parametrizes ai and has image Di with f(Xk)--rig (see [8]). The family
{L,]i N} is equicontinuous (see for example [11]). Therefore a subsequence
converges to a disk f: D- R3 with boundary 7. By lower semicontinuity of
area, Area (f) _< inf (fi). In fact, sincef, are disks of least area with respect to
their boundary curves and the area of the annular regions of C bounded by (z

and 7 have area going to zero as gets large, the mapf is a disk of least area
with boundary curve 7. Similarly, the three point condition for minimal disks
shows that the disks D/t, give rise to a disk ft: D R3 of least area with respect
to the boundary curve 7.

Assertion 1. The interiors of the least area disks D f(D) and D/ f/(D)
are graphs over the interior of the disk A in R3 with boundary ;.

Proof The maps fi converge smoothly tof on compact subsets contained
in the interior of D (see [11]). Since the Gauss map G: interior (D,) S2 is
conformal and the images of the Gauss map for fi(D) lie in the upper hemi-
sphere of S2, the image of G also lies in the upper hemisphere of S2. Thus the
projection of the interior of D onto the place R2 is a submersion. The standard
monodromy argument shows that in this case the interior ofD is a graph over
the interior of the disk A bounded by . The same argument shows that the
interior of Dt is also a graph over the interior of A. This proves assertion 1.

Assertion 2. If D D/i, then 7 is the boundary curve of a unique compact
minimal surface.

Proof Consider another compact minimal surface M with boundary 7. By
convexity of the region rt- I(A) the interior of M is contained in the interior of
t-I(A). Since the disks D, converge to D from above and the disks D,, con-
verge to D from below, either some disk D,, or D/ intersects M.

Suppose D, c M is nonempty. By definition of i, + (0, 0, t) is disjoint
from the boundary curve of the surface M for all nonnegative t. As in the
proof of Theorem 1, D, + (0, 0, t) intersects M in its interior for a largest value
T which by the maximum principle is impossible. Hence D, M is empty and
a similar argument shows Dt M is empty. Since either D, M or D/l, M
is nonempty, we have a contradiction which proves Assertion 2.
We now show by using the least area property of D and Dt that D, Dt.

Since the disks D, are disjoint and above D/i, for all i, it is not difficult to prove
that the limiting disk D lies "above" D/ and these disks intersect only along
their common boundary curve 7. As the disks D, and D/, are disks of least area
with common boundary curve 7 on the boundary of a convex set, the dis-
jointness property of D, and D/ also follows from Dehn’s lemma in [11]. In fact
we are now going to apply an approximation argument in the proof of Dehn’s
lemma in [11] to show that D Dt.
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If D, is different from D, then there is a negative T so that the translated disk

D1 (D + (0, 0, T)) and the disk D2 Dt intersect transversely along some
arc c" [0, 1] R3 which lies in the interior of D2 (see Lemma 2 in [11]). By
compactness of the embedded disks D and D 2 we may assume the intersection
of a small ball B3, centered at c’(), with each of the disks are subdisks E and F,
respectively. We may also assume that E and F intersect transversely along an
arc " [0, 1] --, B3 with (0), (1) e OB3 and that intersection of E and F on 63B3

consist of smooth Jordan curves r and s, respectively.
Let r 1, rE and sl, s2 be the subarcs of r and s, respectively, which join one

point of the intersection of r and s to the other point of intersection. The arc
divides E and F into closed subdisks El, E2 and F 1, F2, respectively, with rl, r2;
sl, s2 being arcs of part of the boundary of the respective subdisks.

Let Ai./= Area (Ei A F), Bi be the area of a solution to Plateau’s problem
for the Jordan curve ri sf and e inf {(A B)I 1 _< i,j <_ 2}. Since the disks
E and F intersect transversely along x, e must be positive (see Lemma 6 of [11]
for a rigorous proof).
As the curves fli converge uniformly to /, we may assume that is large

enough so that the annulae of least area bounded by fli and /are each less than
min (e/4, Area (E)) and the area of these annular regions converges to zero as
gets large. The assumption that the area is less than Area (E) is to guarantee the
existence of least area annuli with boundaries being the translated curves
fli + (0, 0, T) with r. This follows from Morrey’s condition for an annulus of
least area to exist by checking the required area inequality directly.

Since the curves /+ (0, 0, T) and r bound the unique annular solution

D1 interior (E) to Plateau’s problem, the smooth convergence argument used
in the proof of Theorem 5 in [11] shows we may assume, after picking a
subsequence, that there are annular solutions Fi" f ---, R3 to Plateau’s problem
for fl + (0, 0, T) which converge uniformly to the original unique embedded
solution to Plateau’s problem for the curve /+ (0, 0, T) and r. Since the
convergence of F is uniform in C norm near r, we may assume for large i,
F(f) is embedded near the smooth curve r, transverse to D1 near 0B3, and
F(f) is disjoint from B3. Dehn’s lemma for planar domains in [11] shows that
F are embedded for large i.

Fix large enough so that F has the above properties. Consider the contin-
uous piecewise differential map f/" D C n-I(A) which is the embedding
obtained by gluing the embedded annulus Fi(f) to the embedded disk E along
the common boundary curve r. After a small C2 perturbation offi outside of B3

there is a new embedding f;" D C with

Area (f’i) < Area (f/)+ e/2,

f’i(cD) fl, + (0, O, T), f’g is transverse to D1 in interior (C)- B3. As f’i is
transverse to D and these disks only intersect in their interiors, the intersection
of f’i(D) and D1 consists of a finite collection of Jordan curves. Let K be the
Jordan curve in this intersection which contains the arc g([0, 1]) E c F. The
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Jordan curve K bounds a subdisk A’i onf’i(D) and a subdisk Ai on D 1. As D is a
disk of least area, a cut and paste argument shows Area (A)_< Area (A;).
Hence by forming the disk D; by gluing together (f;(D) A;)/ A, we have a
piecewise smooth disk with boundary fl + (0, 0, T) and

Area (D;) _< Area (f)+ e/2.

By our choice of e, we can decrease the area of D’ in B3 by at least e. This
shows that there is a solution gi: D R to Plateau’s problem for fl with area
less than Area (f)- e/2. Since in our case

lim (Area (9))= Area (D2),

we have a contradiction to the previous inequality and the fact that

lim (Area (f))= Area (D2).

This contradiction shows D Dr as was to be proved. The theorem now
follows from Assertion 2.

2. Positive envelopes

In the previous section we used the fact that the interior of a compact
minimal surface in R3 is always contained in the interior of the convex hull of
its boundary. It is well known that this "convexity property" continues to hold
in R3 in the following case. If the boundary of a minimal surface is contained in
a star-shaped sphere of positive mean curvature, then the interior of the mini-
mal surface is contained in the interior of the ball bounded by the sphere (this is
well known). The following lemma generalizes this convexity property of sur-
faces of positive mean curvature.

LEMMA 1. Let B be a compact refion ofR3 with C2-boundary havin9 positive
mean curvature. Suppose f: M R3 is a continuous conformal harmonic map ofa
compact Riemann surface with boundary such that f(M) is contained in B and
f c3M ffives a monotonic parametrization ofa collection F { 1, /2,..., ,} ofC2

Jordan curves on the boundary of. Then

(1) f (interior M) interior (B),
(2) f is an immersion in a neighborhood ofcM and is transversal at cB.

Proof Part (1) follows immediately from the inequality in Lemma 1. We
refer the reader to Section 3 of [8] for many of the definitions and computa-
tional details used in the proof of part (2). Also we refer the reader to [11] and
to page 366 in [15] where a proof is given in the case the curve lies on the
boundary of a convex set. The reader should note thatfis a map of class C: on
all of M by the boundary regularity theorem in [6].
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Let 6 be the distance function from OB. For each point x e B which is close to
c3B, choose an orthonormal frame e 1, e z, e 3 so that e 3 is tangential to the unique
geodesic which realizes the distance from x to OB. Then

(33 e3 e3(6)- (re e3) 0.

Further computations show 613 331 (23 and 332 are also zero. By the first
variation formula for area (in the unit normal direction), one immediately
has 611(x) + fizz(x) < 0 when x is close to cOB. In particular
m( 611 -+- 322 + 633 < 0.
Now consider the function 9 -6 f. As fis conformal, we may choose an

orthonormal frame {01, 02, 03} at x so that

f,(c3/c3x) cox, f,(cO/Oy) cO2.
Then by harmonicity of the coordinate functions f,

2

k,l,i

where H(6) is the Hessian of 6 at x.
Now consider a point x e OM where the map f: M --, B is not transverse to

cOB. Since the Gauss map off is well defined on M (see [8]), even at a branch
point, there is a well defined tangent plane at f(x). It follows from the local
ramification properties of branch point ([16] or [18])that ifx is a branch point,
then the tangent plane atf(x) is the tangent plane to OB. Hence the lemma will
be proved once we have shown the tangent plane at f(x) is transverse to the
boundary of B.

If the tangent plane to c3B atf(x) is not transverse, then the previous calcula-
tions show that

A0(x -c2[H(b)(01, 0,)+ H(i)(02, 02)
c2[H()(e I, e,) + H(b)(e2, ez)] >- 0.

Since (H(b)(e,, e,)+ H(t)(e2, e2) txl + 622 is strictly negative near OB and
the map f is of class C2, then A0 > 0 for y close to x.
We now claim that c39(x)/c3n 4:0 for x e c3M where n is the inward normal on

the boundary of m. This will prove thatf(M)is transversal to OB alongf(Om).
Indeed it shows by the chain rule that for the normal N to cOB,

This will show that f is an immersion near M and transversal to OB.
Let D be a small disk in M so that OD OM {x} and f(D)lies in a

neighborhood of cOB so that A0 > 0. The Hopf maximum principle on page 68
of [17] now shows that O9(x)/On 4: O. This completes the proof of Lemma 1.
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DEFINITION. A Jordan curve 7 in R3 has a positive envelope of surfaces
{M, [0, 1]} if:

(1) M, is a continuous family of embedded compact connected C2-surfaces
in R3 which have positive mean curvature with respect to the inward normal on
the compact regions of R3 that they bound.

(2) 7 Mo and 7 is disjoint from M, for > 0.
(3) The convex hull of 7 is contained in the interior of the compact region of

R3 bounded by Mx.

Example. The simplest example of a positive envelope of surfaces is to take
a star shaped sphere So of positive mean curvature and then consider the
natural family of positive mean curvature spheres which arise from So by
taking outward radial expansions from the star point (see the figure below).

PROPOSITION 1. Suppose a Jordan curve 7 in R3 has a positive envelope of
surfaces {M, It [0, 1]}. Then every compact minimal surface S with boundary
curve is contained in the compact region C of R3 bounded by the surface Mo.
Furthermore, the interior of S is contained in the interior of C.

Proof Separation theorems in algebraic topology imply that the curve is
contained in the interior of the compact region of R3 bounded by any surface
Mt for > 0. Suppose now that there is a minimal surface S with boundary
curve whose interior is not contained in the interior of the compact region
bounded by Mo.

Consider a max {t [0, 1][M, c S 4:4)}. By compactness of m and the
unit interval, a exists. Since the convex hull of 7 is contained in the interior of
the compact region bounded by the surface M x, we know that S is contained in

!

FG.
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the interior of the compact region bounded by M and hence a 4: 1. Lemma 2
implies the proposition if a 0. Thus we may assume that a is contained in the
interior of [0, 1].

Since the family of surfaces Mr is continuous and disjoint from , for > 0, the
surface S is contained in the compact region of R3 bounded by M and S
intersects M from the "inside" of M at an interior point p e S. Since S lies
inside the compact region bounded by M, and with respect to the inward
normal to M at p andM has positive mean curvature, the maximum principle
gives a contradiction and proves the proposition.

In [24], F. Tomi and T. Tromba proved that the space of immersed
minimal disks with C2-boun,dary curves and without branch points on the
boundary curves forms a C2 Banach manifold. Furthermore they proved the
natural projection map P: . ---, cg to the manifold of C2 Jordan curves in R3 is
a C2 Fredholm map of index zero. By the Sard-Smale theorem [21] almost
every 7 e cg is a regular value for P.

In [24], Tomi and Tromba use these facts about the projection map P to
deduce the existence of an embedded minimal disk for a C2-Jordan curve on
the boundary of a convex set in R3. Using their technique we will show that one
can achieve the existence of more than one embedded disk if the curve is the
boundary curve of more than one minimal surface.

THEOREM 3. Suppose o is a C2-Jordan curve in R3 which is contained in a
positive envelope of spheres {St It [0, 1]}. Ij’o is a regular value for P:
and o is the boundary curve ofmore than one compact minimal surface, then o is
the boundary curve of at least three embedded minimal disks, one of which is the
solution to Plateau’s problem.

Proof By Proposition 1 we know that every minimal surface with boun-
dary curve o is contained in the ball B bounded by the sphere So. Dehn’s
lemma in [11] shows that any solution to Plateau’s problem in R3 will be an
embedded minimal disk in B. It now only remains to prove that 0 is the
boundary curve of at least three embedded minimal disks.

Let p e So o be a point on the sphere So with positive Gaussian curvature
and let M be an arbitrary compact minimal surface with boundary curve o.
Since M and the disks P- 1(o) form a compact subset of the ball/3 bounded by
the sphere So which only intersects So along the curve o, the point p lies a
positive distance e from M and the disks P-(o).

Since p is a point of positive Gaussian curvature on So, there is a C2-plane
Jordan curve

_
on So close to p which bounds a plane disk D with all the

points of D of distance less than e from p. The curve
_

on So is a regular
value for P: 52 cg by Tromba’s transversality theorem in [25] and

_
is the

boundary value of a unique branched minimal disk which is embedded and
disjoint from m and the disks P-1(o).
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By the Jordan curve theorem So disconnects So into two disks D and D 2"

Suppose the curve s_ is contained in D and let p 2 be a point in int (D 2). As in
the previous paragraph, the point p 2 is a positive distance from M and the disks
P- 1(o).
Choose a small Ce Jordan curve s around pe which has total curvature less

than 4rr and such that the convex hull of s is disjoint from M and P-
Such a curve s can be obtained as the intersection curve of a sufficiently small
sphere centered at p with the sphere S0.
The uniqueness theorem of Nitsche states that if is analytic, then spans

a unique branched minimal disk or equivalently P-1( 1)contains one point.
The argument in [15] shows Nitsche’s theorem continues to hold if the curve is
of class C. In fact it can be shown that Nitsche’s theorem holds in the case of
Ce curves. Since this fact is not explicitly written down, the reader may assume
that all ofoursurfaces and curves are ofclass C4. It follows from the transversality
theorem in [25] that s is a regular value for P: %
The curves s_ and s0 are the boundary curves of a C-annulus A_ in So.

By the conformal classification of annular domains [2] there is a conformal C
diffeomorphism h: A_ A’ where A’ is an annulus in the plane with concen-
tric circles for boundary.
Hence the annular region A-1 has a C2 foliation {s,lt e [- 1, 0]} by circles.

Similarly the annular region bounded by the Jordan curves So and sl has a C2

foliation by circles {s, It [0, 1]}. By being careful one can show these two C2

foliations give rise to a C2 foliation of the annular region A bounded by the
curves s-1 and s l. This foliation induces a natural C2 embedding
s: [- 1, 1] ---, cgJ such that s(- 1) s_ 1, s(0) So, s(1) s and the variation
vector field at the circle st is everywhere nonzero.

However, the curve s: [-1, 1]--,cg might not be transverse to the map
P: c. As s(- 1), s(0) and s(1) are regular values and the derivative of s is
never zero, s is transverse to P at the points {- 1, 0, 1}. The Smale-Sard theorem
[21] shows there is small C2-perturbation s’ of s that is transverse to P and
which agrees with s at the points {-1, 0, 1}.

In fact the compactness of the sets M and P- (So) together with the fact that
the variational vector field of st is everywhere nonzero can be used to prove the
following: there is a C2-perturbation s’ of s such that:

(1) 0( agrees with s in a neighborhood of {- 1, 0, 1}.
(2) = (,_.11 0(,) w (So- A) is a C2-sphere with positive mean

curvature.
(3) The interior of m and the interiors of the disks in P- (s) are contained

in the interior of the ball bounded by the sphere S.
(4) The curves 0( give rise to a foliation of the annular region on S bounded

by the curves s_ (- 1)and s (1).
(5) s’ is transverse to P.

Since s’[- 1, 1] cg is an embedded submanifold and 0( is transverse to the
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C2 map P’ cg which is Fredholm of index zero (see [25]), the implicit
function theorem states that ,/ p-a(’[-1, 1]) is a one-dimensional sub-
manifold of and has boundary P-x(_ ) and P- x( ). Here P- (_ ) and
P-X(a) are the unique minimal disks bounded by the curves _x and x.
Lemma 1 or Lemma 2 easily implies that the subset ,J/ c ,,g consisting of disks
in ,////which are contained in the ball B bounded by the sphere S is the submani-
fold of which consists of all connected components of / which contain a
minimal disk in/. (Actually ,g.)

Since a limit of minimal disks in/ bounding a C2-Jordan curve 7 on is
another minimal disk in B without branch points on the boundary, it follows
that oJ/ is a one-dimensional manifold. Our choice of the curves

_
and

shows that the boundary of ,J/ consists of the unique minimal disks bounded
by the curves

_
and a. It follows from [24] that the manifold , contains

exactly one component which is an interval T c ,/ which joins the minimal
disk bounded by

_
to the minimal disk bounded by and the disks in T are

embedded. The following geometric picture describes our situation.

FIG. 2
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Since an odd number of disks in T have boundary curve So (see Figure 2),
and all these disks are embedded, we may assume that there is a unique disk
fl T with boundary curve So (or else there would already by three minimal
disks). We will now show that the minimal surface M is the minimal disk ft.

First define

a, min {a T= [0, 1]la c M b},

a2 max {a T= [0, 1][a M b).
Here the point 0 T corresponds to the unique minimal disk with boundary
curve

_
and 1 T corresponds to the unique minimal disk with boundary

curve and fl corresponds to 1/2 T [0, 1]. By compactness of M and the
interval the numbers a and a exist.

Since the disks corresponding to the numbers 0, 1 T are disjoint from M, it
follows that a and a 2 lie in the interior of T. Since fl is the unique minimal disk
in T with boundary curve 7, if a (and likewise a 2) is different from 1/2, then
any point p of intersection of a and M must be a point in int (a ) int (M).
At this point p the surface a locally lies on one side of the surfa.ce M. Hence the
maximum principle implies the surface a and M must agree on an open set.
However, it now follows that M and a have the same image and hence the
same boundary curve s0. This shows a and similarly a2 are the same minimal
disk fl T. In turn this implies by continuity that M fl, as was to be proved.

Since M is arbitrary, we have shown that if s0 bounds more than one mini-
mal surface, then there are at least three embedded minimal disks in T with
boundary curve So. This completes the proof of the theorem.

Remark. Using Dehn’s lemma, the author and S. T. Yau have shown that if
a continuous Jordan curve is contained in a positive envelope of spheres and is
the boundary curve of more than one minimal surface in R3, then ? is the
boundary curve of two embedded stable minimal disks. It follows from the
arguments in the proof of Theorem 3 that a generic rectifiable curve which is
the boundary curve of more than one minimal surface is the boundary curve of
at least three embedded minimal disks.

3. Two more uniqueness theorems

The first uniqueness theorem in this section is related to a theorem of Nitsche
[14] which states in its proper generalization that a Cz Jordan curve in R3 with
total curvature less than or equal to 4n is the boundary curve of a unique
branched minimal disk which in fact does not have branch points. We will first
give a generalization of this result.

DEFINITION. The total interior or I curvature of a unit speed C2-Jordan
curve ?: [a, b] --* M where M is a surface in R3 with unit normal vector field N
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is defined to be

.b

I I(t) dt whereI(t)=
II "(t)ll if y"(t) N _> O,

]["(t)- (7"(t)’N)NI[ if ,"(t)" N <_ O.

LEMMA 2. Suppose ? is a C2-Jordan curve contained in a positive envelope of
spheres {St [0, 1]} and the total I curvature of7 is less than or equal to 4r with
respect to the inward normal on the sphere So. Then 7 is the boundary curve of a
unique branched minimal disk which in fact does not have branch points.

Proof By Proposition 1 in the previous section, a minimal immersion
f: D --} R3 with boundary curve 7 will be contained in the ball bounded by the
sphere So. The Gauss-Bonnet formula and the fact that the Gauss curvature of
a minimal surface is nonpositive give the formula

1 +- IKI dA =-
On the other hand, the geodesic curvature xo(t) <_ I(t) by our definition of

I(t) and the fact thatf(D) is contained inside the ball bounded by So. Hence if
the total I curvature of ; is less than or equal to 4rt, then

1+ IKI dA <2.

By Lemma 2 in the previous section, a branched minimal immersion /: D ---} R3

with boundary curve 7 does not have branch points on the boundary. The
existence of a branch point in the interior of D for the map 9 contributes at least
1 to the left-hand side of the above inequality (see p. 321 of [14] for this
calculation) which would imply ]K] dA 0. This in turn would imply that

D is embedded in a plane and the lemma is known in this case.
Hence every branched minimal immersion f: D R3 with boundary curve 7

in fact does not have branch points. Another calculation in [14] shows that we
may in fact assume that K[ dA < 2rr. By the stability theorem of L. Bar-

D

bosa and M. do Carmo the map f: D---} R3 is stable. Hence if there are two
minimal immersionsfl andf2 of the disk having boundary curve 7, then the two
minimal disks are strict local minima for area in the variational sense. If the
immersions fl and f2 were local minima in the Co sense, then the theorem of
Shiffman [20] would imply the existence of an unstable minimal disk with
boundary curve 7.

In [14] Nitsche shows that the minimal immersions fl and f2 will be local
minima in the Co sense if the curve 7 is analytic. However, the results of
F. Tomi [23] and the argument in [5] show that 7 would bound an unstable
minimal disk in the case 7 is of class C2. Since the I curvature of 7 is less than or
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equal to 4n, the above discussion shows )’ can only be the boundary curve of a
strictly stable minimal disk. This contradiction proves the lemma.

THEOREM 4. Suppose )’ is a C2-Jordan curve with a positive envelope of
spheres {Stlt [0, 1]}. If the total I curvature of), is less than or equal to 4n with
respect to the inward normal on the sphere So, then )’ is the boundary curve of a
unique compact branched minimal surface in R3. Furthermore, this surface is an
embedded disk.

Proof. That 7 bounds an embedded minimal disk follows from Dehn’s
lemma. If )’ bounds more than one minimal surface and )’ is a regular value for
P: cg, then Theorem 2 in the previous section shows )’ is the boundary
curve of at least three embedded minimal disks. The calculations in the
previous lemma show that in fact every branched minimal disk bounding )’ is
free of branch points and is stable. Hence by Tromba’s stability theorem ?, is a
regular value for P: --, c. Since , now is the boundary curve of more than
one minimal disk, the previous lemma gives a contradiction which proves the
theorem.

Recently a number of authors ([4] and [25]) proved that if)’ is a C/-Jordan
curve in a plane P in R3, then there is a C2-neighborhood N of)’ in the space cg
of C2 Jordan curves such that every element in N bounds a unique minimal
disk. An elementary proof of this fact using the idea of proof in Theorem 1 is as
follows. The proof of Theorem 1 implies the result for a given ,’ if every’
minimal disk bounding ,’ is a graph over the plane P. If N does not exist, then
there is a sequence )’i which converges in a C2-manner to 7 and which bounds
minimal disks D/which are not graphs. By uniqueness of the minimal disk D
with boundary 7 and the usual C2 convergence theorems, D converges to D in
the C2onorm. (Note we must also use the three point condition.) Hence even-
tually the orthogonal projection of D on the plane is a submersion with the
projection of ’i one-to-one. The usual monodromy theorem shows D is ac-
tually a graph. This contradiction shows some N must exist.
We now give a generalization of this uniqueness theorem which only uses the

simplest geometric principles and which shows uniqueness of minimal surfaces
of varying topological type as well. Since the method of proof is quite explicit,
one can actually compute an e from the geometry of a C2-plane curve ? in the
unit disk so that any e C2-perturbation of , bounds a unique compact minimal
surface which is a graph over the plane.

THEOREM 5. Suppose )’ is a C2-plane Jordan curve. Then there is an > 0 so
that any Jordan curve in R3 which is close to )’ in the C2-norm is the boundary
curve ofa unique compact minimal surface. Furthermore, this minimal surface is a
graph over the plane.



332 WILLIAM H. MEEKS III

Proof Let 7: [0, 1] --+ R3 be a C2-Jordan curve contained in the xy plane P.
What we will show is that if f: R3 R is a C2 diffeomorphism which is
sufficiently close to the identity map in the C2 topology, then f(7) is the boun-
dary curve of a unique minimal surface which is a graph over the xy plane. It
will be sufficient to prove this since a neighborhood of idR3 in the space of
C2-diffeomorphisms generates a neighborhood of 7 in cg by composition with 7.
The main step in the proof of this theorem will be to construct what is

essentially a positive envelope of spheres for the Jordan curve 7. We will now
carry out this construction.

Suppose that 7 is a C2 curve in the xy plane which is contained in the interior
of the unit disk D1. Let F {7,It [0, 1]} be a C2-foliation by circles of the
annular region A in the xy plane bounded by the Jordan curves 7o 7 and let
71 be the boundary circle of the disk D 2 of radius 2. Then there exists an e, > 0
that depends on this foliation such that for any point p with distance less than
10e from the circle 7, there is a unique geodesic arc which minimizes the
distance from p to 7,. Such an e exists by the following argument. For each
there exists a largest e(t) such that for any point p with distance less than 10e(t)
from 7, there exists a unique shortest geodesic which joins p to 7,. Since
e(t): [0, 1] ---, R is continuous and positive and [0, 1] is compact, the function e(t)
has a positive minimum which is our e. Note that e < 1/10.
Now consider the associated foliation F={o,(u)=7,(u)+N(7,(u)):

S --, R2} where N(7,(u)) is the inward unit normal of the curve 7, at 7,(u) with
respect to the disk it bounds. The reader should note that it follows from the
focal properties of geodesics (see p. 34 of [13]) that 9e is less than the minimum
radius of curvature of the curves 7,. Similarly, 8e, is less than the minimum
radius of curvature of the curves a,. Thus the following embedded tori have
positive mean curvature with respect to the inward normal on the compact
regions that they bound. In fact they have positive mean curvature greater than
one.

For each e [0, 1] we define T,+" S x S Ra and T-" S x S -+ R by

T+(01, 02)--0q(01)-k (0, 0, e)-+- X/2e.
x [- cos (02)N(7,(01)) + (0, 0, sin (02))]

T-(01, 02)-- (x,(01)- (0, 0, g,,)-[- v/Ze,
x [-cos (02)N(7,(01))+ (0, 0, sin (02))].

Note that the curve 7, lies on the tori T,+ and T;-.
Now consider the piecewise smooth spheres S, defined as follows. Let D,+ be

the disk in the plane P + {(x, y, {x/2e, e))lx, y e R} bounded by the curve
a, + (0, 0, x/2e e). Let D,-- be the disk in the plane

P {(x, y, (e x/2e))lx, y R}
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bounded by the curve t + (0, 0, e x/2e). Let

A+ {T-(Ox, 02)lzt/4 _< 02 < r/2}
and

A- {T+ (0,, 02)1 rt/2 _< 02 _< -rt/4}.
Now S, D+ w D- At+ w A- defines a piecewise smooth sphere with posi-
tive mean curvature greater than one on the annuluar regions A + and A - and
the associated tangent planes to At+ and A2 along , have an angle of zt/4
radians with the vertical vector (0, 0, 1).

Let G {f: 113 R3 [fis a diffeomorphism of class C2 which is the identity
outside of the ball B of radius two}. Define a metric on G by

d(fl, f2) maxx, ti=0 I}(fl f2)i(x)[I

where fi(x) denote the ith derivative off and ][, is sup norm for the ith
derivative of a map 9" R3 -- R3. Let N be the neighborhood of ida3 e G such
that f N if and only if

(1) IIf(x)- xll < (x/2e e)/4 for all x e B.
(2) (Ofx()/llOfx()][, cos (zt/4) for all x e B and v e R3 with {l ll- 1.
(3) f(int (At+) w int (A2))has positive mean curvature.

It is not too difficult to check that N contains an open neighborhood of ida3 in
G.
Now suppose M is a minimal surface with boundary curvef ?, wheref N.

We will first show that M is contained in the ball/ bounded by the sphere
f(So). If M is not contained in B, then a max {t e [0, 1]]M U(S,) 4: b} is
greater than 0. Condition (1) above forfimplies that the convex hull off V is
contained in the region between the surfacesf(P+)andf(P_)where P+ and
P_ were defined previously in the proof. This shows that the surface M inter-
sects the sphere f(S)in the region f(A+ w A;). This fact and condition (1)
show that M is contained inside the interior of the ball bounded by the sphere
S and hence a is less than 1.
By condition (2)onfand the fact that the interior angles between A and A2

are n/2 radians, the interior angles along the surfacesf(A) and f(A,) are less
than n. This fact together with Lemma 1 in Section 2, condition (3), and the
discussion in the previous paragraph imply that if a 0, i.e., M B, then
int (M)c int ().
On the other hand, if a e (0, 1)and p M f(S,), then because the interior

angles along the surfaces f(A2) and f(A;) are less than , we have

p e f(int (A]) w int (A;)).
Condition (3) together with Lemma 1 in Section 2 and the fact that a occurs in
the interior of [0, 1] now give an immediate contradiction (see also the Proof of
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Proposition 1 in Section 2 for a similar argument). Thus we have shown that
the interior of M is contained in the interior of the ball/ bounded by the
sphere f(So).
The argument given in the Proof of Theorem 1 in Section 1 will show that M

is a graph and unique if we can prove that the nontrivial vertical translates of
f are disjoint from M. By condition (2) onfand our choices of the annular
surfaces A,+ and A-, the orthogonal projection of f(A+, w D +) and of
f(A; D-)on the xy plane are submersions. By condition (1) and (2) on/and
our original choice of e, we can be sure that f(7) projects in a one-to-one way
onto a Jordan curve in the xy plane. The standard monodromy argument
shows that f(A+ D +) and f(A- w D-) are graphs over the xy plane. This
fact together with the fact that M is contained in the ball bounded by f(S0)
implies that the nontrivial vertical translates off 7 are disjoint from M. As
remarked above, this proves the theorem.

COROLLARY. Let 7 be a C2-Jordan curve in the xy plane which bounds a disk
D. Iff 7 R is a CZfunction that is sufficiently close to zero in the C2 norm, then

f is the boundary values of a function F: D R which satisfies the Euler-
Lagrange equations for the area integral. Furthermore, the 9raph of F is the
unique compact minimal surface with boundary curve (V(t), f (v(t))).

In Theorem 5 we used the maximum principle for minimal surfaces. This
principle fails in codimension greater than one. Thus the proof does not prove
that small C2-perturbations of a plane C2-Jordan curve in R" bounds a unique
minimal surface which is a graph over this plane. The author conjectures that
this generalization of Theorem 5 is true.
Theorem 1 and Theorem 5 have codimension-one generalizations in higher

dimensions. Theorem 1 in higher dimensions can be stated as follows: Suppose
a sphere S" R"+ has a one-to-one orthogonal or central convex projection
onto a hyperplane. Then any immersed minimal submanifold with boundary S"
is unique, and it is a graph over this codimension-one subspace. Theorem 5
generalizes as follows: Iff: S" - R"+ R,+ 2 is a C2 embedded sphere, then
there is a C2-neighborhood N of S in the space of immersions of S" in Rn+2

such that each 9 e N is the boundary of a unique minimal submanifolds.
Furthermore, this minimal submanifold is a graph over R"+ 1. Existence of the
minimal submanifold for the above two theorems follows from the work of
Jenkins and Serrin [7] and the part of the proof of Theorem 5 which shows that
the perturbed sphere lies on boundary of region with positive mean curvature.
The proof of Theorem 1 generalizes directly in the codimension-one situa-

tion. However, to prove Theorem 5, one needs to apply the Schoenflies theorem
to create a foliation of part of R"+ by spheres. As the Schoenflies theorem is
not known to hold in dimension four, the argument does not generalize so well
in that dimension. For this reason, we can only claim Theorem 5 in dimensions
n different from three.
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With respect to Theorem 4, the reader should note that there are Jordan
curves 7, in R3 which are contained in positive envelopes of spheres, ,, has total
curvature greater than 4r + n and the total interior curvature I is less than
2zr + 1In. Such 7, can be constructed by taking close parallel interval parts of
two helixes on the cylinder x 2 + y2 1 and connecting the end points on the
cylinder. If the curvature of the helix is sufficiently small, the required positive
envelope can be constructed.
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