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HYPERFUNCTIONS AS BOUNDARY VALUES OF
GENERALIZED AXIALLY SYMMETRIC POTENTIALS

BY

AHMED I. ZAYED

I. Introduction

In the classical Dirichlet problem on the unit disk, one starts with a given
functionf(0) on the unit circle and seeks a harmonic functionf(r, 0) in the open
unit disk that converges to f(O) as r goes to 1. The solution to this problem is
very well known. However, the solution to the converse problem i.e. finding a
boundary function to which a given harmonic function in the interior of the
disk converges, was found relatively recently by Gelfand [1], Johnson [4],
K6the [5] and Sato [6]. It turns out that this solution always exists in the space
of hyperfunctions on the unit circle and is unique.

In [4] Johnson gives a characterization for the solutions of Laplace equation
in the unit disk, namely, f is harmonic on the unit disk if and only if there is a
sequence {g.} of continuous functions on the unit circle such that

and

f(r, O)= Z p")(O- t)O.(t dt

where II0.11 SUpo<_,<z=lo.(t)l and P"’(O)is the nth derivative or Poisson
kernel for the unit disk. In addition to that, he shows that the space * of
hyperfunctions on the unit circle is isomorphic to the space of harmonic
functions on the unit disk. The correspondencef--fwherefe andfe * is
given byfr(0)= Pr ]’where stands for the convolution, andf,(0)fin
asrl.
More recently, Staples and Kelingos [7] have characterized all solutions of a

perturbed Laplace equation in the unit disk by identifying their generalized
boundary values.

In this paper we prove similar results for the regular solutions to the partial
differential equation of Generalized Axially Symmetric Potentials (GASP):

2 02 2Oqxx+- 0 where/,>O.
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One is led naturally to consider this type of differential equations if one con-
siders those solutions of the n-dimensional Laplace equation

2( 2)
Ox--l + -x + +--=0, n > 2,

which depend solely on the variables x x 1, Y (x22 + + xz,) 1/2. In this case
2/ n- 2.
Throughout this report, a hyperfunction means a hyperfunction on [- 1, 1]

or equivalently a hyperfunction on the unit circle with the points (1, 0) and
(1, -0) identified and L denotes the Gegenbauer differential operator

L (1 x2)
d2 d

2.(2/ + 1)Xx
Hence, LC(x)= -(k +/)2C(x) where CUk(X)is the Gegenbauer polynomial
of degree k. Lo denotes the same operator with cos 0 as independent variable
and ovg denotes the linear space of analytic functions on [- 1, 1] provided with
the topology introduced in [5]. The strong dual * of g’ is the space of
hyperfunctions.

In Section 2 we give a characterization for the GASP functions analogous to
the one given by Johnson for harmonic functions. In Section 3 the boundary
values of GASP functions and their relationship with the space of hyperfunc-
tions are investigated. Unlike Johnson, we reserve the term "generalized func-
tion" for "Schwartz distribution", hence every generalized function is a
hyperfunction.

2. A characterization of GASP functions

In order to prove the characterization theorem we need the following lemma
whose main idea goes back to Johnson.

LEMMA 2.1. Let {ak}k=l be a sequence of complex numbers satisfyin9
limk-, ak

/k 1.

Then, there are sequences {ak,.} and a finite-valued function B(e) such that
ak =0 ak,n and

1()"+ ’. +

(2n + 2[] + 2)
k2" for 0 n k, k 1, 2, 3,...,

all > 0 and fixed > O, where [] is the 9reatest inteoer less or equal to .
Proof Let d supla/, v 1, 2, Then d is a monotone decreas-

ing sequence with limit less or equal to one. Therefore, we can write d N 1 + e
where e 0. Hence, for k 2 1
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Inequality (1) follows from the inequality

2n g2n+ . 0(1 )= 2n 2n + 1n=O n=O

forO_<e< 1.

Because of (1) we can write, for k even, ak ak,O +’’" + ak,k/2 with

k e" < 2 e,", n O, 1, k/2. (2)la,.I <2 2n

For the sake of symmetry, we add k/2 terms (possibly zeros) without violat-
ing inequality (2) so that aa aa, o + aa,1 + + aa, a. Clearly this decomposi-
tion is not unique. The case k is odd is treated exactly the same way except the
number of terms added is (k + 1)/2. Therefore, we have

kZna,.I -< 2n. e", 0 _< n _< k and k 1, 2, 3, (3)

and for the sake of completeness we set ao ao,o.
For e > 0, we choose k(e,) such that e,k < e,/e for all k > k(e,). Define A by

A max ((2n+ 1)(2n + 2) (2n + 2[#] + 2)).
A is finite and depends only on/ because the function

fp(x) (2x + 1)(2x +2:,2)"" (2x + p)
e

p a positive integer,

is bounded in [0, ) and goes to zero as x .
Thus, (2n+l)(2n+2) (2n+2[#]+2)e-2"<A for all n, and con-

sequently we have

,2kn <__ g2ne- 2n .
(2n + 1)... (2n + 2[/] + 2)’

for all n and all k > k(e). But there are only finitely many k’s and n’s such that
0 < n < k < k(e), hence we let

Bl(e)= sup (2n+l)"’(2n+2[/]+2)()2"

O<n<k,
k < k(e)

and

B() 2 max (B(e), B(e)). (4)
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Using (3)and (4), we immediately obtain

B(/3)32n+ 2[.]+ 2

k2na,.I <-(2n + 2[/1 + 2)!
for 0 _< n < k, and k 1, 2, Q.E.D.

let H(t, x, r) denote the kernel of Abel summability of Gegenbauer expansions"

o
t2)uH(t, x, r) (1 -1

(1 t2)u- 1/2(1 U2)tt-1 (1 r 2)
r2)u +1rt _1 (1--2rcosT+

where cos , xt + ux//(1 t2)(1 x2), -1 <_ t, x <_ 1, 0 <_r < 1, and

(1 t2)"- 1/2CUn(t)CUm(t)dt--

du

For short, when x cos O, we write H(t, O, r) instead of H(t, cos O, r).

THEOREM 2.2. A functionf(r, O) is a GASPfunction regular in the open unit
dik {z" z < ifd oly if there eist
on the interval [-1, 1] such that

and

lim (2n !119. )1/. 0

f(r, O)= ,, L 9.(t)H(t, O, r) dr,
n=O -1

Proof Sufficiency. Let {g.} be given as in the hypothesis of the theorem.
Then, for n 0, 1, 2,..., we have

o.(t) Z ,.c(t);
k=O

Set f.(r, O) Lg Ix__ 9.(t)H(t, O, r) dt. Then it can be easily verified that

f_ 9.(t)H(t, O, r) dt y’. a,. C(cos O)r, 0 < r < 1
k=O

and hence

’% q(cos O)r, o < 10l < .f,(r, 0)-- (-1)"y’, (k +/1 k,.
k=O
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To show that =o f,(r, O) converges for 0 < r < 1, we invoke Gilbert-
Bergman integral operator (cf. Gilbert [2]) which maps the holomorphic func-
tion given by the series

E r(k + )
k=0 k r(2/0 akrk’ lal < 1, a x + iy cos ,

into a GASP function element given by

Z akrkC(cs 0),
k=O

Thus,

where

0<r<l.

f.(r, 0)= (-1)" Z (k + la) ak,. C(cos O)rk
k=O

i ) F,(x + iy cos )(2i)2’-’(sin )2u-x d
0

F.(a) (-1)" ] r(k + 2/)(k +
k=O k F(2/0 k’"ak’

4F(2U)x=rcos0, y=rsin0, .=(4i)2[F(#)]2.

Clearly, 1 x + iy cos 1 <r and

Now

therefore

IL(r, 0) -< max IF.(r) l.
0<<n

9.(t)(1 --t2)u- 1/2C(t)dt;

(1 t2)t’-’/zlc(t) dr
h i_

Using the estimates (cf. [8])

C(cos 0) O-uO(ku-

we obtain

c/k < 0 < /2,
O<O<c/k

t2)u 1/2(1 Q(t) dt O(k-’)

(6)

(7)
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from which we get

Ila. k,-, +,I,.I Chy- --IIg.lloO(k (8)

since

21 2Uk2U 2
[r(u)]

Upon using the inequality (k + p)2"/k2" _< (1 + p)2,; k 1, 2, and substitut-
ing (8)in (6)we obtain

k=O

k=O

< cll.ll{(2n + [ + 1])!}az"+[+ ,,+1 o_< I1-<< 1,

for a suitable constant a > 0 depending on r (see Johnson [4, Proposition 1]).
Therefore, the series Z.%o f.(r, 0)]is majorized by the series

.%o(2n + [p + 1]) !119.1100 a2"+[+ 1]+1 which converges since

lim {(2n + [# + 1])! 0.1 a="++ ’’+’}’/"

lim {a2"+[+ 1]+ 1}1/.{(2n + [p + 1])!llo.ll},/.

A lim {2n !tl o. (2n)[U + 1]},/.

A lim{2n! 9.11oo}1/"= 0 by hypothesis.

Necessity. Letf(r, 0) be a GASP function in {z" Izl < 1}. Then

f(r, O)= Z arC(cs 0),
k=O

Irl < 1, lim lal 1/ < 1.
k-

Let {ak,.} be the decomposition sequence of {ak} given by Lemma (2.1) and let

[ulo.(r, 0)= E (--1)" ak,.

;’ C(cos O)rk, n > [#] + 1.
k=.-[.]- (k +
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Each g,(r, O) defines a continuous function on the closed unit disk {z" z -< l}
since (except for a trivial modification when n [/] + 1) we have

Ig.(r, 0)] _< E la,.-.,-,

B(e)g,2nk2n- 2[,1- 2k2,-

k=n-[u]-

B(e)e2. k2.
2n =._ _.(k+.) k

0rl. (9)

The last series converges since 2(- []) < 2 and hence the ries defining
0(r, 0) converges uniformly on [I z N 1]. We denote by 0(t), for 1 N N 1,
the mnction 0(t) 0.(1, 0), t= cos 0 and n 2 [,] + 1.
The quence {} tisfies the hypothesis of the theorem since

O(t)H(t, O, r)dt o(r, O)

and by relation {9),
lim (2n for all e > 0.

Finally,

k=.-[p]-

and

L g.(r, 0)= E E C ( os O)r
[] + [] + k []

akC(cos O)rk =f(r, 0). Q.E.D.
k=O

3. Hyperfunctions as boundary values of GASP functions

Throughout the rest of this section, k will be restricted such that - is a
non-negative integer, hence (1 t2)u- 1/2 is a holomorphic function in some
neighborhood of [- 1, 1]. It should be pointed out that under this restrictionf
is a hyperfunction on [-1, 1] if and only if (1 t2)u- i/2f is. The next three
theorems have counterparts in [4] but the proofs require slightly different
techniques.

THEOREM 3.1. Let {ak} be a sequence of complex numbers, then the series

=o akC converges to a hyperfunction f on [-1, 1] /f and only if
limk_ ak

/k <_ 1.
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Proof Suppose that the series =o ak C] converges to a hyperfunction f.
Then for any b(z) (the space of analytic functions on [- 1, 1] we have

(z) y’, bkC(z) with lim Ibl’/ < (o)
k=O k-oo

(cf. Szeg6 [8]) and the series converges to b in the sense of .
Let CkN(Z)= Y’,=o bk C(z); then

(f (1 t2)u- ’/2bu(z)) (f (1 t2)u-’/2b(z)) as N o.

That is

N

Z kakh -- kakh asN (11)
k=O k=O

Suppose limk- lakl 1/k p > 1; then for all e > 0 such that 1 < p 2e, there
exists a subsequence {ak} SO that (p e) < lakla/kfor V 0, 1, 2, Since (11)
is true for all {bk}ff=o satisfying (10), then we can choose q(z) #g for which

1
< lim Ibl/ < 1.

p 2e k-oo

By passing to a subsequence {bk}, we obtain

Therefore, since limk_. h ’/ 1, the series in (11) diverges which is a contra-
diction. Thus limk_. ak 11/k p < 1.

a be a sequence such that limk_, al 1/k < SetConversely, let k}k=o

We want to show that {f,}=o converges in t* as n . Since both and
g* are Fr6chet-Montel spaces and every Montel space is reflexive, hence weak
and strong sequential convergence coincide in *, it suffices to show that
lim, (f,, q) exists for all 4) t. First, we show that

lim ((1 t2)u- 1/2fn qb) (12)

exists, from which we deduce that lim. f. is a hyperfunction on (- 1, 1). It is
evident that (12) holds since for all b(z) , we have

dp(z)- bkC(z) with lim Ibl/-= < 1,
k=O k--*
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and also limk-,(R) [h[ 1/k 1 and consequently

lim((1 -t2)"- 1/2fn c) lim akkh Z akkh"
n-oo n-oo k=0 k=0

But the last series converges since limk-.oo [kakh[ 1/k < 1. Q.E.D.

Using the characterization given above for and *, we can define a direct
product (R)" ,* * -* as follows"

(f(R) g)(x) akbkC(x)
k-0

where f, g 6 * andf- =o ak C, kO bk C.
This operation is well defined since limk_.oo [akbk[ Ilk

_
1 if

lim _< and lim Ib l _< 1.
koo k’-*

This direct product plays a role similar to that of convolution for hyperfunc-
tions on the unit circle.

It is easy to see that (*, +, (R)) is a commutative ring with identity
e(x) Zkc=o CI(X). In fact, (o,, +, (R)) is an ideal of (*, +, (R)). We will
denote by er(x) that element of given by

e,(x) Z rkC(x)
1

k=O (1--2xr+r2)"’ 0<r<l.

By the same argument we used in Theorem (3.1) we can easily show that
e,(x) --, e(x) in the sense of * as r --, 1. With no difficulty, one can show that
the representation of Dirac delta function is given by

((X) 2 (- 1)m(flm Cm(X) H(O, x, 1)
m=0 hmm!

where H(t, x, r) is the kernel given by equation (5). We should keep in mind
that for trigonometric series the Poisson kernel

P(t, x, r)= Z rlkl exp ik(x- t)

has the property that P(0, x, 1) is the identity for the operation of convolution.
Now we are able to show that the class of hyperfunction on [- 1, 1] can be

considered as "boundary values" for GASP functions in the unit disk.

THEOREM 3.2. A functionf is a GASP on {z" z < 1} ifand only if there is a
hyperfunction f on [-1, 1] such that f(r, O)= (e, (R) f)(O) 0 <_ r < 1. Moreover,
f(r, O)--,f in * as r 1 and hence is uniquely determined on (-1, 1).

Proof. Let f be a GASP function. Then

f(r, O)= akrkC(cos O) and
k=O

lim ak [1/k <_ 1.
k
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Define f= Eff=o ak C(cos 0). Then f * and

(e, (R)f)(O) E arC(cs O)=f(r, 0).
k=0

That f(r, O)-,f in Y* as r -, 1 was shown in the proof of Theorem (3.1).
Conversely, iff *, then

f= E akC with lim lal/ <_ 1
k=O

and it is evident that ((R) er)(0)is a GASP function and ((R) er)(0)-,fin *
as r-, 1.

Remarks. (i) By using standard arguments it can be shown thatfe * is a
generalized function "Schwartz distribution" if and only iff =oak Ck with

ak O(kp) for some integer p.
(ii) In virtue of Theorem (2.2) and Theorem (3.2) one would expect to have

a theorem similar to (2.2) for hyperfunctions. Indeed, this is the case and that is
what we will show next.

THEOREM 3.3. f is a hyperfunction if and only if there exists a sequence of
continuous functions {gn} on [-1, 1] such that

lim [2n !11 oo] 1In 0

andf= =o Iff. on (- 1, 1).
Proofi Observe that since , is continuous and/gg, is just a finite linear

combination of some derivatives of g, up to order 2n and multiplication by C
functions, then/gg, is a generalized function and so is any finite sum of the
series.
Now let fbe a hyperfunction, then define f(r, 0)= (e,(R)f)(O). By Theorem

(2.2) there exists a sequence of continuous functions {ft,} on [- 1, 1] such that

Then

lim [2n!llo.lloo]l/" o and f(r, O)= Z Lgff.(r, 0).
1--

f(r, O) Z L[(e, (R) g,,)(O)]
n=O

Z (e, (R) Lg,,)(O)

(e, (R)f)(O).
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Therefore, by the uniqueness part of Theorem (3.2), it follows that
y= E.__oL"9. on (-1, 1).

Conversely, let fu .=o/29., where {9.} satisfy the hypothesis of the
theorem. Since 9.(x) is continuous on [-1, 1], then

g.(x) a.k C(x) and /2g. (- 1)"(k + Ia)2nank C(x)
k=O k=O

where the series converges on (-l, 1) in the sense of generalized functions.
Hence

fu bugC where bug (-1)"(k 4- la)2"ak
k=O n=O

Using the estimate given in the proof of Theorem (2.2) equation (8) for a,,k, we
obtain

N

n=O

(the case k 0 is trivial). But since

lim 0,
n--*0

then there is a finite valued decreasing function B(e)such that 2n!llo ll
B()e2" for all n and all e > 0. Hence

[bull -<
.=o 2n! k"

for all k, N and e > 0. For each fixed k, the sequence {buk}=o has a limit since it
is the sequence of partial sums of a dominated series. Taking the limit as
N-0 m and setting bk limu_, bug, we get = =obkC which is in ,*
since

lim Ib l <_ lim
1
B(e)exp (k +/)e expe

k’-* k

for all e > 0 and consequently

lim bkl 1/k < 1.
k--’,

COROLLARY. f is a generalized function on [-1, 1] /f and only if there is a

finite number of continuousfunctions {go, ON} on [-- 1, 1] such thatf= s,= o
12g, on (- 1, 1).
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