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ELLIPTIC CURVES WITH GOOD REDUCTION
EVERYWHERE OVER QUADRATIC FIELDS AND

HAVING RATIONAL j-INVARIANT

BY

BENNETT SETZER

The problem of determining elliptic curves over complex quadratic fields
having good reduction everywhere has been discussed by Stroeker in [2] and
the present author in 1 ]. In 1 ], such curves were constructed withj-invariants
173 and 2573. In this paper, we determine those rational j for which there is a
quadratic field k and an elliptic curve over k having good reduction everywhere
and such that the elliptic curve has j-invariant j. Given a suitable j, the fields k
and the elliptic curves are determined.

Throughout, we work with the elliptic curve EA,u defined by

y2 x 3A(A3 1728)u2x 2(A3 1728)2u3 if A :/: 0, 12,

y2 x3 + u if A 0,

y2=x3+ux if A= 12.

The discrminants are, respectively,

21236(A3 1728)3u6, A :/: 0, 12,

24 33 /,/2, A 0,

_26 //3, A 12.

The j-invariant of EA, is A3. The curves E,,u are the candidates for good
reduction everywhere as seen from the following theorem.

THEOREM 1. Let E be an elliptic curve over a quadraticfield k such that E has
lood reduction everywhere, and the j-invariant, j(E), of E is rational. Then
j(E) Aafor some rational integer A and E is isomorphic to Ea,ufor some u k*.

Throughout this paper, k Q[x/m] will denote a quadratic field, m a square-
free rational integer. N(x) and Tr (x) will denote the norm and trace, respec-
tively, of x in k. will denote the conjugate over Q of x in k. Ix] will denote the
ideal generated by x, over the maximal order of k.
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For not all values of A will there be a field k and u k* such that Ea,u has
good reduction everywhere over k. Indeed, let

{A Z" if 2 divides A then 16 divides A or A 4; and

if 3 divides A then 27 divides A 12}.

THEOREM 2. (a) Given a rational integer A, there is a quadratic field k and
u k* such that EA,u has good reduction everywhere over k ifand only ifA .

(b) Let A and let D equal the square-free part of A3 1728 (with the
sign). For a quadratic field k, there is a u k* such that Ea, has good reduction
everywhere over k if and only if the following five conditions are true:

(i)
(ii)

(mod 4).
(ii’)
(iii)
(iii’)

D divides the discriminant of k.
IfD is odd, then eD is a rational normfrom k where e + 1 and eD =_ 1

If D is even, then -D is a rational norm from k.

IfO 3 (mod 8), then m 5 (mod 8)
If D is even then m 4 + D (mod 16).

Further, if these conditions are satisfied by k, then there are 2 curves Ea, (up
to isomorphism) over k havint good reduction everywhere. Here, s is the number of
primes ramifying in k/Q.

The proof of Theorem 2(a) shows that there are infinitely many real fields
which support an Ea, with good reduction everywhere, provided A . As to
complex quadratic fields, it is evidently necessary that eD > 0 or D < 0 as D is
odd or even, respectively. Given this, the proof of Theorem 2(a) shows that
infinitely many complex quadratic fields have Ea, with good reduction every-
where. It should be noted that D is even, for A , if and only if A 4
(moO 16).

Stroeker shows (loc. tit.) that no elliptic curve over a complex quadratic field
can have an integral model with unit discriminant (that is, have good reduction
everywhere and a global minimal model). The E,u, however, give examples of
such curves over real quadratic fields. If k is real, r/will denote a fundamental
unit of k.

THEOREM 3. Let A 1, k Q[x/m] satisfy the conditions of Theorem 2(b).
Then, for some u k*, Ea,. has good reduction everywhere and a global minimal
model if and only if k is real, N(6)= eD for some k-integer 6, and, if m 3
(mod 4), Tr (tS) 2 (mod 4) for some such 6. If A and k satisfy these further
conditions, the number of such Ea,. (up to isomorphism) is

1 ifN(rl) 1,
2 ifN(rl)= +1 and m 3 (mod 4),
4 /fm_=3(modS),
2 /fm 7 (mod 8)and Tr (r/) 0 (mod 4),
4 if rn 7 (mod 8)and Tr (r/) 2 (mod 4).
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The curves with A 17 and 257 have 2-division points over their fields of
definition. All values of A giving such curves are described in the following
result.

THEOREM 4. An elliptic curve E over a quadratic field k having rational j-
invariant and good reduction everywhere has a 2-division point over k ifand only if
the j-invariant is one of 173, 2573, 153, 2553, or 203.

The D of Theorem 2(b) is 65, 65, -7, 7, 2 respectively. As 65, 65, -7, -7,
2, respectively, must be a rational norm from k, only the first two values of A

can give curves over complex quadratic fields. This is consistent with [1].
Section 1 gives the proofs of the Theorems and Section 2 gives some

examples.

Section 1

The following lemma collects all the facts needed to determine whether EA,
has good reduction locally. Indeed, part (a) is true for any valuation not divid-
ing 2 or 3 while (b)-(e) are true provided the valuation is locally quadratic. The
proof makes heavy use of Tate’s exposition of the formulae describing changes
of variables and their effect on models of a given curve [3, p. 299]. Throughout,
valuations are normalized to be onto the rational integers.

LEMMA. Let ,4 be a rational integer, A --/: O, 12 and let k Q[x/m] be a
quadratic field and u a non-zero element of k. Ifv is a valuation ofk, then Ea,u has
good reduction at v if and only if all of the following conditions are satisfied"

(a) If v(2)= v(3)= 0 then 2v(u)-- v(A 3 1728)(mod 4).
(b) If v divides 3 and 3 does not divide A then v(u) =- v(3)(moO 2).
(c) If v divides 3 and 3 divides A then

A_-- 12 (mod27) and v(3)+v(A- 12)+2v(u)_--0 (mod4).

(d) If v divides 2 and 2 does not divide A then u u lu22 where u =-wE

(mod fivt4)), ul, u2, w are in k, v(w)= 0 and fi is the prime at v.
(e) If v divides 2 and 2 divides A then one of the following is true"

(i) 16 divides A, u 2ul u22 where u =- wE (moO ,vt4)), u 1, u 2, w are in k,
v(w) -0 and is the prime at v.

(ii) 16 divides A 4, m =- 6B (moO 8), u ul u2 where ul-a+bx/m,
v(ul) 1, a 3B + 5m/2 (moO 8), B (A 12)/8.

It should be noted that in (e) (ii), m 2 (mod 4) necessarily since B is odd.

Proof A necessary condition for good reduction at a valuation v is that
v(A) 0 (rood 12) where A is the discriminant of a model of the curve in
question. Applied to Ea,u, the congruences on v(u) in (a)--(c) are seen to be
necessary. Throughout the proof, , will be the prime of v.
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(a) An elliptic curve E has good reduction at a valuation v, v not dividing 2 or
3, if and only if for every model of E, v(A)-= 0 (mod 12)and 3v(c4)>_ v(A)
where A is the discriminant of that model and c4 is as defined in [3]. Applied to
Ea,u and assuming 2v(u)-- v(A 3 1728)(mod 4), both conditions are seen to
be true.

(b) Let u 3Ul. Assuming v(u)=- v(3) (mod 2), then v(ul)=-0 (mod 2).
Adjusting ul by a square, we may assume v(ul)=0. The transformation
x-- x + r where r =- -3A2ul (mod vt9)) puts Ea,u in the form

(1) y2 X3 + a2x2 + a4 x + a6"

The following congruences hold"

a2 3r -= 0 (mod v(9)),
a, -= 3(r 3A2u)(r + 3A2ut)= 0 (mod 8)),
a6 (r -- 3A2Ul)2(r 6A2t/1) 0 (mod)v(729)),

and v(A) 12v(3). Since v(a,) > iv(A) for 2, 4, 6, EA, has good reduction
at v.

(c) The cases A --0 (mod 9), A =__ 6 (mod 9), A _= 3, 2 (mod 27), A 12
(mod 27)are treated in that order.
Suppose first that 9 divides A. From v(A)=-0 (mod 12), 2v(u)--v(3)

(mod 3). So, v(3)= 2 and v(u)-- 1 (mod 2). Letting A 3At and changing
variables by x-- 9x, y-- 27y EA,u becomes

(2) y2 x3 9Al(27A3 64)u2x_ 2(27A3 64)2u3
with A 212. 33(27A3 -64)3u6. We may assume v(u)= 1. EA, has good re-
duction at v only if there is a v-integral r such that x F-- x + r transforms (2) to
(1) with v(a,)_> 2i, i= 2, 4, 6. That is

3r=0 (mode2), 3r2=0 (mod
(3)

16U3 + 9A u2r + r3 =--0 (mod 6).
These congruences imply v(r)= 1 and r3 l lu3 (mod fi6). But, since v(r)=
v(u) 1, r, u =- +x/m (mod p), so (3)implies _m =- l l( +__ m) (mod 6)or
+_ 1 _= 11 (mod 9) since 3 divides m. This contradiction shows that no such r
can be found, so EA, has bad reduction at v.

Next, assume A _= 6 (mod 9). From v(A) --- 0 (mod 12), 2v(u) v(3) (mod 4)
so v(3) 2, v(u) 1 (mod 2). Letting A 3A and transforming EA, as in the
previous case,

(4) y2 x3 3AI(A 64)uZx 2(A 64)2u3

with A 212 33 (A3 64)3u6. We may assume v(u) 1. As in the previous
case, we must solve these congruences

3r2-3Al(A-64)u2=0 (mod
r3 3AI(A -64)uZr- 2(A3 -64)u3 0 (mod fi6).
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From the first congruence, v(r) > 1. Using this and A1 -= 2 (mod 3), the second
congruence in (5)becomes
(6) r3 + 3ruz + /,/3 0 (mod fi6)
From this, v(r)= 1 so r--+u (mod fi2). Using this, (6)implies 5u3=- 0
(mod fi6) or 3u3 0 (mod fi6) neither of which holds. EA,, has bad reduction
at v.

Next, assume that A 3 or 21 (mod 27). From v(A) 0 (mod 12), v(3) =-
2v(u) (mod 4), so v(3) 2 and v(u) 1 (mod 2). As before, letting A 3A1 and
transforming EA,, and assuming v(u) 1, the following congruences must be
solved"

3r2 3A,(A 64)u 2 0 (mod fiB),
(7)

r3 3Al(A3 64)uZr 2(A3 64)Zu3 0 (mod

However, since v(A31 64) 4, no value of v(r) is consistent with the second
congruence in (7). EA,, has bad reduction at v.

Finally, assume A 12 (mod 27). As noted before, the congruence condition
in the lemma is necessary for good reduction at v. Assuming this, we may,
indeed, assume v(u) 1/2(v(3) + v(A 12)). Then v(A) 18v(3) + 6v(A 12).
In the notation of (1), applied to EA,.,

6v(a2) _> v(A), 3v(a4) 18v(3)+ 6v(A 12) > v(A)

and, since v(A 12) > 3v(3),

2v(a6) 15v(3)+ 7v(a- 12)_> v(A).
So, Ea,u has good reduction at v.

(d) In this part, and in (c), the following result is used. Let E be an elliptic
curve over a number field k and let v be a valuation of K dividing 2. Then E has
good reduction at v if and only if for any model (1) of E, with a 2 0, A 212D,
v(D) 0, the following congruences can be solved"

a, -3s4 + 8S0 (mod /v(16)),
(8)

a6 =--sZa4 d- s6 -!- 16t 2 (mod v(64)).
These are obtained from the transformation formulae (1.14)on page 301 in [3]
by letting 4a sr sa. Note that if s, a is one solution of (8) and sl s

(mod riot2)), say sl s + 2w, then, with a a + s2w + sw2 (mod fiot2)), sl, a,
is another solution.

Considering the situation in (1), from v(A)= 0 (mod 12) applied to EA,u,
v(u) 0 (mod 2). We may assume v(u)= 0. The result above applies and (8)
becomes

-3A4u2=--3s4+8s (mod
(9)

-2A6u3 -= 3A4u2s2 + s6 + 1602 (rood
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From the first congruence, v(s)= 0. From the second,

(s2 A2u)2(s2 + 2A2u) 0 (mod riot, 6))
so u =-A2u =-s2 (mod riFt,o), which shows necessity. Conversely, if u s2

(mod rift4)) with v(s) 0 and a is chosen so that

a =-(s4- A4u2)/8s (mod fi2)),
the congruences (9) are satisfied. So, Ea,u does have good reduction at v.

(e) The cases A _= 2 (mod 4), A 8 (mod 16), A 0 (mod 16), A 12
(mod 16) and A _= 4 (mod 16) are considered, in that order. First, assume
A _= 2 (mod 4). From v(A) 0 (mod 12), 2v(u) v(2)(mod 4). So v(2) 2 and
v(u) =- 1 (mod 2). We may assume v(u) 3, so (8)applies. Now, v(a4) 2 (in
the notation of (1)) so the first congruence in (8) cannot be satisfied. Ea,u has
bad reduction at v.

Next, assume A =_ 8 (mod 16). Then, from v(A)=-0 (mod 12), v(u)=-v(2)
(mod 2). We may assume v(u)= -3v(2)so (8)applies. But, v(a4)= 3v(2)= 3
or 6 so the first congruence in (8) cannot be satisfied. Ea,u has bad reduction
at v.
Next assume A =_ 0 (mod 16). From v(A) 0 (mod 12), v(u) v(2)(mod 2).

We may assume v(u) 3v(2), so (8) applies. Let u3 8u, so v(u3) O. In the
notation of (1), v(a) >_ 4v(2). Also, a6 -= 16u (mod 64). So, (8)is equivalent
to s -= 0 (mod fit2)) and u33 =- -a2 (mod fit4)). Ea,u has good reduction at v if
and only if u3 -= -w2 (mod fit4)) for some w with v(w) 0. This is equivalent
to (e)(i).

Next, assume A _= 12 (mod 16). Let e v(A 12)/v(2) >_ 4. From v(A) =- 0
(mod 12), v(u)--1/2ev(2)(mod 2). We may assume v(u)= -1/2(e + 4)v(2), so (8)
applies. In the notation of (1), v(a)= 2v(2)and v(a6)> 5v(2). (8)implies

a4 --3s4 + 8s (mod
O= sZa + s6 +162 (mod

From the first congruence, v(s)= -v(2), so v(2)= 2. Substituting for a4 in the
second congruence, and simplifying,

S
6 4S3 82 --= 0 (mod ,8).

Thus, v(a) 0 and

S ) 2 S
3

aa 2fa 2 0 (mod 4).

Now, s s3/2 (mod fi2) so s 2 =_ 2s + 2 (mod/#). From (10), then

(11) a4 -4 + 8s (mod fia).
But, a, 4bw) or 2bw where b Z, v(b) V(Wo) O, v(w,) 1. Since Wo 1
or 1 + s (mod fi2), w + 1 (mod fi). Similarly, w2 2 + 2s (mod fi’). The
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two alternative forms for a4 imply a4 - -t-4 or 4 + 4s (mod 6), respectively,
both contradict (11), so EA,. has bad reduction at v.

Finally, assume A 4 (mod 16). From v(A) 0 (mod 12), 2v(u) v(2)
(mod 4) so v(2)= 2 and v(u)= (mod 2). We may assume v(u)= -7, so (8)
applies. Let u 16u, so v(u) 1. In the notation of (1),

and

a4 -3A(A3 1728)2-8u2 2Bu2x (mod plo)

tl6 -2(A3 1728)22-12u -8u32 (mod p12)

where B (A- 12)/8 is an odd integer. The first congruence in (8) implies
v(s) 1, so (8)is equivalent to

(12)
2Bu3 =- -3s + 8sa (modpS),

-8u32 =- 2s2Bu2 + S6 + 16a2 (mod
Substituting the first into the second, taken (mod){g 10), and simplifying,
S6 + 4S3 4S30 8(X 2 0 (mod fi8).
From this, v(a)= 0 and s6 8 (mod fin). Thus, s2 2 (moO p4) and m is

even. By the remarks following (8), we may assumes= x/m since s--x/m
(mod fi 2). Also, we may take a 1 or 1 + x/re. Now u =- 2al + bv/m (moO 64)
where aa and b are rational, v-integral and v(b) 0. Substituting into (12), (12)
is equivalent to

2al =- 3B + 5m/2 (mod)6), rn 6B (mod /6),
-= + ((m + 2B)/8 1)x/m (mod fi2).

These are equivalent to the conditions in (e) (ii). |

Proof of Theorem 1. The curve E,. given by

(13) y2 X3 3j(j- 1728)t/2X 2j(j- 1728)2/13
is an elliptic curve with j-invariant j ifj 4: 0, 1728, and u 4: 0. If E is any elliptic
curve, over a field K, withj-invariantj K,j 4= O, 1728, then E is isomorphic to

E/,, for some u K*. Note also that E),. and E/,._ are isomorphic over K if and
only if ua u2 K .2. If K is a number field, then for E),. to have good reduction
everywhere over K it is necessary that the ideal generated by the discriminant
of E),. be a 12th power. Since the discriminant of E),. is
212.36 (j 1728)3j2u6, this implies that j generates an ideal which is a cube.
If K is quadratic over Q and j Q, this implies that j A 3 where A Q*. It is
evident that for an elliptic curve to have good reduction at a valuation of K, it
is necessary for the j-invariant of the curve to be integral at j. In the case at
hand, this implies that A e Z. Now, letting j A3 in (13) and replacing u by
A-lu, Ea,. results for A 4: 0, 12.
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If an elliptic curve over a field K has j-invariant 0 or 1728, then it is isomor-
phic to Eo,u or El z,u respectively, with u K*. Note that the isomorphism
class of E0,. (resp. E2,.) determines u up to a sixth power (resp. fourth
power). |

Proof of Theorem 2. (a) If A 4: 0, 12 and A q then the lemma shows that
EA, has bad reduction at some valuation dividing 6 over any quadratic field k.
(Indeed, E,4,u has bad reduction over any number field with a locally quadratic
valuation dividing each of 2 and 3.) We see next that E0,. and E12,. must have
bad reduction also.

Consider Eo,u. If v3 is a valuation of k dividing 3 then from v3(A)---0
(mod 12), 3v3(3 4- 2v3(u 0 (mod 12) so /93(3 2 and v3(u)--3 (mod 6).
We may assume v3(u) 3. For E0,. to have good reduction at v it is necessary
that r exist such that

-3r=-0 (mod3), -3r2-=0 (mod9), -r3+u=0 (mod27)

since va(A)= 12. These congruences are equivalent to v3(r)= 1 and u--r3

(mod 27). Now, 3Ira since v3 ramifies, so r x + yx/m where x, y are 3-integral
rational, 3 divides x, and 3 does not divide y. Then, u =- +_ mx/m (mod 27) so

(14) N(u) +_ 27 (mod 243)

If v2 is a valuation of k dividing 2, from v2(A)--0 (mod 12), v2(u)= 4v2(2)
(mod 6). We may assume v2(u) 4v2(2). For any valuation v of k not dividing
6, similarly, v(u)=-0 (mod 6). Thus [u] [16]pa6 where ; [3] and a is
integral. So,

N(u) + 162. 27" N(a)6 -= __. 108 (mod 243)
which contradicts (14). Eo,. must have bad reduction at some valuation over k.

Next, consider E12,.. Let v2 be a valuation of k dividing 2. from v2(A) =- 0
(mod 12), v2(u) 2v2(2)(mod 4). We may assume v2(u)= 2v2(2) for all valua-
tionsdividing 2, so (8)applies. Letting u 4ul, (8) becomes

4u -3s’ + 8s (mod 16),
(15)

0 =- 4s2ua + s6 + 162 (mod 64).

By methods similar to those used in the lemma, u 1 + 2x/m (rood 4) and
rn _= 3 (mod 4) so N(u) 5 (rood 8). But, for any valuation of k not dividing 2,
v(u) v(u) =-0 (mod 4). Thus [u] a so N(u)-= + 1 (mod 16), a contra-
diction. E2,. has bad reduction at some valuation over k.

Given A e , to show that there is a k and u k* such that Ea,. has good
reduction everywhere, it is only necessary to show that there is a quadratic field
k satisfying the conditions of part (b) of this Theorem. This can be done as
follows. Let rn qD where q is +_ an odd prime, k has the required properties,
provided q satisfies the following conditions"
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(a’)
(b’)

even.

For all primes p dividing D, (-q/p) 1.
m > O if eD < O.
q=50 (mod 8) if D= +3 (mod 8) and q=D+ 1 (mod 8) ifD is

Here, e 1 if D is even, otherwise as in (ii). The form of m ensures that (i) is
true, while (c’) ensures that (iii) and (iii’) are true. By Dirichlet’s Theorem, there
is such a prime q satisfying all the conditions. These conditions imply that the
norm equation x2- my eD is everywhere locally solvable. Finally, Hasse’s
principle implies that eD is a rational norm from k, which is (ii) and (ii’).

(b) First consider the case that A is odd and in . We show the necessity of
(i), (ii), and (iii) first. According to the lemma, if p is an odd prime dividing D
then v(p)= 2 for a valuation of k dividing p. This implies (i). Let
32(A 3 1728) Dd d’ where dx and D are square-free, rational integers. Parts
(a)-(c) of the lemm imply [u] rid1 a 2 where d 2 [D]. We may assume that
u is integral and relatively prime to 2, so N(u)= ++_ Dc2 where c is an odd
integer. Part (d) of the lemma implies that u is a square (mod 4). This implies
that U(u) 1 (mod 8)unless m =_ 5 (mod 8)in which case N(u) 5 (mod 8)is
possible. This, with N(u) + Oc2, implies the necessity of (ii) and (iii).
Now assume that (i), (ii), (iii)are satisfied for a given odd A and field k.

(ii) implies that [w] de2 for some ideal a and w k*. Moreover, w and a

may be chosen so that N(w) eDc2 where c is an odd rational integer. Then,
u d2 w satisfies the conditions of the lemma for good reduction at all valua-
tions not dividing 2. If m 3 (mod 4), then N(u) 1 (mod 4) implies that one
of + u is a square (mod 4). If m =_ 3 (mod 4)then N(u) (mod 4)implies that
both + u or both + up are squares (mod 4). Here, p 1/2(m + 1)+ v/m and
[p] i 211 + x/m]2 so up is still suitable at valuations not dividing 2. In any
case, there is at least one u k* that satisfies all the conditions (a)-(d) of the
lemma, so Ea,, has good reduction everywhere over k.
To count the number of curves, up to isomorphism, for given A and k,

suppose that both Ea,uo and Ea,, have good reduction everywhere over k and
u, u0 are both relatively prime to 2. Let u0 u; then k*, [] 2,
N() > 0, is relatively prime to 2, and is a square (rood 4). Conversely, given
such an , and given u a, then Ea,u is easily seen to have good reduction
everywhere over k. The number of such , modulo k.2, is the desired number of
curves. Now, from [] a 2 and N(a) > 0, [] [ay2] where a is a square-free
rational integer dividing the discriminant of k. Evidently, o + ay2 if k does
not have a non-trivial unit. If r/is a fundamental unit of norm 1, then, for some
x k*, q x-2b where b N(x) is a square-free integer which divides the
discriminant of k. Thus, if q-qa},2 then a +ab(,x-)2= ___a,(},,,)2. A
standard set of a’s is built up from the following set. Let aa, a be chosen to
be distinct, positive, odd rational integers such that each a, divides m, and
ai a1 4 ml for all i, j. Taking to be as large as possible, 2 if m 3
(mod 4), where s is the number of primes ramifying in k/Q.
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Consider, first, tn 3 (mod 4). It is easily seen that all of al,..., at, -al,

9,
2 for some i. But, 1at are distinct mod k.2 By the above argument, a + ai

is a square (mod 4) and 3 is not, so for exactly half of the + ai is a a square
(mod 4). There are, therefore, 2 choices of , as desired.

Consider next tn -_- 3 (mod 4). All of al, -al, pal, pal,

pat are distinct mod k.2. By the previous argument _+ ai’2 or _+ 2a2 for
some i. If t _+ 2a ])2 then

ot= +__aiP l+x/m
so any suitable 0t is equivalent to one of the entries in the above list. Now, both
1 and 3 are squares (mod 4) while p is not so there are 2t 2 choices of , as
desired. This completes the case A odd.

If 16 divides A, the argument is similar. The 2-condition is that -u is a
square (mod 4), so the counting is exactly the counting of ’s as above.

Finally, consider the case A 4 (mod 16). As before, (i) is necessary. By the
lemma, ul must be found so that [ul] rid1 092 (d, dl as before), and
ul a + bx/m where a 3B + (5m/2) (mod 8) and a, b are rational integers.
Now, B -= (3m/2)(mod 4) so a 2 (mod 4). Thus, from

(16) N(u2) Oc

we have

(17) 4-m=_eD (mod 16).

But, D (A3 1728)/64 (mod 16) so D -= 6B + 12 (mod 16). So, e 1 would
imply m 0 (mod 4). Thus e -1, which, with (16), implies (ii’) and, with
(17), implies (iii’).

Suppose, conversely, that (i), (ii’) and (iii’)are satisfied for given A and k.
There is a ul k such that [ul] [dl]d a2 and N(u) -Dc2, c an odd integer.
From (iii’), u2 a + bx/m where a, b are rational integers, a 2 (mod 4), and
b 1 (mod 2). Thus, one of +_ u2 will satisfy all the conditions of the lemma, so
one of EA,+ will have good reduction everywhere over k. The counting reduces
to counting those among a 1, at, -a 1, -at (defined as before) which are
congruent to 1 (mod 4). There are 2 choices, so there are 2 curves EA,u

over k with good reduction everywhere. |

Proofof Theorem 3. Preserving the notation of Theorem 2, for Ea.u to have
good reduction everywhere, it is necessary that [u] d[d 1]a 2. Thus, the discri-
minant of Ea,u generates the ideal [2d d 2] 12d 12a 12. Assuming Ea,, has good
reduction everywhere over k, it has a global minimal model if and only ifda is
principal (Theorem 1, [1]). Since da2 is principal, this occurs only if both d
and a are principal. We may assume a [1]. Then 6 u/dl is integral and
N(6) eD. If rn

_
3 (mod 4), then A 4 (mod 16), so u is relatively prime to 2
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and u + 1 (mod 4) to ensure good reduction at all valuations dividing 2. This
implies that Tr (6) -= 2 (mod 4). Finally, if k were complex, then 6 + x/m as
-m is the only possibility for eD. But u + d, x/m cannot satisfy the condi-
tions for (d) or (e) of the lemma. The conditions of Theorem 3 are thus seen to
be necessary.

Assume, then, that all the conditions of Theorems 2 and 3 are satisfied for
given A and k. We have 6 and q defined as above. Arguing as above, [u] [d, 6]
and this is sufficient to guarantee good reduction at all valuations not dividing
2. If N(ri) 1, N(u) eD implies that the only choices for u are + d,. Exactly
one of these will satisfy (d) and (e) of the lemma. So, one curve Ea,, results. If
N(ri) 1 and m 3 (mod 4), then the choices of u are among + d, i and
+_ rid, 6. Just two will be correct for (d) and (e) of the lemma. If rn 3 (mod 8),
then =- + 1 (mod 4) so D is a principal factor in k/Q. Thus, 6/3 must be an
odd power of q so q-= + 1 (mod 4). The choice for u is among + d, 6 and
+_ rid, 6. A 4 (mod 16) and all four choices satisfy (d) and (e) of the lemma, so
four curves result. If m 7 (mod 8) and Tr (ri) 0 (mod 4), then 6 cannot be a
principal factor in k/Q (else, as before, q + 1 (mod 4)). So, 6 + t/x/m, say,
and q +_ x/m (mod 4). The choices for u are + d, x/m and _+ rid, x/m of which,
only the latter pair will satisfy (d) and (e) of the lemma, so two curves result.
Finally, if m--7 (mod 8) and Tr (ri)=2 (mod 4), then r/= +_1
(rood 4) and 6 +_ 1 (mod 4). All four of + rid, 6 and +_ d, 6 are satisfactory
choices for u so four curves result. All possibilities for k, ri, have covered, so the
proof is complete. |

Proof of Theorem 4. Assuming A 4: 0, 12, Ea,u has a rational 2-division
point if and only if EA,, does. But, a rational cubic has a root in a quadratic
field if and only if it has a rational root. That is, EA,1 is an elliptic curve with
integral j-invariant and a rational 2-division point. Thus, EA, has a model

(18) y X3 + a2 x2 + a4 x

with a2, a4 rational. Setting 7 (16a/a4) 64, we have

j=(7+ 16)37- withTQ.

7 4:0 since (18) is nonsingular. For j to be integral, it is necessary that 7 + 2r
where 0 < r < 12. For j to be a cube, r 0, 3, 6, 9, 12. Of the resultingj values,
only the five listed in the theorem are in . That Ea,x indeed has a rational
2-division point for the given values may be checked directly or by noting that

y2 xa + (7 + 64)x2 + 16(7 + 64)x

has j-invariant (7 + 16)37 ’. |

The proof of Theorem 4 also allows the elliptic curves over Q with integral
j-invariant and a rational 2-division point to be determined.
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Section 2

Several examples are presented in this section. A computer program was run
to determine small values of DI for values of A in 0. In a search with

-< 21760 the following values of A and D were found with IDI _< 100"

A 4 -15 16 -16 17 20 -32 39
D -26 -7 37 -91 65 2 -11 79

A -96 255 257 -960 -2876 3376 -5280
D -19 7 65 -43 -26 37 -67

Certain values of D can be shown not to occur, for example" 17, 33, 41, 57,
73, 97. Indeed, if any of these did occur as I 1, then Theorem 2(b) shows that
some EA,. has good reduction everywhere over k Q[v/-ID]]. But, by
Theorem 4 of [1], these k do not have elliptic curves with good reduction
everywhere defined over them.
We consider A 15, D -7 in some detail. Since eD -7, E_ a,, will

have good reduction everywhere over k only if k is real. In fact, some E_ 5,, will
have good reduction over k if and only if m 7 or m 7pa p, where p are
distinct primes congruent to 1, 2, or 4 (mod 7). By the lemma, u k must be
chosen so that [u] P7 a2 where P7 is the ramified prime dividing 7. a may be
chosen prime to 2. Further, u must be a square (mod 4).

Letting k Q[x/7] we have the following. Only 2 and 7 ramify in k/Q so there
are just two curves E_ ,, over k having good reduction everywhere. Actually,
in the notation of Theorem 3, 6 exists, say 6= x/7(8 + 3x/7 where
r/= 8 + 3x/7 is a fundamental unit of k. So, both curves have global minimal
models. Appropriate choices of u are u +_ (21 + 8x/7). Removing 3, 7 and 19
from E_ ,. in each case leaves

y2 x3 5r/2x _+ 2x/7 r/a.
The global minimal models are given by

y2 + xy X3 2qX2 + q2X

(with A -r/6) and the conjugate equation.
Letting k Q[x/], there are two curves E_ is,. which have good reduction

everywhere, both have global minimal models. Letting k Q[x//154], there are
four curves E_ s,. with good reduction everywhere, but only two have global
minimal models.
For A 255, we have D 7. A similar discussion to that for A-- 15

applies. Over k Q[x/7] the two curves given by

y2 + xy xa + 4q.x 2 +

(A q6) and its conjugate are obtained.
Considering ,4 16, we have D-- 37. Over k--[x//-], there is just one
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E16,u with good reduction everywhere. It has a global minimal model. Evi-
dently, it must be self conjugate. A model is

y2 xa 4v/- fix
2 + 192qZx 80v/- r/a

with A 212q6. Here, q 6 + v/ is a fundamental unit.
Finally, k Q[v/6] is the quadratic field of smallest discriminant over which

we have found an elliptic curve with good reduction everywhere, namely EA,u

with A 20, u 21(2 + x/6). This has a global minimal model

y2 + x/6 xy- y- x3 -(2 + 46)x2

with A (5 + 2x/6)3. The conjugate curve is the other E2o,u having good re-
duction everywhere over Q[x/6].
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