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ZEROS OF CERTAIN COMPOSITE POLYNOMIALS
IN ALGEBRAICALLY CLOSED FIELDS

BY

MAHFOOZ ALAM

The study of the zeros of composite polynomials has mostly been confined to
polynomials in the complex plane. The object of this paper is to study the zeros
of the composite polynomials which arise as linear combinations of a polyno-
mial and its (formal) derivatives in an algebraically closed field K of character-
istic zero. Our main theorem concerning the zeros of such composite
polynomials gives certain interesting results which, when applied to the com-
plex plane, furnish improved versions of the corresponding classical results due
to Walsh, Marden, and Kakeya. At the end we show that our results cannot be
further generalized in certain directions.

1. Introduction

If K is an algebraically closed field of characteristic zero, then we know (cf.
[1, pp. 38-40], [6, pp. 248-255]) that there exists a maximal ordered subfield Ko
of K such that K Ko(i), where 2 1. Once we fix the subfield Ko, we have
a conjugation defined in K and we shall, therefore, denote in the usual manner
the real and the imaginary parts and the absolute value of an element in K. A
subset A of K is K0-convex iTS3-1/jaj A for every aj A and # K0/
with 3_1#= 1, where K0/ ={K0" <0}. Let K, denote the
compactification K w {09} of K by adjoining a single element 09 (called infinity)
with the following operations"

(a) The subset K of K, preserves its initial field operations (e.g. addition
and multiplication); and

(b) a+og=og+a=og, Va K, a.og cOoa Og, Va K {O}, and
o9- =0,0- =09.

For a fixed K, we define a permutation b; of Ko, by b;(z) 1/(z ) for
every z K,. We say that a subset A of K, is a #eneralized circular region
("d.e." according to Zervos [9, p. 353]) of Ko, if either A is one of the sets b, K,
K,, or A satisfies the following two conditions"

(a) b(A)is Ko-convex for every K A;
(b) 09 A if A is not Ko-convex.
We shall denote by D(Ko,) the class of all generalized circular regions of K,.

The empty set b, K, K,, and the single point sets (and their complements in
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are trivial members of D(Ko,). The characterization due to Zervos [9,
pp. 372-287] of the class D(Ko,) when K C (the field of complex numbers),
leads to the following:

PROPOSITION 1.1 (Zervos [9, p. 352]). The non-trivial members ofD(C,) are
the open interior (or exterior) of circles or the open half-planes, adjoined with a
connected subset (possibly empty) of their boundary.

The members of D(Co) with all or no boundary points included are called
(classical) circular regions of D(Co,). A homographic transformation [9, p. 353]
T is a permutation on K defined by

T(z) (az + b)/(cz + d)

for some elements a, b, c, d K such that ad bc 4 O. In relation to homogra-
phic transformation an important result is the following:

PROPOSITION 1.2 (Zervos [9, p. 353]).
permutes the class D(Ko,).

Every homo#raphic transformation

The ball S(a, r) and the closed ball D(a, r), with center a K and radius
r Ko/ are defined, respectively, by

S(a, r) {z K: z-al <r} and D(a, r) {z K: z-al < r}"
It can be seen (cf. [8, Proposition (3.4)’]) that the ball and the closed ball are
necessarily members of D(K,o).
o(K) and Zy will respectively, denote the class of all polynomials of degree

n from K to K and the set of all zeros of a given polynomialfi Iff (K) such
that f(z)= ,=0 ak zk, we define the derivative f’ of f formally by f’(z)=
"=l kak Zk-1 and the successive derivatives f(J)(z) offby ,=j(j!)C(k, j)akzk- ,
j 0, 1, with the convention that f(0)=f. Clearly the derivative of a
constant polynomial is identically zero and f() ff,_(K) for every j < n. If
P(z) ;z", ). K, we easily verify that

(I.I) P(k)(z) (k!)C(n, k)Az-k, k O, I,..., n.

From the definition of derivatives, it is also obvious that

(1.2) (f + 0)’ f’ + 0’
for any polynomials f and g.

Let C(n, k)= n!/k! (n k)!. Iff, g e ff#(K)and are given by

S(z) C(n, k)Az, #(z) C(n, k)Bz,
k=0 k=0

we say [9, p. 362] that f and # are (mutually) apolar (written briefly as fI #)
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if the following condition is satisfied:

(- 1)C(n, k)AB,_ 0.
k--0

This concept is too well known in the case when K C. The following result
due to Zervos [9, p. 363] gives the relative location of the zeros of two apolar
polynomials. For K C and A 6 D{Co), this theorem is a fundamental result
due to Grace [2] (see also Marden [4, Theorem (15.3)]).

THEOREM 1.3. Let f, 9 n(K) and A D(Ko,). If ZI

_
A and f _l_ 9, then

ZoA #ck.

Quite a number of mathematicians have studied the problem of determining
the location of the zeros of composite polynomials (i.e. the polynomials derived
in various ways by composition of two or more given polynomials). But this
study has mostly been confined to polynomials in ,(C) (a wide coverage of
these topics can be seen in Marden [4]). However, in relation to polynomials in
more general spaces, this problem has so far been tackled only by Zervos [9,
p. 363] and Zaheer [8, Theorem (22.2)] in their attempts to generalize a (classi-
cal) result due to Szeg6 [5, Section 2, Theorem 2]. Our object, in this paper is to
study certain composite polynomials in ,(K).

2. Main theorem and its consequences

We shall primarily study the zeros of linear combinations of a polynomial
and its (formal) derivatives. From our main theorem we shall obtain certain
interesting results concerning the zeros of such composite polynomials. In
order to prove our main theorem, we establish the following two lemmas.
Lemma (2.1) offers a simple method for constructing polynomials apolar to a
given polynomial and generalizes a classical result of Szeg6 [5] (see also
Marden [4, Theorem (15, 2), p. 61]) and Lemma (2.2) is related to a result as
given in Marden for K C [4, p. 65].

LEMMA 2.1. If a polynomial f(z)= En=oamZ in n(K) satisfies the
relation ,=0 a,,#,, 0, with to # O, then the polynomial G(z)
=o (- 1)"-"C(n, m)#z is apolar to f(z).

Proof. Trivial in view of the definition of apolarity.

LEMMA 2.2.
polynomial

Let f ,(K) and P(t) f’ for every K. Ify is a zero of the

p

(2.1) h(z)= E lkf(k’(z)
k=O

l K (lo, lp :/: O, 0 < p < n),

then the polynomial G(z)= El=0 lkP{k’(/- z)is apolar to f(z).



204 MAHFOOZ ALAM

Proof. Throughout the proof we shall follow the convention that k!= 0 if
k < 0 and that C(n, k)= 0 for k > n or k < 0. Iff(z)- ’,],=o a,,z", then (cf.
(1.1) and (1.2))

ftk(z) (k!)C(m, k)a,.zm-k
m-’k

(k!)C(m, k)a,.z"-k.
m--O

From (2.1) we therefore obtain

p

h(z) Z lk
k=0

(k !)C(m, k)a,,,z"-k
m=O

P, (k!)C(m, k)lkz’’-k
k=O

This implies that h(y) ,=0 a,./,. 0, where

p

/a., Z (k!)C(m, k)lkym-k, go lo 4: O.
k=O

Hence by Lemma (2.1), the polynomial

G(z)= (-1)"-"C(n,m)l,,,z"-"
m=O

is apolar to f(z). Now, we compute G(z) in the desired form as follows"

G(z) m=O(--1)n-mC(n’m)zn-mlk=o(k[’C(m’k’lkym-k]
2 l (-1 ’C(n, m)(k !)C(m, k)7’-z
k=0 m=k

o (/c(, /c(n- , - /-(-r

k=O =0

2 ( /c(, /(- r-=0

2 e( t (du to (.//.
=0

This completes the proof.

Now, we proceed to prove our main result.
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THEOREM 2.3. Given f ,,(K), let us define
p

h(z) E lk fO0(Z),
k=O

lk K (1o, lp # O, 0 < p <_ n).

IfA D(Ko,) such that Zf
_

A, then every zero / of h(z) is oftheform
for some suitable choice of elements A and Zv, where

p

F(z) (k !)C(n, k)lk z"- k.
k=O

Proof If y Zh, Lemma (2.2) implies that f(z) is apolar to the polynomial

p

G(z)- IkPtk)(7--Z),
k=O

where P(t) t" for every K. Since

ptk)(y z)= (k !)C(n, k)(y z)"-k,
we have

p

G(z) Z (k!)C(n, k)lk(- z)"-k.
k=O

Since ZI

_
A and f_l_ G, Theorem (1.3) implies the existence of an element

t A such that G()= 0. Hence

p

G(o) Z (k !)C(n, k)lk(? -0t)"-= F(y
k=0

Consequently, there exists a zero fl of F(z) such that - ft. That is
y + and we are done.
As applications of the above theorem, we establish the following corollaries

concerning some interesting polynomials in .(K).

ROLLARY 2.4. Given the polynomials f(z) =0 az, 9(z)= Z=o bz
in .(K), let us define

h(z) (n k) bn_k f(*)(z).
k=0

IfA D(K)such that Zy A, then every zero y of h(z) is of theform + fl
for some suitable choice of elents A and fl Z.

Proof In the notions ofTheorem (2.3), ifwe choo l (n k)b._,, we
see that F(z)= (n)o(z). Now the proof immediately follows from Theorem
(2.3).
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For the case when K C, the above corollary gives an improved version of a
result due to Walsh [7] (cf. also [4, Theorem (18.1)]), improvement in the sense
that we use generalized circular regions of C, instead of the classical ones.

COROLLARY 2.5. Letf n(K) and A D(Ko,) such that Zf

_
A. Then every

zero / of the polynomial

h(z) f(z) 2f’(z), 2 K -{0}
is of the form a or a + n2 for some a A.

Proof Using the notations of Theorem (2.3) and putting p 1, l0 1 and
-2, we obtain F(z) z" n2z"-1 z"-(z n2), so that the zeros fl of

F(z) are given by fl 0 and fl n2. Now Theorem (2.3) establishes our claim.

For K C, the above result gives an improved version of a result due to
Marden (cf. [4, Corollary (18.1)]).

COROLLARY 2.6. Iff, 9 6 ,(K) such that Zy

_
S(O, r) and Zo

_
D(O, s), then

all the zeros of the polynomial

h(z) lk ftk)(z), lo =/= 0
k=0

lie in S(O, r + s)(cf, notations followin9 Proposition (1.2)).

Proof Let e Zh. Then (cf. Theorem 2.3), there exist e S(0, r) and fl Zo
such that 7 e + fl, hence -< / <r and the result follows.
For K C, the Corollary (2.6) is a result due to Kakeya [3] (see also [4,

p. 861).
As an application of Theorem (2.3) in the complex-plane, we give the

following.

COROLLARY 2.7. Letf6 ,(C) such that Zf
_

S(0, r). Then all the zeros of
the polynomial

p

h(z) lik(n k)!ftk)(z), 0 < p < n, li 6 C -{0},
k=0

lie in S(0, r + Il).

Proof In Theorem (2.3), putting lk lik(n- k)!, we get

F(z)- (n !)(z" + zn-1 -Ji.- 2zn-2 "-’’" + liPz P)
(. !)z"-.(z. + + +...+

zp+ llp+
(n Vz 4:
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Obviously (since F(la) 4: 0), the only zeros of F are the origin (z 0 is a zero of
F(z) only if p < n) and the roots other than la of the equation zp/ lap/ 1. If
COk (k 0, 1, p) are the roots of this equation and if la rei, then

Ok r exp
2kz )iO+p+ i k =0, 1, p,

with 090 la. Therefore, the zeros flk (k 0, 1, p) of F are given by/30 0
(since p < n), flk tOk (k 1, 2,..., p). Then any zero 7 of h(z) (by Theorem
(2.3)) is either 7 or 7 + Ok (k 1, 2, p)for some complex number
such that Is < r. Finally, since -r I1 for every k 1, 2, p, we
see that either I <r or 171 <r + lal" That is, in either case 171 <
r + and the result follows.

3. Some Examples

In this section, we give some examples to show that our results in Section 2
cannot be further generalized in certain directions. Our first example shows
that Theorem (2.3) and Corollaries (2.4)-(2.6) do not hold, in general, for
nonalgebraically closed fields of characteristic zero.

Example (3.1). Let Ko be a maximal ordered field, A {-1), and let

f(z)-- z3 + z, 2 + z -- 1 --(z2 + 1)(z -- 1), Vz Ko.
Then [6, pp. 233, 250] Ko is a nonalgebraically closed field of characteristic
zero, f6 3(Ko) such that Zs

_
A (since z 2 + cannot vanish [1, p. 36]),

where A is a generalized circular region of Ko. Taking p 1, lo and
11 1, we see that the polynomials h(z) and F(z) of Theorem (2.3)are,
respectively, given by h(z)= z[(z- 1)2- 2], F(z)= z2.(z- 3). Now all the
hypotheses in Theorem (2.3) are satisfied, whereas no zero of h(z)can be
expressed in the form as claimed by Theorem (2.3). That is, Theorem (2.3) does
not hold (in general) for the field Ko.
The next example shows that Theorem (2.3) cannot be further generalized in

the following sense" The generalized circular region A (employed in this result)
cannot be replaced, in general, by generalized circular region adjoined with
arbitrary subset of its boundary.

Example (3.2). Take K=C, B={z 6 C: Im(z)<0} w{-1, 7/5}, and
f(z)=5z2-2z-7 for z6C. Then f6.-z(C) such that Z,_B, where

q D(C,) but the interior of B does belong to D(C,). For p 1, l0 1,
1/2, the polynomials h(z), F(z) of Theorem (2.3) are, respectively, given by

h(z) 5z2 + 3z 8, F(z)= z(z + 1). Now it is easy to verify that no zero of
h(z) is of the form as claimed by Theorem (2.3). That is, it no longer holds when

is replaced by the above set B.
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