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DISCRETENESS CRITERIA AND HIGH ORDER
GENERATORS FOR SUBGROUPS OF SL(2, R)

BY
COURTNEY DOYLE AND DAVID JAMES

1. Introduction

In 1939 and 1940 Lauritzen [3] and Nielson [11] used noneuclidean
geometry to prove"

(*) A nonabelian group in SL(2, R) which contains at most hyperbolics
and + I must be discrete.

Later in 1940 Siegel found a striking proof [12] of the more general theorem"

(**) If the matrices in a group F in SL(2, R) do not all have a real (or
infinite) fixed point in common, and if they do not all map a pair of real points
onto that very pair, then F is discrete provided F contains no sequence of
elliptics converging to I.

Authors presenting these or similar ideas now all use Siegel’s proof, but some
[10] present (**)while others [6], [7], [9] prefer the more easily grasped but
weaker (*).
A formulation permitting a proof somewhat shorter than those for (*) and

(**)is found by casting Siegel’s proof, with minor modifications, upon class (i)
of Theorem 1 of this paper. The result is Theorem 5 below which applies to a
slightly wider collection of subgroups, and surprisingly also has more explicit
conclusions; (*) and (**) are direct consequences of this theorem and its corol-
lary respectively. The few subgroups for which this theorem does not apply are
of a particularly simple nature, and are easily analyzed (classes (ii), (iii), and (iv)
of Theorem 1).
The classification of subgroups into the four classes mentioned above also

allows us to prove the existence of high order generators for subgroups of
SL(2, R)(Theorems 2 and 4).

In this and the next two sections all matrices are assumed to be in the Special
Linear group SL(2, R) of two by two matrices with real entries and determin-
ants one.

If
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then MZ denotes (az + b)/(cz + d). The trace, tr M, is a + d, and the solutions
to Mz z, the fixed points, are found to be

z (a d + x//(tr M)2 4)/2c.
F. Klein therefore categorized matrices into three types:

hyperbolic if tr M > 2 (fixed points distinct--real or infinite);
parabolic if tr M] 2 (fixed points coincide--real or infinite);
elliptic if tr M[ < 2 (fixed points complex conjugates--nonreal).

Each hyperbolic is conjugate to

0 1/2
for some real 2 4: -1, 0, 1. Each parabolic is conjugate to

-11 )or 00 -1

for some real fl 4: 0. Each elliptic is conjugate to

 os0 s n0 !sin 0 cos 0

for some real 0, not a multiple of r. To verify these three statements, one need
only select the conjugator matrix to carry the fixed points to 0, oe for a hyper-
bolic, to oe for a parabolic, and to i, -i for an elliptic.

2. Classification

LEMMA 1. If a group F contains

M
1/2

with real 2 4: -1, 0, 1, then F is contained in one of two classes:

H1. Groups generated by hyperbolics, nor all of which have the same pair of
fixed points.

H2. Groups with at most two types, namely entries zero on the main diagonal,
and entries zero off the main diagonal.

Proof If

d,

then tr MN 2a + 2-d. If not both a and d are zero then for some n,
tr MNI > 2, that is, MN is hyperbolic. Hence F can be generated by hyper-
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bolics together with those of the form

0 -k tK--
1/k O"

Suppose F is not in H2, that is, in addition to diagonal matrices, and
matrices like K, F contains

b

where a or d is nonzero and b or c is nonzero. If K is in a list of generators, it
can be replaced in the list with B and BK, and each of these can be replaced
with M and a hyperbolic by the reasoning above. So F can be generated by
hyperbolics. Not all these generators can have the same fixed points as M since
then all would be diagonal and F would be in H2. So F is in H1.

LEMMA 2. If a group F contains

0
or

0 -1

with real --/= O, then either F is conjugate to H1, or F is contained in thefollowing
class:

P1. Groups with at most two types,

1 71 and

Proof Let

M=
0

and N=
c d

If c 4: 0, then since tr M"N a + nc + d, n can be selected so that M"N is
hyperbolic. There is a conjugate of M"N which is diagonal, and Lemma 1 can
be applied to the corresponding conjugate group. Class H2 cannot contain
parabolics, so the conjugate group is in H1.

If c 0, then the determinant condition forces d 1/a, so again F contains a
hyperbolic unless a d

___
1.

The analysis is identical for the case

LEMMA 3. If a group F contains

M=(_ cos 0 sin 0
sin0 cos0]’
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for some real O, not a multiple of rt, then either F is conjugate to HI or H2, or F is
contained in the following class.

El. groups with at most the type

cosb sin

-sinb costk breal.

Proof If F contains a hyperbolic or parabolic :/: _+ I), then Lemma 1 or
Lemma 2 is applicable to some conjugate group, and F is conjugate to H1, H2,
or P1. The last cannot occur since by assumption, 1-" contains more than
parabolics.

Suppose 1-" contains at most elliptics and I, and let

C d"

By utilizing ad-bc= 1, one calculates the trace of the commutator
MNM- N- to be

2 cos 0 + (a + b + c + d) sin 0.

But a + b + c + d 2 + (a d) + (b + c), so the absolute value of the
trace is at least two. If the trace exceeds two, F contains a hyperbolic, contrary
to assumption. So either sin 0 0, or both a d and b -c. The assumption
that 0 is not a multiple of r eliminates the first case. In the second,

a b)N=
-b a

and a + b 1, so there is a 4 such that a cos 4 and b sin 4.

We now prove a classification theorem.
If F consists only of I or _+ 1, it lies in P1. For every other F, a conjugate

group can be found which contains a matrix which is a type in the hypothesis of
one of the lemmas. So F is conjugate to a group in H1, H2, P1, or El. Since
determinant, trace, order and matrix type are invariant under conjugation, the
lemmas give the following"

THEOREM 1. Every group is in one of the following classes"

(i) Groups generated by hyperbolic matrices, not all ofwhich have the same
pair offixed points.

(ii) Groups which consist of at most two types, hyperbolics all ofwhich have
identical fixed points x and y, and elliptics with trace zero which interchange x
and y and which when squared equal -I,

(iii) Groups which consists of parabolics, all of which have the same fixed
point,
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(iv)
points.

Groups which consists of elliptics, all of which have the same two fixed

Also 1 is required in each group, and -1 is permitted.
Groups in (iii) or (iv) are commutative. In (ii), the commutative groups are

those which contain only the first type, or those which consist of four matrices,
I, -I, M, -M, where M is of the second type. No group in (i)is commutative.
These facts follow from Theorem 1E in [7] that two real bilinear transforma-
tions, neither the identity, commute if and only if they have the same set of fixed
points. It is not difficult to verify further that for any two matrices M and N in
(ii), (MN)2 (NM)2, but that any group in (i) contains a pair of matrices for
which this fails.

3. High order generators

The minimal positive integer n such that M" 1 is the order of M. If no
such n exists, the order is infinite. Every elliptic is conjugate to a matrix of the
form

M=( cos0 sin0)-sin0 cos0

and since

M"=( cosn0 sinn0)-sinn0 cos nO

M has order n exactly when 0 2nk/n for some integer k relatively prime to n.
Hyperbolics and parabolics cannot have finite order.

THEOREM 2. IfF contains a matrix L offinite order n, then F can be generated
by matrices of order n or greater (possibly infinite).

Proof Note that -I is not needed as a generator since -I (-L)L- for
any L. Without loss of generality, F is in H1, H2, P1, or E1 since order is
invariant under conjugation. The theorem is trivial except for El.

Suppose F in E1 contains

L i cos 2tk/n sin 2tk/n
sin 2rtk/n cos 2tk/n!

with order n. Since k is relatively prime to n, there exist integers x and y such
that xk + yn- 1. Then N E’ has the form of L but with k 1. Suppose a
generator M has order m < n, that is, M has the form of L but with 2nh/m. Then

MN-J cos 2t(h/m j/n)
sin 27t(h/m j/n)

sin 2r(h/m j/n)]
cos 2n(h/m j/n) ]"
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Select j so 0 _< h/m j/n < 1/n. If the equality occurs, M Nj, and in the list of
generators, M can be replaced by N. If the inequality is strict, the order of
MN- exceeds n, and M can be replaced by N and MN-. The theorem is
proved.

We remark that infinite groups of finite order matrices do exist, for instance

-sinr cosrz
"rrational.

However if there is a uniform bound n on the orders of the matrices in F, then
F is a period group with period n! so a theorem of Burnside [1, p. 25] implies F
is finite.

THFOREM 3.
cyclic.

Any finite group F contains at most elliptics and +_I, and is

Proof Only elliptics and + I have finite order, so we assume F is in E1 or
H2. Finite F in H2 must be {I, M} or {I, -I, M, -M}, both cyclic, where M
has zeros on the main diagonal, because if F contains another elliptic N then
MN is hyperbolic, forcing F to be infinite. In E1 let L be a matrix with the
highest occurring order, n, and N L as in the proofofTheorem 2. Every matrix
of order n in E1 is a power of N. In particular this includes the generators of
F guaranteed by Theorem 2. See [2, p. 133] for a different proof of this theorem.

THFORFM 4. Ifa group F contains a matrix L of infinite order, then F can be
generated by matrices of infinite order, together with at most one M such that
M2 -I. (This M is necessary only if F is in class (ii) of Theorem 1 and must

further satisfy trace m 0.)

Proof By conjugation we rnay assume F is in HI, H2, P1, or El, and the
theorem is trivial for H1 and P1. As previously noted, -I is not needed as a
generator.
A matrix in H2 with infinite order has the form

L=
0 1/2

We need to show that if

M=
lib 0

with 2 =/= -1, 0, 1.

and N
0

1/fl 0

then N can be generated by matrices of infinite order together with M. If b fl
thenN=M. Ifb=-flthenN=-M=(-L)L-aM. Ifb4= +flthen

MN= b/fl 0
0 -fl/bl

has infinite order, and N M-I(MN).
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A matrix in E 1 with infinite order has the form

cos 0 sin 0
L=

-sin0 cos0

with 0 not a rational multiple of ft. We need show if

! tN=
-sin4 cos4

has finite order, that is, if 4 is a rational multiple of r, then N is the product of
matrices of infinite order. But N L- (LN) and

cos(0+4) sin(0+LN=
_sin(0+4) cos(0+

has infinite order since 0 + 4 is not a rational multiple of r.

4. Principal-circle groups

The results of Section 3 are summarized as follows: Let F be a subgroup of
SL(2, R).

(i) If there is a uniform bound on the orders of the elements in F, then F is
finite.

(ii) If F is finite, it is cyclic.
(iii) If F contains an element of finite order n, then F can be generated by

elements of order n or greater.
(iv) If any element of F has infinite order, then F can be generated by

elements of infinite order together with at most one element which when
squared equals I.

These properties are invariant under conjugation and so apply to principal-
circle subgroups of SL(2, C), and may also be translated into information
about birational transformation groups. They apply as well as to groups
faithfully represented by subgroups of SL(2, R). See a paper of Lehner [4] for
two such examples.
Another result of Lehner [5] relates to Theorem 1. He generalizes a result of

Knopp [8] to prove any horocyclic group of genus 9 possesses a system of
generators consisting entirely of parabolic and elliptic elements, if and only if
9=0.

5. Discreteness

A group F of matrices is discrete if F does not contain any sequence of
matrices M,( 4= I) which converges entrywise to 1.
We ask which of the matrix principal-circle groups F are discrete. Theorem

2H of [7] states that if F is discrete, and all elements of F have a common fixed
point, then F (when considered as a bilinear transformation group)must be
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cyclic. Thus for F in class (iv) of Theorem 1, F is discrete if and only if it is finite
cyclic.
F in class (iii) is discrete if and only if F is cyclic or is a cyclic group with I

adjoined.
For F in (ii), a similar argument yields that the subgroup of principal dia-

gonal matrices with positive entries must be cyclic. So F is discrete if and only if
it is generated by at most two matrices, one hyperbolic and the other either 1
or an elliptic which interchanges the fixed points of the hyperbolic, has trace
zero, and which when squared equals -I.
We now consider discreteness for F in class (i).

THEOREM 5. Suppose a principal-circle 9roup F in class (i) of Theorem 1 fails
to be discrete. Then either there is a sequence of parabolics convergin9 to I or
there are two sequences, one of hyperbolics and the other of elliptics, each con-
vergin9 to I.

Proof Since discreteness is invariant under conjugation, we may assume F
is in H1. Therefore F contains

K= ( ac
and F contains a sequence of matrices

Mn ( anCn

1/2
with 2 =/= -1, 0, 1,

b} neither diagonal nor antidiagonal,
d

We may assume the sequence M. has no diagonal matrices, by replacing any
diagonal M. by the non-diagonal KM.K- 1. The new sequence still converges
to I. The commutator

N,,=LM.L-1MI=(I+(1-22)b,,c. (22 1)a.b. !(2-2 1)c.d. 1 + (1 2- 2)b.c.
has trace 2 b.c.(2 1/2)2, and N. I.

If b. c. > 0 for infinitely many n, then the subsequence of N. for which this
holds consists of elliptics, and the corresponding M. are hyperbolics, since

a.d. 1 + b.c. > 1 which forces a. + d. > 2.
If b. c. 0 for infinitely many n, then the corresponding N. are parabolics.

No N. is I, because neither a. nor d. is zero (since a.d. b.c. 1), and only
one of b. or c. is zero (since M. is not diagonal).

If b. c. < 0 for infinitely many n, the corresponding N. are hyperbolics. Let

P. LN.L- 1N 1,
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so that tr P. 2 + (2 1/2)4a,b,c,d, and P, - I. Since a,d, 1 and b,c, 0
and are negative, the P, are elliptic from some point on.

COROLLARY. Suppose F satisfies the hypotheses of Theorem 5.

(a) If there is a point which is left fixed by every matrix, then there is a
sequence of parabolics converging to I.

(b) If there is no such point, there must be a sequence ofhyperbolics and one

of elliptics, each converging to I.

Proof By conjugation, we assume F is in SL(2, R). Hyperbolics have real
(or infinite) fixed points, and elliptics do not, so in (a), F contains no elliptics,
and the corollary is immediate.

Part (b) is immediate from the proof of Theorem 5, unless every

c, d.
-I

has b,c, 0 from some point on. If this last condition is fulfilled either
infinitely many b, 0 or infinitely many c, 0. Without loss of generality,
assume the latter. From the sequence N, ofTheorem 5 we extract L, I which
have the form

L {0
where B (2 1)ab 4: 0, so --, O. By assumption there is a

 _(ac
which does not fix infinity, that is, c 4= O. Now

L,, KL,K- (1- acfl, a2fln )-c. l + acfl.
I,

so a//. 0 from some point on since -c2/. 4: 0. Thus a 0, so

(1--C2fln fin) --*I.L.L, __C2 1

Part (b) follows from our first remark.
We remark that for F in class (i) satisfying part (a) of the corollary, F cannot

be discrete since it is not cyclic even when considered as a bilinear trans-
formation group. So the assumption "F fails to be discrete" is redundant for
this half of the corollary.

In summary, for F in classes (ii), (iii), or (iv)of Theorem 1, discreteness
criteria were easily found. For F in class (i), Theorem 5 and its corollary apply.
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