ERGODIC MEASURES, ALMOST PERIODIC POINTS AND DISCRETE ORBITS

BY

MICHEL TALAGRAND

Let K be a compact space, and ρ be a homeomorphism of K. A set $L \subset K$ is said to be *invariant* if $\rho L \subset L$, and is said to be *minimal* if it is closed, invariant and minimal with respect to these two properties.

A point $\omega \in K$ is said to be *almost periodic* if for each neighborhood V of ω , the set $\{i \in \mathbb{N}; \rho^i \omega \in V\}$ is relatively dense in N. Denote by A^{ρ} the set of all almost periodic points. It is known that $\omega \in A$ if and only if the closure of $\{\rho^i(\omega); i \ge 0\}$ is minimal.

A point $\omega \in K$ will be said to be *recurrent* if it is not almost periodic and if each neighborhood V of ω , the set $\{i \in \mathbb{N}; \rho^i(\omega) \in V\}$ is infinite. Denote by R^{ρ} the set of recurrent points, and denote by D^{ρ} the complement of $R^{\rho} \cup A^{\rho}$, that is the set of points whose orbit is discrete. The sets A^{ρ} , R^{ρ} , D^{ρ} are invariant.

Denote by M^{ρ} the set of all ρ -invariant Radon probabilities on K. It is a convex w*-compact set, and an invariant probability μ on K is said to be *extremal* if it is extremal in M^{ρ} . For $\mu \in M^{\rho}$ and X any subset of K, we denote by $\mu^{*}(X)$ and $\mu_{*}(X)$ the outer and inner measure of X. If μ is extremal and X invariant, then for all X we have $\mu^{*}(X)$, $\mu_{*}(X) \in \{0, 1\}$.

Let us denote by τ the map $n \to n + 1$ from N to N, and again by τ the restriction to $\beta N \setminus N$ of its canonical extension to the Stone-Čech compactification βN of N.

In [1], very interesting results concerning A^{τ} , R^{τ} , D^{τ} are proved. Our aim is to investigate, from a slightly different point of view, for an extremal $\mu \in M^{\rho}$, what can be the inner and outer measure of A^{ρ} , R^{ρ} , D^{ρ} . If the support supp μ is minimal, it is contained in A^{ρ} . So we have to investigate only what happens if this support is not minimal. Let

 $E^{\rho} = \{\mu \in M^{\rho} : \mu \text{ is extremal, supp } \mu \text{ is not minimal}\}.$

The following result shows that if $\mu \in E^{\rho}$, then A^{ρ} is small for μ .

THEOREM 1. Let $\mu \in E^{\rho}$. Then $\mu^*(A^{\rho}) = 0$.

Proof. Let F be the support of μ . If F is not minimal, F contains an invariant closed G such that $G \neq F$. Let U be an open set of K such that $U \cap F \neq \phi$, $\overline{U} \cap G = \phi$. For all n let $V_n = \bigcup_{i \le n} \rho^i(U)$. Since $V_n \cap G = \phi$, V_n

Received October 15, 1979.

^{© 1981} by the Board of Trustees of the University of Illinois Manufactured in the United States of America

does not support μ ; hence $\mu(V_n) < 1$. Let $V = \bigcup_n V_n$. Since $\mu(V) > 0$ and V is invariant, $\mu(V) = 1$. For $n \in \mathbb{N}$ let

$$B_n = \{ \omega \in A^{\rho}; \quad \forall i \in \mathbb{N}, \ \tau^i(\omega) \in V_n \}.$$

Then B_n is invariant, and since $B_n \subset V_n$, $\mu^*(B_n) < 1$, and hence $\mu^*(B_n) = 0$, which shows that $\mu^*(\bigcup_n B_n) = 0$. If $\omega \in A^{\rho} \cap V$, then

$$H_{\omega} = \overline{\{\rho^i(\omega); i \in \mathbf{N}\}}$$

is minimal. Since $H_{\omega} \cap V \neq \phi$, and V is invariant, $H_{\omega} \setminus V$ is invariant, and since H_{ω} is minimal, $H_{\omega} \setminus V = \phi$, i.e. $H_{\omega} \subset V$. By compacity, there exists n such that $H_{\omega} \subset V_n$. Hence $A^{\rho} \cap V \subset \bigcup B_n$, which shows $u^*(A^{\rho}) = 0$ since $\mu(V) = 1$. Q.E.D.

THEOREM 2. If $\mu \in E^{\rho}$ then $\mu^*(R^{\rho}) = 1$.

Proof. First let us notice that for each compact L with $\mu(L) > 0$, we have $\mu(\bigcup_{i>p} \rho^{-1}(L)) = 1$ since the complement of $\bigcup_{i>p} \rho^{-i}(L)$ is invariant of measure less than 1. We have to show that if $L \subset K$ is a compact such that $\mu(L) > 0$, then $L \cap R \neq \emptyset$. Let us construct by induction a decreasing sequence T_n of compacts, with $T_0 = L$ and a sequence k_n of integers with $k_n \ge n$, satisfying

(i)
$$\mu(T_n) > 0$$
, (ii) $\rho^{k_{n+1}}(T_{n+1}) \subset T_n$.

If T_n and k_n are constructed, since $\mu(\bigcup_{i \ge n+1} \rho^{-i}(T_n)) = 1$, there exists k_{n+1} with $\mu(\rho^{-k_{n+1}}(T_n) \cap T_n) > 0$. Then $T_{n+1} = \rho^{-k_{n+1}}(T_n) \cap T_n$ satisfies (i) and (ii). It follows now from [1, Prop. 3.1] that $\bigcap_n T_n$, hence L, contains a recurrent point. Q.E.D.

It follows from Theorem 1 and 2 that only two possibilities exist: $\mu_*(R^{\rho}) = 1$ (and hence $\mu^*(D^{\rho}) = 0$) or $\mu_*(R^{\rho}) = 0$ (and hence $\mu^*(D^{\rho}) = 1$). We are now going to give two examples where $K = \beta \mathbb{N} \setminus \mathbb{N}$ and $\rho = \tau$ to show that both possibilities can occur. (It is known that the first possibility can occur in a metric space, for example in the shift of $\{0, 1\}$, but of course the second cannot since R^{ρ} is then Borel and hence measurable.)

Example 3. There exists $\mu \in E^{\tau}$ such that $\mu_*(R^{\tau}) = 1$.

Proof. Let $T \subset \mathbb{N}$ be a set such that for all *n* and $F \subset [0, n]$ the set

$$\bigcap_{p \in F} \tau^{-p}T \cap \bigcap_{q \in [0,n] \setminus F} \tau^{-q}(\mathbf{N} \setminus T)$$

is infinite. For example, T has this property if, for each n and $F \subset [0, n]$, there exists $m \in \mathbb{N}$ with $T \cap [m, n + m] = \tau^m(F)$.

Let s be the shift of $\{0, 1\}^{\mathbb{N}} = Y$, given by $s((a_n)) = (a_{n+1})$, and $\tilde{T} \in \mathscr{C}(\beta \mathbb{N})$ be the extension to $\beta \mathbb{N}$ of the characteristic function of T. Let $\phi: \beta \mathbb{N} \setminus \mathbb{N} \to Y$ given

by $\phi(\omega) = (\tilde{T}(\tau^n(\omega)))$. This map is continuous, and $\phi \circ \tau = s \circ \phi$. Moreover it is onto, since if

$$\bigcap_{p \in F} \tau^{-p}T \cap \bigcap_{q \in [0,n]F} \tau^{-q}(\mathbf{N} \setminus T) \in \omega,$$

then, for $p \le n$, $\phi(\omega)(p) = 1$ if and only if $p \in F$.

Let *H* be an invariant closed set of $\beta N \setminus N$ such that $\phi(H) = Y$, and which is minimal with respect to these three properties. Let *P* be the set of invariant probabilities *v* on *H* such that $\phi(v) = \lambda$, where λ is the Haar measure on *Y*. The set *P* is non-empty, since if η is any probability on *H* such that $\phi(\eta) = \lambda$, any *w**-cluster point of $n^{-1} \sum_{i=1}^{n} \tau^{i}(\eta)$ belongs to *P*. Let μ be an extreme point of *P*. Then μ is an extreme point of M^{τ} ; since *s* is ergodic with respect to λ , and since the support of μ is closed, invariant and such that $\phi(\sup \mu) = Y$, it is equal to *H* by the minimality of *H* with respect to these properties. Moreover, *H* is not minimal, since under *s*, *Y* is not minimal. This shows that $\mu \in E$.

Let $\omega \in D^r \cap H$. Then there exist a neighborhood V of ω such that for $n \ge 1$, $\tau^n \omega \notin V$. Let $G = H \setminus \bigcup_{i \ge 0} \tau^{-i} V$. Since G is invariant and $G \ne H$, we have $\phi(G) \ne Y$. Hence there exists a clopen set $B \subset Y$ such that $\phi^{-1}(B) \subset \bigcup_{i \ge 0} \tau^{-i} V$. Hence

$$s^{l}(\phi(\omega)) = \phi(\tau^{l}(\omega)) \notin B \text{ for } l \ge 0,$$

for, if not, we would have $\tau^{l}(\omega) \in \bigcup_{i \ge 0} \tau^{-i}V$, i.e. $\tau^{l}(\omega) \in \tau^{-i}V$ for $i \ge 0$, $\tau^{i+l}(\omega) \in V$, which is impossible. This shows that

$$\phi(D^{\tau}) \cap \bigcup_{B \neq \phi} \bigcup_{l \geq 0} s^{-l}(B) = \phi$$

where the intersection is taken over all nonempty clopen *B* sets of *Y*. But for each *B*, $\bigcup_{l\geq 0} s^{-l}(B)$ is invariant, and of positive measure, and hence of measure 1. This shows that $\lambda^*(\phi(D^{\tau})) = 0$, hence $\mu^*(D^{\tau}) = 0$. Q.E.D.

This result points in the same direction as Section 3 of [1]: there are many recurrent points in βN .

Example. There exists
$$\mu \in E^{\tau}$$
 such that $\mu_*(R^{\tau}) = 0$ (hence $\mu^*(D^{\tau}) = 1$).

Proof. This example is entirely based on the theory of [2], that we shall explain briefly. For $B \subset \mathbb{N}$, let \tilde{B} be the corresponding clopen set of $\beta \mathbb{N}$. For a Radon measure v on $\beta \mathbb{N}$, consider the real function \tilde{v} on $P(\mathbb{N})$ given by $\tilde{v}(B) = v(\tilde{A})$. Let λ be the Haar measure of $\{0, 1\}^{\mathbb{N}}$, which can be identified with $P(\mathbb{N})$. We say that v is *measurable* if the map \tilde{v} is λ -measurable. It then turns out that $\tilde{v}(B) = \frac{1}{2}\tilde{v}(\mathbb{N}) = \frac{1}{2}||v||$ for λ -almost all B. It is shown in [2] that:

- (a) There exists $\mu \in M^{\tau}$ which is measurable.
- (b) If η is measurable, and $v \leq \eta$, then v is measurable.

506

From the methods of [2, 1J] one can easily show that:

(c) If v is measurable, then $\tilde{v}(B \cap \tau^{-1}(\mathbb{N}\setminus B) \cap \cdots \cap \tau^{-k}(\mathbb{N}\setminus B)) = 2^{-k-1} ||v||$ for λ —almost all $B \in P(\mathbb{N})$.

Now, let us show that $\mu^*(D^r) = 1$, i.e. that for each compact $L \subset \beta \mathbb{N} \setminus \mathbb{N}$ with $\mu(L) > 0$ we have $L \cap D^r \neq \phi$. Let ν be the restriction of μ to L. By (b), ν is measurable. By (c), there exists $B \subset \mathbb{N}$ such that

$$\nu(B \cap \tau^{-1}(\mathbf{N} \setminus B) \cdots \cap \tau^{-k}(\mathbf{N} \setminus B)) > 0$$
 for all k.

It means that for all $p, \tilde{B} \cap \tau^{-1}(\tilde{B}^c) \cap \cdots \cap \tau^{-k}(\tilde{B}^c) \cap L \neq \phi$, where \tilde{B}^c is the complement of \tilde{B} . Now let $\omega \in L \cap \tilde{B} \cap \bigcap_{i \geq 1} \tau^{-i}(\tilde{B}^c)$. For $i \geq 1, \tau^i(\omega) \notin \tilde{B}$, which shows that $\omega \in D^r$. Q.E.D.

Remark. For a homeomorphism ρ of K, one could also consider the points $\rho^{-i}(\omega)$ for $\omega \in K$. One can define in this way left recurrent points. A slight modification of the proof of Theorem 2 shows that for $\mu \in E^{\rho}$ the outer measure of the set of points which are both left and right recurrent is 1. It is also possible to extend Prop. 23 of [1] in the following way: for each invariant closed set K, then $K \setminus A^{\rho} \subset \overline{K \cap D'}$, where D' is the set of $\omega \in K$ such that the orbit $\{\tau^{i}(\omega); i \in \mathbb{Z}\}$ is discrete.

BIBLIOGRAPHY

- 1. C. CHOU, Minimal sets, recurrent points and discrete orbits in $\beta N \setminus N$, Illinois J. Math., vol. 22 (1978), pp. 54–63.
- D. FREMLIN and M. TALAGRAND, A decomposition theorem for additive set-functions, with applications to Pettis integrals and ergodic means, Math. Zeitschrift, vol. (1979), pp. 117–142.

Université Paris vi Paris