THE FREE BOUNDARY FOR A FOURTH ORDER VARIATIONAL INEQUALITY ${ }^{1}$

BY
Luis A. Caffarelli, Avner Friedman and Alessandro Torelli

Abstract

Consider the variational inequality $$
\begin{equation*} \left.\min _{v \in K}\left|\int_{\Omega}\right| \Delta v\right|^{2}-\left.2 \int_{\Omega} f v\left|=\int_{\Omega}\right| \Delta u\right|^{2}-2 \int_{\Omega} f u, \quad u \in K \tag{0.1} \end{equation*}
$$

where Ω is a bounded domain in R^{2} and

$$
\begin{equation*}
K=\left\{v \in H_{0}^{2}(\Omega), \alpha \leq \Delta v \leq \beta\right\} \quad(\alpha<0<\beta) . \tag{0.2}
\end{equation*}
$$

This problem was studied by Brezis and Stampacchia [3] who proved that the solution u belongs to $W_{\text {loc }}^{3, p}(\Omega)$ if $f \in L^{p}(p>2)$. In this paper we study the free boundary for this problem. Particular attention will be given to the case $-\alpha=\beta \rightarrow 0$. It will be shown, for a special choice of f and Ω, that $u / \beta \rightarrow w$ where w is the solution of a variational inequality for the Laplace operator with obstacle $\frac{1}{2} d^{2}$ and d is the distance function to $\partial \Omega$.

1. Introduction

The problem (0.1) (for Ω in R^{2}) has the physical interpretation of a horizontal plate whose "linearized" mean curvature is restricted to lie between two levels, α and β. The plate is clamped at the boundary and is pressured by a vertical force of magnitude f.

Throughout this paper it is assumed that Ω is a bounded domain whose boundary is piecewise $C^{2+\delta}$, for some $\delta>0$, that is, $\partial \Omega$ consists of a finite number of disjoints $C^{2+\delta}$ arcs $S_{i}(1 \leq i \leq m)$ with endpoints V_{i}, V_{i+1} where $V_{m+1}=V_{1}$. It is also assumed that there exists a function F such that

$$
\begin{equation*}
F \in L^{2}(\Omega), \quad F=0 \text { on } \partial \Omega, \quad \Delta F=f \tag{1.1}
\end{equation*}
$$

the last two conditions are taken in the usual distribution sense. Thus f belongs to $H^{-2}(\Omega)$.

[^0]The variational inequality (0.1), with K defined by (0.2), can also be written in the form

$$
\begin{equation*}
\int_{\Omega} \Delta u \cdot \Delta(v-u) d x \geq \int_{\Omega} f(v-u) d x, \quad v \in K ; u \in K . \tag{1.2}
\end{equation*}
$$

Since the bilinear form on the left hand side is coercive, there exists a unique solution u.

The following result is due to Brezis and Stampacchia [3].
Theorem 1.1. The solution u satisfies

$$
\begin{equation*}
\Delta u=\tau(F+z) \tag{1.3}
\end{equation*}
$$

where $\tau(t)$ is the truncation

$$
\tau(t)= \begin{cases}\alpha & \text { if } t<\alpha, \tag{1.4}\\ t & \text { if } \alpha \leq t \leq \beta, \\ \beta & \text { if } t>\beta,\end{cases}
$$

and z is some function such that

$$
\begin{equation*}
\Delta z=0 \text { in } \Omega, \quad z \in L^{1}(\Omega) \tag{1.5}
\end{equation*}
$$

Thus if, in particular, $f \in H^{-1, p}(\Omega)(p>2)$ then

$$
\begin{equation*}
\Delta u \in W_{\mathrm{loc}}^{1, \infty}(\Omega), \quad u \in W_{\mathrm{loc}}^{3, p}(\Omega) \tag{1.6}
\end{equation*}
$$

Actually Theorem 1.1 is proved only in case $\partial \Omega$ is sufficiently smooth. However the $L^{1}(\Omega)$ estimate on z is independent of the smoothness of $\partial \Omega$. Approximating Ω from inside by domains Ω_{m} with smooth boundary and applying (1.3) to each solution u_{m} of $(0.1),(0.2)$ in Ω_{m}, we obtain the assertion (1.3) for u in Ω. (We use here the easily verified fact that $u_{m} \rightarrow u$ as $m \rightarrow \infty$.)

Theorem 1.1, and in fact all the results of Sections 1-3, are valid (with the same proofs) for n-dimensional domains $\Omega(n \geq 2)$. However the proofs of the main results of this paper (Sections 4-6) definitely require that $n=2$.

A generalization of Theorem 1.1 to more generalized operators and convex sets K is given by Torelli [11].

In Section 2 we derive some properties of the harmonic function z and study the coincidence sets

$$
\begin{equation*}
I_{\beta}=\{x \in \Omega ; F(x)+z(x) \geq \beta\}, \quad I_{\alpha}=\{x \in \Omega ; F(x)+z(x) \leq \alpha\} \tag{1.7}
\end{equation*}
$$

i.e., the sets where $\Delta u=\beta$ and $\Delta u=\alpha$ respectively.

In Section 3 we take $\alpha=-\beta$, and denote the corresponding solution by u^{β}. We make a preliminary study of the behavior of

$$
\begin{equation*}
I_{ \pm \beta} \quad \text { and } \quad \frac{1}{\beta} u^{\beta}, \quad \text { as } \beta \rightarrow 0 \tag{1.8}
\end{equation*}
$$

In Section 4 we study the second order variational inequality

$$
\begin{equation*}
\int_{\Omega} \nabla w \cdot \nabla(v-w) d x \geq \int_{\Omega}(v-w) d x \quad \text { for all } v \in K_{0} ; w \in K_{0} \tag{1.9}
\end{equation*}
$$

where

$$
\begin{equation*}
K_{0}=\left\{v \in H_{0}^{1}(\Omega) ; v(x) \leq \frac{1}{2} d^{2}(x)\right\}, \tag{1.10}
\end{equation*}
$$

$$
\begin{equation*}
d(x)=\operatorname{dist}(x, \partial \Omega) \tag{1.11}
\end{equation*}
$$

in the special case where Ω is a square. We find that the coincidence set I consists of four convex regions, each containing one of the sides of $\partial \Omega$; write $\Lambda=\Omega \backslash \bar{I}$ for the non-coincidence set.

In Section 5 we study the following special case of (1.8):
(1.12) Ω is a square with center $0=(0,0)$ and f is the Dirac measure supported at 0 .

We prove that, as $\beta \rightarrow 0$,

$$
\begin{equation*}
\frac{1}{\beta} u^{\beta} \rightarrow w, \quad I_{\beta} \rightarrow I, \quad I_{-\beta} \rightarrow \Lambda \tag{1.13}
\end{equation*}
$$

This statement is the main result of the paper; it is valid, with minor changes, also in case Ω is a rectangle. It encourages one to ask the intriguing question: for which pairs Ω, f do the limits in (1.8) exist and how can they be identified in terms of simpler free boundary problems. In Section 6 we answer this question in another special case, where Ω is an equilateral triangle and f is the Dirac function supported at its center. Some "negative" results on this question are given in Section 7.

2. General properties of u and z

We assume the following throughout this paper, in addition to (1.1):
(2.1) $F(x)$ is continuous in $\bar{\Omega}$ except for a finite number of points $\xi_{i} \in \Omega$ where $F\left(\xi_{i}\right)=+\infty$ or $F\left(\xi_{i}\right)=-\infty$.

This means that either $F(x) \rightarrow+\infty$ or $F(x) \rightarrow-\infty$ as $x \rightarrow \xi_{i}$.
The condition (2.1) is satisfied if $f \in H^{-1, p}(\Omega)$ where $p>2$; it is also satisfied in the case (of special interest to us later on) where f is the Dirac function; here $f \in H^{-1, p}(\Omega)$ for any $p<2$ but not for $p \geq 2$.

The condition (2.1) together with (1.3) imply that
(2.2) Δu is continuous in Ω.

Definition. The set I_{β} (defined in (1.7)) is called the upper coincidence set and the set I_{α} is called the lower coincidence set. The set

$$
\Omega_{0}=\Omega \backslash\left(I_{\alpha} \cup I_{\beta}\right)
$$

is called the non-coincidence set.
Since (2.1) holds, the sets I_{β}, I_{α} are closed with respect to Ω and the noncoincidence set Ω_{0} is open. Further,
(2.3) Ω_{0} is nonempty.

Indeed, if Ω_{0} is empty then $\operatorname{sgn}(\Delta u)$ is constant in Ω. Since $u=0$ on $\partial \Omega$, $\operatorname{sgn} u$ is also constant in Ω and the strong maximum principle gives $\partial u / \partial v \neq 0$ along the smooth part of $\partial \Omega$. This contradicts the fact that $u \in H_{0}^{2}(\Omega)$.

Theorem 2.1. The function z is uniquely determined.
Proof. Suppose z_{1}, z_{2} are two z functions. Then

$$
\begin{equation*}
\Delta u=F+z_{1}=F+z_{2} \quad \text { in } \Omega_{0} . \tag{2.4}
\end{equation*}
$$

It follows that the harmonic function $z_{1}-z_{2}$ vanishes in the nonempty open set Ω_{0}. Hence $z_{1}-z_{2} \equiv 0$ in Ω.

We shall assume from now on that
(2.5) Ω is star-shaped with respect to the origin 0 .

Let

$$
\begin{equation*}
Z=\left\{v \in L^{1}(\Omega) ; \Delta v=0\right\} . \tag{2.6}
\end{equation*}
$$

Lemma 2.2. We have

$$
\begin{equation*}
\int_{\Omega} v \tau(F+z) d x=0, \quad v \in Z \tag{2.7}
\end{equation*}
$$

Proof. Since $\tau(F+z)=\Delta u$, (2.7) follows by integration by parts provided $v \in C^{2}(\bar{\Omega})$. For general v in Z notice, by (2.5), that the function

$$
v_{m}(x)=v\left(\frac{m}{m+1} x\right) \quad(m>1)
$$

is harmonic and in $C^{2}(\bar{\Omega})$. Writing (2.7) for each v_{m} and taking $m \rightarrow \infty$, the assertion follows.

Theorem 2.3. If

$$
\begin{equation*}
\int_{\Omega} \tau(F+\beta) d x \leq 0 \tag{2.8}
\end{equation*}
$$

then
(2.9) $\quad \bar{I}_{\beta}$ intersects $\partial \Omega$.

Proof. Indeed otherwise there exists an Ω-neighborhood N of $\partial \Omega$ such that $F+z<\beta$ in N. Hence $z<\beta$ in another (smaller) Ω-neighborhood N_{0} of $\partial \Omega$. The maximum principle then implies that $z<\beta$ in Ω. Hence

$$
\tau(F+z) \leq \tau(F+\beta) \text { in } \Omega, \quad \tau(F+z)<\tau(F+\beta) \text { near } \partial \Omega .
$$

Integrating over Ω and using Lemma 2.2 , we get

$$
\int_{\Omega} \tau(F+\beta) d x>\int_{\Omega} \tau(F+z) d x=0
$$

contradicting (2.8).
Analogously to Theorem 2.3 we have:
(2.10) If $\int_{\Omega} \tau(F+\alpha) d x \geq 0$ then \bar{I}_{α} intersects $\partial \Omega$.

Theorem 2.4. Let $w \in Z, w>0$ in Ω, and suppose γ is a constant such that $z \not \equiv \gamma$ and

$$
\begin{equation*}
\int_{\Omega} w \tau(F+\gamma) d x=0 . \tag{2.11}
\end{equation*}
$$

Then there exist points x^{0}, y^{0} on $\partial \Omega$ such that

$$
\begin{align*}
& \varlimsup_{x \rightarrow x^{0}} z(x)>\gamma, \tag{2.12}\\
& \overline{\lim }_{x \rightarrow y^{0}} z(x)<\gamma \tag{2.13}
\end{align*}
$$

Proof. It is enough to prove (2.12). If the assertion is not true then

$$
\overline{\lim }_{x \rightarrow x^{0}} z(x) \leq \gamma \quad \text { for any } x^{0} \in \partial \Omega
$$

The strong maximum principle then gives $z<\gamma$ in Ω. Hence $\tau(F+z) \leq$ $\tau(F+\gamma)$ with strict inequality on the non-coincidence set Ω_{0}. Multiplying this inequality by w and integrating over Ω, we get, after using Lemma 2.2 with $v=w$,

$$
0<\int_{\Omega} w \tau(F+\gamma) d x
$$

which contradicts (2.11).
Theorem 2.5. If $f \leq 0$ in Ω then

$$
\begin{equation*}
\int_{\Omega}(\beta-z) d x \geq 0 \tag{2.14}
\end{equation*}
$$

Thus the set $\bar{I}_{\beta} \cap \partial \Omega$ cannot be "too large."
Proof. By monotonicity of τ,

$$
(\tau(F+\beta)-\tau(F+z))(\beta-z) \geq 0 \quad \text { in } \Omega
$$

Integrating over Ω and using Lemma 2.2 , we get

$$
\int \tau(F+\beta)(\beta-z) d x \geq 0
$$

Since $f \leq 0, F \geq 0$ and, consequently, $\tau(F+\beta)=\beta$; (2.14) thereby follows.
Similarly:
(2.15) If $f \geq 0$ in Ω then $\int_{\Omega}(\alpha-z) d x \leq 0$.

Theorem 2.6. Let x^{0} be a point of $\partial \Omega \cap \bar{I}_{\beta}\left(\partial \Omega \cap \bar{I}_{\alpha}\right)$ such that $\partial \Omega$ is not analytic in any neighborhood of x^{0}. Then any $\bar{\Omega}$-neighborhood of x^{0} must intersect $\overline{\Omega_{0} \cup I_{\alpha}}\left(\overline{\Omega_{0} \cup I_{\beta}}\right)$.

Proof. Suppose the assertion is not true. Then, for definiteness, we may assume that in an Ω-neighborhood N of $x^{0}, \tau(F+z)=\beta$ and

$$
x^{0} \in \operatorname{Int}(\partial N \cap \partial \Omega)
$$

Thus

$$
\begin{gather*}
\Delta u=\beta \quad \text { in } N \tag{2.16}\\
u=\frac{\partial u}{\partial v}=0 \quad \text { on } \partial N \cap \partial \Omega \tag{2.17}
\end{gather*}
$$

(assuming that x^{0} is not a vertex). Using the hodograph mapping as in Kinderlehrer-Nirenberg [8] it follows that $\partial \Omega$ must be analytic in a neighborhood of x^{0}; a contradiction. Finally, x^{0} cannot be a vertex; indeed, (2.16) and (2.17) (away from x^{0}) imply that $u>0$ in some Ω-neighborhood of x^{0}, so that, by Caffarelli [4], $\partial \Omega$ must be C^{1} in a neighborhood of x^{0}.

3. Asymptotic behavior as $-\alpha=\beta \rightarrow 0$

We now take $\alpha=-\beta$ and write $u=u^{\beta}, \tau=\tau^{\beta}, z=z^{\beta}, K=K^{\beta}$. We also set

$$
\begin{equation*}
U^{\beta}=\Delta u^{\beta} \tag{3.1}
\end{equation*}
$$

Thus

$$
\begin{equation*}
U^{\beta}=\tau^{\beta}\left(F+z^{\beta}\right) \tag{3.2}
\end{equation*}
$$

Lemma 3.1. Let $C=1+2 \int_{\Omega}|F| d x$. Then

$$
\begin{equation*}
\left|z^{\beta}\right|_{L^{1}(\Omega)} \leq C \quad \text { if } 0<\beta<1 \tag{3.3}
\end{equation*}
$$

Proof. By [3; Lemma 3.2], U^{β} solves the variational inequality

$$
\begin{equation*}
\int_{\Omega} U^{\beta}\left(V-U^{\beta}\right) d x \geq \int_{\Omega}\left(F+z^{\beta}\right)\left(V-U^{\beta}\right) d x, \quad V \in K_{0}^{\beta}, U^{\beta} \in K_{0}^{\beta} \tag{3.4}
\end{equation*}
$$

where

$$
\begin{equation*}
K_{0}^{\beta}=\left\{V \in L^{2}(\Omega),-\beta \leq V \leq \beta\right\} . \tag{3.5}
\end{equation*}
$$

Recalling, from Lemma 2.2, that U^{β} is orthogonal to z^{β}, we get, from (3.4),

$$
\int_{\Omega}\left(F+z^{\beta}-U^{\beta}\right) V \leq \int_{\Omega}\left(F-U^{\beta}\right) U^{\beta} \leq \int_{\Omega} F U^{\beta}
$$

Consequently,

$$
\left|F+z^{\beta}-U^{\beta}\right|_{L^{1}(\Omega)} \leq \frac{1}{\beta} \int_{\Omega}\left|F U^{\beta}\right| \leq \int_{\Omega}|F|,
$$

and (3.3) follows.
Set

$$
H_{\beta}(t)=\left\{\begin{aligned}
-1 & \text { if } t<-\beta \\
t / \beta & \text { if }-\beta \leq t \leq \beta \\
1 & \text { if } t>\beta
\end{aligned}\right.
$$

i.e., $H_{\beta}(t)=\tau^{1}(t / \beta)$. Let

$$
H(t)=\left\{\begin{array}{cl}
-1 & \text { if } t<0 \\
{[-1,1]} & \text { if } t=0 \\
1 & \text { if } t>1
\end{array}\right.
$$

be the Heaviside graph. Finally let

$$
\begin{equation*}
\tilde{u}^{\beta}=u^{\beta} / \beta, \quad \tilde{U}^{\beta}=U^{\beta} / \beta \tag{3.6}
\end{equation*}
$$

Thus $\tilde{U}^{\beta}=\Delta \tilde{u}^{\beta},-1 \leq \tilde{U}^{\beta} \leq 1$, and

$$
\begin{equation*}
\tilde{U}^{\beta}=H_{\beta}\left(\frac{F+z^{\beta}}{\beta}\right) . \tag{3.7}
\end{equation*}
$$

Lemma 3.1 implies that from any sequence $\left\{\beta^{*}\right\}$ converging to zero we can extract a subsequence $\left\{\beta^{\prime}\right\}$ such that
(3.8) $\quad z^{\beta^{\prime}} \rightarrow z^{0}$ uniformly on compact subsets of Ω,
(3.9) $\quad \tilde{U}^{\beta^{\prime}} \rightarrow \tilde{U}^{0}$ in the weak star topology of $L^{\infty}(\Omega)$,
(3.10) $\quad \tilde{u}^{\beta^{\prime}} \rightarrow \tilde{u}^{0}$ weakly in $W^{2, p}\left(\Omega_{1}\right), \quad p<\infty$,
for any subdomain Ω_{1} of Ω whose boundary does not contain the vertices of $\partial \Omega$; in special cases like Ω a rectangle or Ω an equilateral triangle, we can take $\Omega_{1}=\Omega$.

From (3.8) we deduce that
(3.11) z^{0} is harmonic in $\Omega, z^{0} \in L^{1}(\Omega)$.

From (3.9) and Lemma 2.2 we obtain

$$
\begin{equation*}
\int_{\Omega} v \tilde{U}^{0} d x=0, \quad v \in Z \tag{3.12}
\end{equation*}
$$

Taking $\beta=\beta^{\prime} \rightarrow 0$ in (3.7) we obtain

$$
\begin{equation*}
\tilde{U}^{0} \in H\left(F+z^{0}\right) \tag{3.13}
\end{equation*}
$$

We wish to study the functions $\tilde{u}^{0}, \tilde{U}^{0}$ and the sets

$$
\begin{align*}
& I_{+}=\left\{x \in \Omega ;\left(F+z^{0}\right)(x)>0\right\}, \tag{3.14}\\
& I_{-}=\left\{x \in \Omega ;\left(F+z^{0}\right)(x)<0\right\}, \tag{3.15}\\
& \Gamma_{0}=\left\{x \in \Omega ;\left(F+z^{0}\right)(x)=0\right\} . \tag{3.16}
\end{align*}
$$

Definition. $\quad I_{+}$is called the upper set, I_{-}is called the lower set and Γ_{0} is called the free boundary.

Notice that these sets, as well as $\tilde{u}^{0}, \tilde{U}^{0}$, may depend in general on the sequence $\left\{\beta^{\prime}\right\}$.

Now take another sequence $\left\{\beta^{\prime \prime}\right\}$ for which $z^{\beta^{\prime \prime}} \rightarrow z^{*}, \tilde{u}^{\beta^{\prime \prime}} \rightarrow \tilde{u}^{*}, \tilde{U}^{\beta^{\prime \prime}} \rightarrow \tilde{U}^{*}$ in the sense of (3.8)-(3.10), and define $I_{+}^{*}, I_{-}^{*}, \Gamma_{*}$ analogously to I_{+}, I_{-}, Γ_{0}.

Theorem 3.2. The following relations hold:

$$
\begin{array}{ll}
I_{+} \subset I_{+}^{*} \cup \Gamma_{*}, & I_{+}^{*} \subset I_{+} \cup \Gamma_{0} \\
I_{-} \subset I_{-}^{*} \cup \Gamma_{*}, & I_{-}^{*} \subset I_{-} \cup \Gamma_{0} \tag{3.18}
\end{array}
$$

Proof. It is enough to prove the first part of (3.17). Since $H(t)$ is a monotone graph,

$$
\begin{equation*}
\left[H\left(F+z^{0}\right)-H\left(F+z^{*}\right)\right]\left[\left(F+z^{0}\right)-\left(F+z^{*}\right)\right] \geq 0 . \tag{3.19}
\end{equation*}
$$

On the other hand, from (3.12), (3.13) and its counterpart for \tilde{U}^{*} we get

$$
\int_{\Omega}\left[H\left(F+z^{0}\right)-H\left(F+z^{*}\right)\right]\left[z^{0}-z^{*}\right] d x=0 .
$$

Comparing with (3.19) we conclude that

$$
\left[H\left(F+z^{0}\right)-H\left(F+z^{*}\right)\right]\left[\left(F+z^{0}\right)-\left(F+z^{*}\right)\right]=0 \quad \text { in } \Omega \backslash\left(\Gamma_{0} \cup \Gamma_{*}\right) .
$$

Thus, if $\left(F+z^{0}\right)\left(x^{0}\right)>0$ then we cannot have $\left(F+z^{*}\right)\left(x^{0}\right)<0$. This proves the assertion.

Corollary 3.3. If $y^{0} \in \Gamma_{0}$ and $\operatorname{sgn}\left(F+z^{0}\right)$ changes in any neighborhood of y^{0}, then $y^{0} \in \Gamma_{*}$.

Indeed, if $y^{0} \notin \Gamma_{*}$ then $\left(F+z^{*}\right)\left(y^{0}\right) \neq 0$; suppose for definiteness that

$$
\left(F+z^{*}\right)\left(y^{0}\right)>0
$$

Then there exists a neighborhood N of y^{0} in which $F+z^{*}>0$, i.e., $N \subset I_{+}^{*}$. Since, by assumption, $N \cap I_{-} \neq 0$, we get $I_{-} \cap I_{+}^{*} \neq \theta$, which contradicts the first relation in (3.18).

Theorem 3.4. Let x^{0} be a point of $\partial \Omega$ such that $\partial \Omega$ is not analytic in any neighborhood of x^{0}. Then $x^{0} \in \bar{\Gamma}_{0}$.

The proof is similar to the proof of Theorem 2.6.
From now on we assume, in addition to (2.1), that

$$
\begin{equation*}
F(x) \text { is analytic for all } x \in \Omega, x \neq \xi_{i} . \tag{3.20}
\end{equation*}
$$

Then $F+z^{0}$ is also analytic if $x \neq \xi_{i}$ and therefore Γ_{0} consists of piecewise smooth curves (with branch points, in general).

Theorem 3.5. meas $I_{+}=$meas I_{-}.
Proof. Take $v=1$ in (3.12) and note that

$$
\begin{equation*}
\tilde{U}^{0}=1 \text { on } I_{+}, \quad \tilde{U}^{0}=-1 \text { on } I_{-}, \quad \text { and } \text { meas } \Gamma_{0}=0 \tag{3.21}
\end{equation*}
$$

Theorem 3.6. Under the assumptions of Theorem 3.2,

$$
\begin{align*}
& \operatorname{int} \bar{I}_{+}=\operatorname{int} \overline{I_{+}^{*}} \tag{3.22}\\
& \operatorname{int} \bar{I}_{-}=\operatorname{int} \overline{I_{-}^{*}} \tag{3.23}
\end{align*}
$$

This follows from Theorem 3.2 and the fact that Γ_{0}, Γ_{*} consist of piecewise smooth curves.

Corollary 3.7. If F is harmonic for all $x \neq \xi_{i}$, then

$$
\begin{equation*}
I_{+}=I_{+}^{*}, \quad I_{-}=I_{-}^{*}, \quad \Gamma_{0}=\Gamma_{*} \tag{3.24}
\end{equation*}
$$

Proof. If $y^{0} \in \Gamma_{0}$ then the harmonic function $F+z^{0}$ must change sign in any neighborhood of y^{0}. Applying Corollary 3.3 we deduce that $y^{0} \in \Gamma_{*}$. Similarly, if $y^{0} \in \Gamma_{*}$ then $y^{0} \in \Gamma_{0}$. Thus $\Gamma_{0}=\Gamma_{*}$. The rest follows by Theorem 3.6.

In Section 5 we shall determine the limits in (3.8)-(3.10) and the sets (3.14)-(3.16) in the special case of (1.12). Some preliminary results needed in that section are given in Section 4.

4. A second order variational inequality

In this section and in Section 5 we always assume that Ω is a square:

$$
\begin{equation*}
\Omega=\left\{x=\left(x_{1}, x_{2}\right) ;-1<x_{1}<1,-1<x_{2}<1\right\} . \tag{4.1}
\end{equation*}
$$

Let

$$
\begin{equation*}
d(x)=\operatorname{dist}(x, \partial \Omega) \tag{4.2}
\end{equation*}
$$

Consider the variational inequality

$$
\begin{equation*}
\int_{\Omega} \nabla w \cdot \nabla(v-w) d x \geq \int_{\Omega}(v-w) d x, \quad v \in \hat{K}, \quad w \in \hat{K} \tag{4.3}
\end{equation*}
$$

where

$$
\begin{equation*}
\hat{K}=\left\{v \in H_{0}^{1}(\Omega) ; v(x) \leq \frac{1}{2} d^{2}(x)\right\} . \tag{4.4}
\end{equation*}
$$

We recall that the variational inequality with constraint $d(x)$ (instead of $\left.\frac{1}{2} d^{2}(x)\right)$ arises in the elastic-plastic torsion problem for a bar. Some of the methods used for that problem [6] will be useful also here.

Taking $v=w^{+}$in (4.3) we find that $w \geq 0$.
Lemma 4.1. $w \in C^{\mathbf{1 , 1}}(\bar{\Omega})$.
Proof. Notice that

$$
\frac{1}{2} d^{2}(x)=\inf _{1 \leq i \leq 4} l_{i}^{2}(x)
$$

where the $l_{i}(x)$ are linear functions $\left(l_{i}(x)\right.$ is distance from the i th side of $\left.\partial \Omega\right)$. Consequently, for any direction ξ,

$$
\frac{\partial^{2}}{\partial \xi^{2}}\left(\frac{1}{2} d^{2}(x)\right) \leq c
$$

(in the distribution sense). The method of Brezis-Kinderlehrer [2] then gives $w \in C_{\text {loc }}^{1,1}(\Omega)$. The $C^{1,1}$ of w up to the boundary follows by first extending w into a neighborhood of any vertex (by reflections) and then using [2].

We introduce the coincidence set

$$
\begin{equation*}
I=\left\{x \in \Omega ; w(x)=\frac{1}{2} d^{2}(x)\right\} \tag{4.5}
\end{equation*}
$$

the non-coincidence set

$$
\begin{equation*}
\Lambda=\left\{x \in \Omega ; w(x)<\frac{1}{2} d^{2}(x)\right\} \tag{4.6}
\end{equation*}
$$

and the free boundary

$$
\begin{equation*}
\Gamma=\partial \Lambda \cap \Omega \tag{4.7}
\end{equation*}
$$

Definition. A point $x^{0} \in \Omega$ is said to belong to the ridge R of Ω if for any neighborhood N_{0} of x^{0} the function $d^{2}(x)$ is not in $C^{1,1}\left(N_{0}\right)$.

The method of [6] shows that $R \subset \Lambda$; both the definition of the ridge and the last relation are valid for general domains Ω.

Lemma 4.2.

$$
\begin{equation*}
w_{x_{i}}\left(\operatorname{sgn} x_{i}\right) \leq 0 \text { in } \Omega \quad(i=1,2) \tag{4.8}
\end{equation*}
$$

Proof. It is enough to prove that $w_{x_{2}} \geq 0$ in $\Omega_{-}=\Omega \cap\left\{x_{2}<0\right\}$. On $I \cap \Omega_{-}$we have $w_{x_{2}}=\left(\frac{1}{2} d^{2}(x)\right)_{x_{2}}>0$. Next, by symmetry, $w_{x_{2}}=0$ on $x_{2}=0$, whereas on the remaining part of $\partial \Omega_{-} w_{x_{2}} \geq 0$; thus by the maximum principle, in $\Lambda \cap \Omega_{-}, w_{x_{2}}>0$ in $\Lambda \cap \Omega_{-}$, and the proof is complete.

Set $0=(0,0), A=(-1,-1), B=(1,-1), C=(-1,1), D=(1,1)$, and introduce the triangle T with vertices $0, A, B$.

Lemma 4.3.

$$
\begin{equation*}
\frac{\partial}{\partial x_{2}}\left(w-\frac{1}{2} d^{2}\right) \leq 0 \quad \text { in } T . \tag{4.9}
\end{equation*}
$$

Proof. We shall show that

$$
\begin{equation*}
z \equiv w_{x_{2}}-\left(x_{2}+1\right) \leq 0 \quad \text { in } \Omega_{-} . \tag{4.10}
\end{equation*}
$$

Notice that $z=0$ on $I \cap T$. On the remaining part of $I \cap \Omega_{-}, w_{x_{2}}=0$ so that $z \leq 0$. Also $z\left(x_{1}, 0\right)=w_{x_{2}}\left(x_{1}, 0\right)-1=-1<0$. Using the maximum principle we deduce that $z<0$ in $A \cap \Omega_{-}$, and (4.10) follows.

Lemma 4.4. For any neighborhood N of any vertex of Ω,

$$
\begin{equation*}
N \cap \Lambda \neq 0, \quad N \cap I \neq 0 \tag{4.11}
\end{equation*}
$$

Proof. If $N \cap \Lambda=0$ then $w=\frac{1}{2} d^{2}$ in $N \cap \Omega$, contradicting Lemma 4.1. Suppose next that $N \cap I=0$. Then $\Delta w=-1$ in $N \cap \Omega$, and $w=w_{v}=0$ on $N \cap \partial \Omega$. Reflecting w across $x_{1}=-1$ we conclude, by unique continuation, that $w(x)=-\frac{1}{2}\left(x_{2}+1\right)^{2}$ which is impossible (since $w \geq 0$).

From Lemmas 4.2, 4.3 it follows that the coincidence set in T consists of a set

$$
\left\{\left(x_{1}, x_{2}\right) ;-1<x_{2}<\phi\left(x_{1}\right),-a<x_{1}<a\right\}
$$

where $\phi\left(x_{1}\right)$ is monotone increasing if $-a<x_{1}<0$ and $\phi\left(-x_{1}\right)=\phi\left(x_{1}\right)$. Lemma 4.4 implies that $a=1$. By a general result of Lewy and Stampacchia [9] it follows that the free boundary has analytic parametrization. Since $\bar{w}_{x_{2}}<0$ in $\Lambda \cap T$, the method of Alt [1] shows that $\phi\left(x_{1}\right)$ is Lipschitz; hence $\phi\left(x_{1}\right)$ is analytic.

The coincidence set in the other three triangles $O A C, O C D, O D B$ has the same form as in T. Thus I consists of the four shaded regions in Fig. 1, and the free boundary Γ is analytic.

Theorem 4.5. Each of the four components of the coincidence set is convex.
Thus, the function $x_{2}=\phi\left(x_{1}\right)$ representing the free boundary in T is concave.

Fig. 1
Proof. If the assertion is not true then $\phi^{\prime}\left(x_{1}\right)$ has a local maximum at some point $\bar{x}_{1} \in(-1,0)$. Then the function

$$
w_{x_{1} x_{1}}\left(x_{1}, \phi\left(x_{1}\right)\right)=\frac{1}{1+\left(\phi^{\prime}\left(x_{1}\right)\right)^{2}}-1
$$

has a local minimum at \bar{x}_{1}. Consider the "inflection domain" G with vertex $\left(\bar{x}_{1}, \phi\left(\bar{x}_{1}\right)\right)$, i.e., a maximal connected component in Λ such that ∂G contains ($\left.\bar{x}_{1}, \phi\left(\bar{x}_{1}\right)\right)$ and

$$
w_{x_{1}}<\mu \text { in } G ; \quad \mu=w_{x_{1}}\left(\bar{x}_{1}, \phi\left(\bar{x}_{1}\right)\right) .
$$

The construction of G is given in Caffarelli and Friedman [5].
G cannot lie entirely in T since on one hand $w_{x_{1}}=\mu$ on $\partial G \cap \Lambda$ and, on the other hand, $w_{x_{1} x_{1}} \equiv\left(w-\frac{1}{2} d^{2}\right)_{x_{1} x_{1}}$ (in $\left.T\right)$ cannot take a local maximum or a
local minimum at any point of the free boundary $\Gamma \cap T$, by a result of Friedman and Jensen [7].

It follows that ∂G must intersect some of the other components of Γ (not in T). Using symmetry we can easily deduce that ∂G must in fact intersect $\Gamma \cap T_{1}$ where T_{1} is the triangle $O A C$. But then G intersects the diagonal $\overline{A D}$ in some segment l; at least one endpoint ζ^{0} of l lies in Λ.

We have

$$
\begin{equation*}
w_{x_{1}}=w_{x_{2}} \quad \text { on } \overline{A D} \tag{4.12}
\end{equation*}
$$

since $w(\tau x)=w(x)$ where τ is the reflection with respect to the diagonal $\overline{A D}$.
Differentiating (4.12) along l we find that $w_{x_{1} x_{1}}=w_{x_{2} x_{2}}$. Since $\Delta w=-1$ on l, we get $w_{x_{1} w_{1}}=$ const $=-\frac{1}{2}$ on l. But this is impossible, since $w_{x_{1} x_{1}}<\mu$ in the interior of l and $w_{x_{1} x_{1}}=\mu$ at the endpoint ζ^{0} of l.

5. The limit problem in case (1.12)

We now specialize to the case (1.12), that is, Ω is the square (4.1) and f is the Dirac measure supported at 0 . Thus
(5.1) $-F=\frac{1}{2 \pi} \log \frac{1}{r}+h$ is the Green's function for Ω with pole at 0 ;
h is harmonic in Ω,

$$
h=-\frac{1}{2 \pi} \log \frac{1}{r} \quad \text { on } \partial \Omega,
$$

$r=\left(x^{2}+y^{2}\right)^{1 / 2}$. Notice that F satisfies all the assumptions required in the previous sections, namely, (1.1), (2.1) and (3.20).

We shall need later on a version of the Phragmen-Lindelof theorem, which we now proceed to describe.

Let D be a domain in R^{2} bounded by disjoint arcs $\gamma_{0}, \gamma_{1}, \gamma_{2}$ such that γ_{1}, γ_{2} initiate at the origin $0, \gamma_{0}$ lies on $r=\lambda$, for some $\lambda=0, D$ lies in the sector $0<\theta<\pi / 2,0<r<\lambda$.

Let ζ be a harmonic function in D such that

$$
\begin{align*}
& \mid \zeta \text { is continuous in } \bar{D} \backslash\{0\}, \\
& \mid \zeta=0 \text { on } \gamma_{1} \cup \gamma_{2} \tag{5.2}\\
& \zeta \in L^{1}(D) . \tag{5.3}
\end{align*}
$$

Lemma 5.1. Under the foregoing assumptions,

$$
\begin{equation*}
\lim _{x \in D, x \rightarrow 0} \zeta(x)=0 \tag{5.4}
\end{equation*}
$$

Proof. Introduce the region

$$
T_{\varepsilon}=\{(r, \theta) ; 0<\theta<\pi / 2, \varepsilon<r<\lambda\} \quad(\varepsilon>0)
$$

and the functions w_{ε} satisfying:

$$
\begin{array}{ll}
\Delta w_{\varepsilon}=0 \quad \text { in } T_{\varepsilon}, & \\
w_{\varepsilon}(r, 0)=w_{\varepsilon}(r, \pi / 2)=0 & \text { if } \varepsilon<r<\lambda \\
w_{\varepsilon}(\varepsilon, \theta)=|\zeta(\varepsilon, \theta)| & \text { if }(\varepsilon, \theta) \in D \tag{5.5}\\
w_{\varepsilon}(\varepsilon, \theta)=0 & \text { if }(\varepsilon, \theta) \notin D \\
w_{\varepsilon}(\lambda, \theta)=C^{*} & \text { if } 0<\theta<\pi / 2
\end{array}
$$

where $C^{*}=\sup _{(\lambda, \theta) \in \gamma_{0}}|\zeta(\lambda, \theta)|$. Then $w_{\varepsilon} \geq 0$ on $\gamma_{1} \cup \gamma_{2}$ and, therefore, by the maximum principle,

$$
\begin{equation*}
w_{\varepsilon} \geq|\zeta| \quad \text { on } D_{\varepsilon} \equiv D \cap\{r>\varepsilon\} . \tag{5.6}
\end{equation*}
$$

By repeated antireflections we can extend w_{ε} into the ring $\widetilde{T}_{\varepsilon}: \varepsilon<r<\lambda$. The extended function, say \tilde{w}_{ε}, is harmonic in $\widetilde{T}_{\varepsilon}$. We can write

$$
\begin{equation*}
\tilde{w}_{\varepsilon}=V_{\varepsilon}+W_{\varepsilon} \tag{5.7}
\end{equation*}
$$

where $V_{\varepsilon}, W_{\varepsilon}$ are both harmonic in $\widetilde{T}_{\varepsilon}$ and

$$
V_{\varepsilon}=\left\{\begin{array}{lc}
\tilde{w}_{\varepsilon} & \text { on } r=\lambda, \\
0 & \text { on } r=\varepsilon,
\end{array} \quad W_{\varepsilon}=\left\{\begin{array}{lc}
0 & \text { on } r=\lambda, \\
\tilde{w}_{\varepsilon} & \text { on } r=\varepsilon .
\end{array}\right.\right.
$$

It is clear that

$$
\begin{equation*}
\left|V_{\varepsilon}\right| \leq C^{*} \tag{5.8}
\end{equation*}
$$

Introduce Green's function in the exterior of the disc $r<\varepsilon$:

$$
G(r, \theta ; \rho, \phi)=\frac{1}{4 \pi} \log \frac{\varepsilon^{4}-2 \varepsilon^{2} r \rho \cos (\theta-\phi)+r^{2} \rho^{2}}{\varepsilon^{2}\left[\rho^{2}+r^{2}-2 r \rho \cos (\theta-\phi)\right]}
$$

By the maximum principle,

$$
\left|W_{\varepsilon}(r, \theta)\right| \leq \int_{0}^{2 \pi} \varepsilon\left|\tilde{w}_{\varepsilon}(\varepsilon, \phi)\right| \frac{\partial G}{\partial \rho}(r, \theta ; \varepsilon, \phi) d \phi
$$

It is easy to compute that $G_{\rho}(2 \varepsilon, \theta ; \varepsilon, \phi)=O(1 / \varepsilon)$ as $\varepsilon \rightarrow 0$. Hence

$$
\begin{equation*}
\left|W_{\varepsilon}(2 \varepsilon, \theta)\right| \leq \frac{C}{\varepsilon} \int_{0}^{2 \pi} \varepsilon\left|\tilde{w}_{\varepsilon}(\varepsilon, \phi)\right| d \phi \leq \frac{4 C}{\varepsilon} \int \varepsilon|\zeta(\varepsilon, \phi)| d \phi \tag{5.9}
\end{equation*}
$$

where the last integration is over the set $\delta_{\varepsilon}=\{\phi ;(\varepsilon, \phi) \in D\}$. Since $\zeta \in L^{1}(D)$, the function $\varepsilon \rightarrow \int_{\delta_{\varepsilon}} \varepsilon|\zeta(\varepsilon, \phi)| d \phi$ belongs to L^{1}. Hence

$$
\int_{\delta_{i, n}} \varepsilon_{n}\left|\zeta\left(\varepsilon_{n}, \phi\right)\right| d \phi<\frac{1}{\varepsilon_{n} \log \left(1 / \varepsilon_{n}\right)}
$$

for a sequence $\varepsilon_{n} \downarrow 0$. Using this in (5.9) and recalling (5.6)-(5.8), we see that

$$
\sup _{\left(2 \varepsilon_{n}, \theta\right) \in D}\left|\zeta\left(2 \varepsilon_{n}, \theta\right)\right|=O\left(1 / \varepsilon_{n}^{2}\right) \quad\left(\varepsilon_{n} \downarrow 0\right)
$$

This enables us to apply the usual Phragmen-Lindelof theorem [10] in order to conclude (5.4).

In order to identify the sets I_{+}, I_{-}, Γ_{0} and the functions $\tilde{U}^{0}, \tilde{u}^{0}$, we return to the results of Section 4 and introduce Green's function G for the noncoincidence domain Λ, with a pole at 0 . Thus

$$
\begin{equation*}
G(x)=\frac{1}{2 \pi} \log \frac{1}{r}+\xi \text { in } \Lambda, \xi \text { is harmonic in } \Lambda, \text { and } G=0 \text { on } \partial \Lambda \tag{5.10}
\end{equation*}
$$

Set $\Lambda_{1}=\Lambda \cap\left\{x_{2}<0\right\}$ and $I_{1}=I \cap T$ where T is the triangle $O A B$. The function $\psi(x)=\frac{1}{2} x_{1}^{2}+w-x_{2}$ is harmonic in Λ_{1}. Therefore $\psi_{x_{1}}+i \psi_{x_{2}}$ is antianalytic in Λ_{1}, and the mapping

$$
\begin{equation*}
\sigma:\left(x_{1}, x_{2}\right) \rightarrow\left(\psi_{x_{1}}, \psi_{x_{2}}\right)=\left(x_{1}+w_{x_{1}}, w_{x_{2}}-1\right) \tag{5.11}
\end{equation*}
$$

is conformal; it is a special case of the mapping introduced by Lewy and Stampacchia [9].

We claim that
(5.12) σ maps Λ_{1} onto I_{1} in a 1-1 way.

Indeed, on the common boundary of Λ_{1} and I_{1} (it belongs to Γ) we have $w_{x_{1}}=0, w_{x_{2}}=x_{2}+1$, and thus

$$
\begin{equation*}
\sigma x=x \quad \text { on } \partial \Lambda_{1} \cap \partial I_{1} \tag{5.13}
\end{equation*}
$$

Next, on $\partial \Lambda_{1} \cap\left\{x_{2}=0\right\}, w_{x_{2}}=0$ and thus $\sigma\left(x_{1}, 0\right) \subset\left\{x_{2}=-1\right\}$ and on the remaining part of $\partial \Lambda_{1}$ (it lies on Γ) $w_{x_{2}}=\left(\frac{1}{2} d^{2}\right)_{x_{2}}=0$, and again $\sigma x \subset\left\{x_{2}=-1\right\}$.

Using these facts about σ and applying the argument principle, we conclude that σ maps Λ_{1} onto I_{1} in a 1-1 way. Notice that σ is the identity mapping on $\partial \Lambda_{1} \cap \partial I_{1}$.

Define

$$
G_{1}(x)= \begin{cases}G(x) & \text { if } x \in \Lambda_{1} \cup\left(\partial \Lambda_{1} \cap \partial I_{1}\right), \tag{5.14}\\ -G\left(\sigma^{-1} x\right) & \text { if } x \in I_{1} .\end{cases}
$$

This function is harmonic in $\Lambda_{1} \cup I_{1} \cup\left(\partial \Lambda_{1} \cap \partial I_{1}\right)$; it has logarithmic singularities at the boundary points $(0,0),(0,-1)$.

In the same way we can extend G as a harmonic function into the remaining parts of I. Denote this extension by \bar{G}. This function has the following properties:

$$
\left\{\begin{array}{l}
\Delta \bar{G}=0 \text { in } \Omega\{\{0\}, \tag{5.15}\\
\bar{G} \text { has logarithmic singularity at } 0 \text { and at the points }(\pm 1,0),(0, \pm 1), \\
\bar{G} \in L^{1}(\Omega), \\
\bar{G}=0 \text { on the free boundary } \Gamma \\
\bar{G}>0 \text { in } \Lambda, \\
\bar{G}<0 \text { in } I,
\end{array}\right.
$$

and
(5.16) $\Delta w \in H(-\bar{G})$ where H is the Heaviside graph.

Lemma 5.2. The function z^{0} is given by

$$
\begin{equation*}
z^{0}=-\bar{G}-F \tag{5.17}
\end{equation*}
$$

Proof. For any harmonic function v in $C^{2}(\bar{\Omega})$,

$$
\begin{equation*}
\int_{\Omega} v \Delta w d x=0 \tag{5.18}
\end{equation*}
$$

by integration by parts. By approximation (cf. the proof of Lemma 2.2) we find that (5.18) holds for any $v \in Z$. Defining a function η by $-\bar{G}=F+\eta(\eta$ is harmonic in $\Omega, \eta \in L^{1}(\Omega)$) and recalling (5.16), we obtain from (5.18)

$$
\begin{equation*}
\int_{\Omega} v H(F+\eta) d x=0, \quad v \in Z \tag{5.19}
\end{equation*}
$$

By the monotonicity of H we have

$$
\left[H(F+\eta)-H\left(F+z^{0}\right)\right]\left[(F+\eta)-\left(F+z^{0}\right)\right] \geq 0
$$

Using this fact, (5.19) and Lemma 2.2, we can proceed as in Theorem 3.2 (with z^{*} replaced by η) and conclude that $\operatorname{sgn}(F+\eta)=\operatorname{sgn}\left(F+z^{0}\right)$. Since $F+\eta=$ $\bar{G}=0$ on Γ, it follows that $F+z^{0}=0$ on Γ, and thus $\eta=z^{0}$ on Γ.

Applying Lemma 5.1 in Λ to the harmonic function $\eta-z^{0}$, we deduce that $\eta(x)-z^{0}(x) \rightarrow 0$ if x tends to a vertex of $\partial \Omega$. Hence, by the maximum principle, $\eta-z^{0} \equiv 0$ in Λ; therefore also in Ω, and (5.17) is proved.

Remark. Lemma 5.2 implies that any possible limit function z^{0} is uniquely determined. Hence the entire one-parameter family z^{β} is convergent to z^{0} uniformly on compact subsets of Ω).

Corollary 5.3.

$$
\begin{equation*}
\tilde{U}^{0}=\Delta w \quad \text { in } \Omega \tag{5.20}
\end{equation*}
$$

and hence

$$
\begin{equation*}
I_{-}=\Lambda, I_{+}=I, \Gamma_{0}=\Gamma \tag{5.21}
\end{equation*}
$$

Indeed, (5.20) follows from Lemma 5.2 and from (3.13), (5.16).
We can now give additional information on the free boundary Γ.
Theorem 5.4. (a) The two arcs of Γ initiating at each vertex of $\partial \Omega$ have tangents (at the vertex) which divide the angle of $\partial \Omega$ into three angles of equal size $\pi / 6$.
(b) The area of Λ is equal to the area of I.

Proof. Extend \bar{G} by reflection into a neighborhood N of the vertex. Then the two arcs of Γ in N are two of the (say n) arcs (initiating at the vertex) on which $\bar{G}=0$. Their tangents at the vertex divide 2π into n equal angles of size $2 \pi / n$. This gives (a). The assertion (b) is a consequence of Theorem 3.5 and (5.21).

The final result of this section is the following:
Theorem 5.5. As $\beta \rightarrow 0$,

$$
\begin{equation*}
\tilde{u}^{\beta} \rightarrow w \quad \text { in } W^{2, p}(\Omega) \quad(2<p<\infty) . \tag{5.22}
\end{equation*}
$$

Proof. Since \tilde{u}^{β} and w belong to $H_{0}^{2}(\Omega)$, it suffices to show that

$$
\begin{equation*}
\tilde{U}^{\beta} \rightarrow \tilde{U}^{0} \quad \text { in } L^{p}(\Omega) \tag{5.23}
\end{equation*}
$$

that is,

$$
\int_{\Omega}\left|H_{\beta}\left(F+z^{\beta}\right)-H\left(F+z^{0}\right)\right|^{p} d x \rightarrow 0
$$

But this follows from the Lebesgue bounded convergence theorem.
Remark. Theorem 5.5 is valid also in case f is constant, say $f \equiv 1$. To prove it we only need to exhibit a function \bar{G} in $L^{1}(\Omega)$ such that $\Delta \bar{G}=1$ in $\Omega, \bar{G}<0$ in $\Lambda, \bar{G}>0$ in I. Define

$$
\alpha(x, y)=D_{y}\left[w-(1 / 2)(1+y)^{2}\right] .
$$

Then $\Delta \alpha=0$ in $\Lambda_{1}, \alpha<0$ in $\Lambda_{1}, \alpha=0$ on $\partial \Lambda_{1} \cap \partial I_{1}$. Denote by $\tilde{\alpha}$ its harmonic continuation by means of the antireflection (5.11). Then $\tilde{\alpha}>0$ in I_{1}. Let

$$
A(x, y)=\int_{\phi(x)}^{y} \tilde{\alpha}(x, t) d t
$$

Notice that $\Delta A=-2$ in Λ_{1} and

$$
\frac{\partial}{\partial y}(\Delta A)=\Delta\left(\frac{\partial}{\partial y} A\right)=\Delta \tilde{\alpha}=0 \quad \text { in } \Lambda_{1} \cup I_{1} \cup\left(\partial \Lambda_{1} \cap \partial I_{1}\right) ;
$$

consequently $\Delta A=-2$ also in I_{1}. Also $A=0$ on $\partial \Lambda_{1} \cap \partial I_{1}, A<0$ in I_{1}. Define G by $\Delta G=1$ in $\Lambda, G=0$ on $\partial \Lambda$ and let $F=G+\frac{1}{2} A$. Then $\Delta F=0$ in Λ_{1}, $F<0$ in $\Lambda_{1}, F=0$ on $\partial \Lambda_{1} \cap \partial I_{1}$. Denote by \tilde{F} the continuation of F by means of the antireflection (5.11); $\Delta \widetilde{F}=0$ and $\widetilde{F}>0$ in I_{1}. Then $\bar{G}=\widetilde{F}-\frac{1}{2} A$ satisfies all the required properties in $\Lambda_{1} \cup I_{1} \cup\left(\partial \Lambda_{1} \cap \partial I_{1}\right)$; the extension of \bar{G} to the remaining I_{j} is similar.

Remark 2. All the results of Sections 4 and 5 (except for Theorem 4.5) extend with minor changes to the case where Ω is a rectangle (and f is the Dirac measure supported at the center). One can further show (using "inflection domains") that each of the four sections of the free boundary is a graph, and for a graph $x_{2}=\phi\left(x_{1}\right)\left(-a<x_{1}<a\right), \phi^{\prime}\left(x_{1}\right)$ has at most one inflection point in the interval $-a<x_{1}<0$.

6. The case of an equilateral triangle

The results of Sections 4 and 5 can be extended to the case where
(6.1) Ω is an equilateral triangle and f is the Dirac measure supported at the center of Ω.

Take $A=(-1,0), B=(1,0), C=(0, \sqrt{ } 3)$ to be the vertices of Ω. Then $D=(0,1 / \sqrt{ } 3)$ is the center. As before, denote by w the solution of the variational inequality (4.3), (4.4).

The ridge of Ω consists of the line segments $\overline{A D}, \overline{B D}, \overline{C D}$.
The proof of Theorem 4.1 also gives, in this case,

$$
\begin{equation*}
w \in C^{1,1}(\bar{\Omega}) \tag{6.2}
\end{equation*}
$$

near a vertex we employ several antireflections in order to extend w into a whole neighborhood of the vertex.

Next,

$$
\begin{equation*}
\left(\operatorname{sgn} x_{1}\right) w_{x_{1}} \leq 0 \tag{6.3}
\end{equation*}
$$

the proof is by the same method as in Lemma 4.2. Also,

$$
\begin{equation*}
w_{x_{2}} \geq 0 \quad \text { in the triangle } A D B \tag{6.4}
\end{equation*}
$$

In proving (6.4) we use the fact that (since $w(\tau x)=w(x), \tau$ the reflection with respect to the line containing A, D)

$$
\begin{equation*}
w_{x_{1}}=\sqrt{ } 3 w_{x_{2}} \quad \text { on } \overline{A D} \tag{6.5}
\end{equation*}
$$

and therefore, in view of (6.3), $w_{x_{2}} \geq 0$ on $\overline{A D}$.
Introduce the function $\bar{w}(x)=w(x)-\frac{1}{2} x_{2}^{2}$. Then

$$
\begin{equation*}
\bar{w}_{x_{2}} \leq 0 \quad \text { in the triangle } T=A B D \tag{6.6}
\end{equation*}
$$

Indeed, on $\overline{A D}$ we have, by (6.5), $-\bar{w}_{x_{1}}+\sqrt{ } 3 \bar{w}_{x_{2}}=\sqrt{ } 3 x_{2}$. Applying the tangential derivative (to $\overline{A D}$) $\sqrt{3} \partial / \partial x_{1}+\partial / \partial x_{2}$ to both sides and using the equation $\Delta \bar{w}+2=0$, we discover the relation

$$
\left(\frac{\partial}{\partial x_{1}}+\sqrt{ } 3 \frac{\partial}{\partial x_{2}} \bar{w}_{x_{2}}\right)=-\sqrt{ } 3 \quad \text { on } \overline{A D}
$$

that is, $\partial \bar{w}_{x_{2}} / \partial v_{1}<0$ where $\partial / \partial v_{1}$ is some exterior derivative (to T) at the boundary points of $\overline{A D}$. Similarly, $\partial \bar{w}_{x_{2}} / \partial v_{2}<0$ on $\overline{B D}$ with another exterior derivative $\partial / \partial \nu_{2}$. The rest of the proof of (6.6) now follows by applying the maximum principle to \bar{w} in $T \cap \Lambda(\Lambda$ is defined by (4.6)).

The proof of Lemma 4.4 also extends to the present case with obvious changes. We can now conclude that the coincidence set I consists of the three shaded regions in Fig. 2. In T, the free boundary Γ has the form $x_{2}=\phi\left(x_{1}\right)$ $\left(-1<x_{1}<1\right)$ where $\phi\left(x_{1}\right)$ is monotone increasing if $-1<x_{1}<0, \phi(-x)=$ $\phi\left(x_{1}\right)$, and ϕ is analytic.

Fig. 2
We next introduce Green's function G in Λ with pole at D. We wish to extend it into Ω by a conformal mapping. It will be enough to carry out the extension into $I_{1} \equiv I \cap T$. To do it, denote by E the intersection of Γ with the ray $\overrightarrow{B D}$ and by F the intersection of Γ with the ray $\overrightarrow{A D}$.

Consider the subset Λ_{1} of Λ bounded by the three arcs of $\Gamma \frac{\text { from } A}{D E}$ to E, from B to F and from A to B, and by the two line segments $\overline{D E}, \overline{D F}$. We now introduce the conformal mapping $x \rightarrow \sigma x=\left(x_{1}+w_{x_{1}}, w_{x_{2}}\right)$. Clearly

$$
\begin{equation*}
\sigma x=x \quad \text { on } \partial \Lambda_{1} \cap \partial I_{1} \tag{6.7}
\end{equation*}
$$

On $\overline{D E}$ (cf. (6.5)), $w_{x_{1}}+\sqrt{ } 3 w_{x_{2}}=0$ and, since $w_{x_{1}} \geq 0$, we get $w_{x_{2}} \leq 0$. Similarly $w_{x_{2}} \leq 0$ on $D F$. On the arc of Γ from A to E we have $w_{x_{2}}=\left(\frac{1}{2} d^{2}(x)\right)_{x_{2}} \leq 0$. The same holds on the part of Γ between B and F. Thus, altogether, $w_{x_{2}} \leq 0$ on $\partial \Lambda_{1} \backslash \partial I_{1}$, i.e., $\sigma x \subset\left\{x_{2} \leq 0\right\}$ if $x \in \partial \Lambda_{1} \backslash \partial I_{1}$. Recalling (6.7) and using the argument principle, it follows that σ maps Λ_{1} in a 1-1 way onto a domain containing I_{1}.

We can now repeat the remaining analysis of Section 5 and obtain the corresponding result for the present case of a triangle. Thus, setting $\bar{G}(x)=$ $-G\left(\sigma^{-1} x\right)$ if $x \in I_{1}$, etc., we can state:

Theorem 6.1. The assertions (5.17), (5.20), (5.21) and (5.22) hold.
Notice that two arcs of Γ initiating at the same vertex divide the angle at the vertex into three equal angles of size $\pi / 9$.

7. Miscellaneous remarks

Consider the case where Ω is the square $A B C D$ as in Sections 5, 6 and let

$$
E_{1}=\left\{x ;-1<x_{2} \leq \psi_{1}\left(x_{1}\right),-1<x_{1}<1\right\}
$$

where $\psi_{1}\left(x_{1}\right)$ is any function such that $\psi_{1}\left(x_{1}\right)>-1$ and E_{1} does not intersect the ridge R of Ω. Define E_{2}, E_{3}, E_{4} in a similar way, using (arbitrary) functions $\psi_{2}, \psi_{3}, \psi_{4}$, and set $I_{*}=\bigcup_{i=1}^{4} E_{i}, \Lambda_{*}=\Omega \backslash \bar{I}_{*}$. For example, the sets I, Λ are a special case of I_{*}, Λ_{*}.

Consider the variational inequality (0.1), (0.2) with a general function f and with Ω the above square. We ask the following question: can the relations

$$
\begin{equation*}
I_{-}=\Lambda_{*}, \quad I_{+}=I_{*} \tag{7.1}
\end{equation*}
$$

hold for some f ?
Lemma 7.1. If (7.1) holds then $\tilde{u}^{0} \equiv w$ where w is the solution of (4.3), (4.4); consequently, $\Lambda_{*}=\Lambda$ and $I_{*}=I$.

Proof. Suppose (7.1) holds. Then \tilde{u}_{y}^{0} is harmonic in Λ_{*}. By uniqueness for the Cauchy problem, $\tilde{u}^{0}=d^{2} / 2$ in I_{*}; hence $\tilde{u}_{x_{2}}^{0} \leq x_{2}+1$ on $\partial \Lambda_{*} \cap\left\{x_{2}<0\right\}$. Also $\tilde{u}_{x_{2}}^{0}=0$ on $x_{2}=-1$. Applying the maximum principle we get $\tilde{u}_{x_{2}}^{0}<x_{2}+1$ in $\Lambda_{*} \cap\left\{x_{2}<0\right\}$. It follows that $\tilde{u}^{0} \leq \frac{1}{2} d^{2}$ in Λ_{*}. Finally since $\Delta \tilde{u}^{0}=-1$ in $\Lambda_{*}, \tilde{u}^{0}$ is a solution of the same variational inequality as w; hence $\tilde{u}^{0} \equiv w$.

Suppose now that

$$
\begin{equation*}
f(x)=\sum_{i=1}^{m} a_{i} \delta\left(x-\xi_{i}\right) \quad\left(a_{i}>0, m \geq 1\right) \tag{7.2}
\end{equation*}
$$

where $\delta(x)$ is the Dirac measure supported at $(0,0)$ and

$$
\begin{equation*}
\xi_{i_{0}} \neq(0,0) \quad \text { for at least one } i_{0} \tag{7.3}
\end{equation*}
$$

Theorem 7.2. Let Ω be a square with center $(0,0)$ and let f be given by (7.2), (7.3). Then (7.1) cannot hold.

Proof. Suppose (7.1) holds. Then, by Lemma 7.1, $\tilde{u}^{0} \equiv w, \Lambda_{*}=\Lambda, I_{*}=I$. It follows that $\Delta w=\Delta \tilde{u}^{0}=\tilde{U}^{0}$, so that $\Delta w \in H\left(F+z^{0}\right)$, by (3.13). We conclude that $F+z^{0}$ vanishes on the four arcs of Γ. Notice that the points ξ_{i} must all belong to I_{-}, hence to Λ. Suppose now, for simplicity, that $\xi_{i_{0}}$ lies in Λ_{1} (defined following (5.10)). Then the Lewy-Stampacchia type extension of
$F+z^{0}$ given by means of σ (cf. (5.11)), which we shall denote by ζ, has logarithmic singularity at the point $\sigma \xi_{i_{0}}$ of I_{1}. By unique continuation, $F+z^{0}$ must coincide with ζ on I_{1}. Consequently z^{0} must also have a logarithmic singularity at $\sigma \xi_{i_{0}}$, a contradiction.

Remark 1. Lemma 7.1 and Theorem 7.2 extend to the case where Ω is an equilateral triangle. The proofs are similar.

Remark 2. Consider the problem (0.1), (0.2) where $\alpha=-\beta, \beta$ is fixed and f depends on a parameter $\varepsilon: F_{\varepsilon}=g / \varepsilon(\varepsilon \downarrow 0)$. Denote the corresponding solution by u_{ε} and define $\bar{u}_{\varepsilon}=\varepsilon u_{\varepsilon}$. Then \bar{u}_{ε} solves the variational inequality (0.1), (0.2) with $f=g$ and with β replaced by $\beta \varepsilon$. Thus the problem for f_{ε} can be reduced to the problem studied in this paper.

Remark 3. Consider the problem (0.1), (0.2) with $\alpha=-\beta$ when Ω depends on a parameter ε : $\Omega_{\varepsilon}=\{x / \varepsilon, x \in D\}(\varepsilon \downarrow 0)$. Denote the solution by u_{ε} and define

$$
\tilde{u}_{\varepsilon}(x)=\varepsilon^{4} u_{\varepsilon}(x / \varepsilon), \quad f_{\varepsilon}(x)=f(x / \varepsilon)
$$

Then for \tilde{u}_{ε} we get a variational inequality in D with f replaced by \tilde{f}_{ε} and with β replaced by $\beta \varepsilon^{2}$. This problem is similar to the one studied in this paper and some of the results are applicable here.

References

1. H. W. Alt, The fluid flow through porous media. Regularity of the free surface, Manuscripta Math., vol. 21 (1977), pp. 255-272.
2. H. Brezis and D. Kinderlehrer, The smoothness of solutions to nonlinear variational inequalities, Indiana Univ. Math. J., vol. 23 (1974), pp. 831-844.
3. H. Brezis and G. Stampacchia, Remarks on some fourth order variational inequalities, Ann. Scu. Norm. Sup. Pisa, vol. 4 (4) (1977), pp. 363-371.
4. L. A. Caffarelli, The regularity of free boundaries in higher dimensions, Acta Math., vol. 139 (1977), pp. 155-184.
5. L. A. Caffarelli and A. Friedman, The dam problem with two layers, Archive Rat. Mech. Anal., vol. 168 (1978), pp. 125-154.
6. ——, The free boundary for elastic-plastic torsion problems, Trans. Amer. Math. Soc., vol. 252 (1979), pp. 65-97.
7. A. Friedman and R. Jensen, Convexity of the free boundary in the Stefan problem and in the dam problem, Archive Rat. Mech. Anal., vol. 67 (1978), pp. 1-24.
8. D. Kinderlehrer and L. Nirenberg, Regularity in free boundary problems, Ann. Scu. Norm. Sup. Pisa, vol. 4 (4) (1977), pp. 373-391.
9. H. Lewy and G. Stampacchia, On the regularity of solution of a variational inequality, Comm. Pure Appl. Math., vol. 22 (1969), pp. 153-188.
10. M. H. Protter and H. F. Weinberger, Maximum principles in differential equations, PrenticeHall, Englewood Cliffs, New Jersey, 1967.
11. A. Torelli, Some regularity results for a family of variational inequalities, Ann. Scu. Norm. Sup. Pisa,

University of Minnesota
Minneapolis, Minnesota
Northwestern University
Evanston, Illinois
University of Pavia
Pavia, Italy

[^0]: Received August 7, 1979.
 ${ }^{1}$ This research was partially supported by National Science Foundation grants and by C.N.R. of Italy through L.A.N. of Pavia.

