A CHARACTER TABLE BOUND FOR THE SCHUR INDEX

BY
David Gluck
Introduction

Although there can be no universal formula giving the Schur index of an irreducible character of a finite group as a function of the character values (see [5]), various estimates for Schur indices have been obtained. Most recent work on the Schur index is based on the Brauer-Witt reduction, which relates the Schur index of an irreducible character of a group G to Schur indices of irreducible characters of certain hyperelementary sections of G. Our approach has nothing to do with the Brauer-Witt reduction, but unlike other results, excepting perhaps [7], it gives a useful bound for Schur indices from the character table alone.

1. Main theorem and corollaries

We let G be a finite group, p a prime number, and x a p^{\prime}-element of G. We define the rational p^{\prime}-section S_{x} as the set $\left\{g \in G \mid\left\langle g_{p^{\prime}}\right\rangle \sim_{G}\langle x\rangle\right\}$, where \sim_{G} denotes G-conjugacy. The characteristic function of S_{x} is denoted by $1_{S_{x}}$. For an irreducible character χ of G we abbreviate the inner product $\left(\chi, 1_{S_{x}}\right)_{G}$ by $S_{x}(\chi)$, and denote by $m(\chi)$ the rational Schur index of χ. Finally, if r is a rational number, r_{p} will denote the p-part of r. We can now state the main theorem.

Theorem. For any p^{\prime}-element x in $G, 1_{S_{x}}$ is a p-integral linear combination of permutation characters. Consequently $S_{x}(\chi)$ is a p-integral rational number for all $\chi \in \operatorname{Irr}(G)$, and $m(\chi)_{p}$ divides $S_{x}(\chi)_{p}$.

The second sentence follows from the first by a standard property of Schur indices [4, Corollary 10.2(c)], so we do get a bound for $m(\chi)_{p}$.

We therefore concentrate on the proof of the first assertion. To this end we introduce the Burnside ring $\Omega(G)$, which may be defined as the Grothendieck ring of the category of finite G-sets. Thus $\Omega(G)$ consists of all formal integral linear combinations of transitive G-sets, with multiplication given by decomposing the cartesian product of 2 transitive G-sets into its transitive orbits. If we let $L^{*}(G)$ be a set of representatives of the conjugate classes of subgroups of G and denote by u_{H} the transitive G-set of left cosets of H, then $\left\{u_{H} \mid H \in L^{*}(G)\right\}$ is
the natural basis of $\Omega(G)$. Furthermore there is a ring homomorphism Char from $\Omega(G)$ to the ring of generalized characters of G which sends u_{H} to the permutation character 1_{H}^{G}.

We next compare the primitive idempotents in two coefficient ring extensions of $\Omega(G)$, and their images under Char. These images will be class functions on G, but not usually generalized characters.

In the Burnside algebra $\mathbf{Q} \otimes \Omega(G)$, the primitive idempotents e_{H} again correspond to the elements of $L^{*}(G)$. It is easy to see that Char $\left(e_{H}\right)$ is 0 when H is non-cyclic and Char $\left(e_{H}\right)$ is the characteristic function of the set of conjugates of generators of H when H is cyclic. See [8] for these and other facts about the Burnside algebra.

We next consider the ring $\Omega(G)_{p}=\mathbf{Z}_{p} \otimes \Omega(G)$, where \mathbf{Z}_{p} denotes the integers localized at p. We call subgroups H and K of $G p$-equivalent if $\mathbf{O}^{p}(H) \sim{ }_{G}$ $\mathbf{O}^{p}(K)$, where \mathbf{O}^{p} denotes the smallest normal subgroup of p-power index. The next lemma describes the primitive idempotents of $\Omega(G)_{p}$.

Lemma. For $H \in L^{*}(G)$ let $\tilde{e}_{H}=\sum_{K} e_{K}$, where K ranges over all subgroups in $L^{*}(G)$ which are p-equivalent to H and the sum is taken in $\mathbf{Q} \otimes \Omega(G)$. Then the \tilde{e}_{H} are the primitive idempotents of $\Omega(G)_{p}$.

Proof. This is a somewhat disguised version of the main results of [2], and a fuller discussion may be found in [3]. We sketch the proof for the reader's convenience.

The prime ideals of $\Omega(G)_{p}$ are of two types. There are minimal prime ideals

$$
\mathfrak{p}(H, 0) \underset{\text { def }}{=}\left\{x \in \Omega(G)_{p} \mid\left\langle e_{H}, x\right\rangle=0\right\}
$$

where \langle,$\rangle denotes the natural bilinear form on \mathbf{Q} \otimes \Omega(G)$ determined by the primitive idempotents of $\mathbf{Q} \otimes \Omega(G)$, and there are maximal ideals

$$
\mathfrak{p}(H, p)=\left\{x \in \Omega(G)_{p} \mid\left\langle e_{H}, x\right\rangle \equiv 0 \bmod p\right\}
$$

The $p(H, 0)$ are distinct for distinct $H \in L^{*}(G)$ but $\mathfrak{p}(H, p)=\mathfrak{p}(K, p)$ if and only if H and K are p-equivalent. Each p-equivalence class thereby determines a connected component of $\operatorname{Spec} \Omega(G)_{p}$ consisting of one maximal ideal $\mathfrak{p}(H, p)$ and the minimal prime ideals $\mathfrak{p}(K, 0)$ for those K in $L^{*}(G)$ which are p equivalent to H. All the above $\mathfrak{p}(K, 0)$ are contained in $\mathfrak{p}(H, p)$.

On the other hand, for any commutative ring R the connected components of $\operatorname{Spec} R$ correspond to the primitive idempotents of R; the connected component of $\operatorname{Spec} R$ corresponding to a primitive idempotent e in R consists of all prime ideals of R which contain $1-e$, so if e is the primitive idempotent of $\Omega(G)_{p}$ corresponding to the connected component of $\operatorname{Spec} \Omega(G)_{p}$ described in the previous paragraph, $1-e$ is contained in $\mathfrak{p}(K, 0)$ if and only if K is p equivalent to H. The statement of the lemma follows.

To complete the proof of the theorem we consider the primitive idempotent $\tilde{\boldsymbol{e}}_{\langle x\rangle}$ of $\Omega(G)_{p}$. By our earlier remarks on Char $\left(e_{H}\right)$ it follows that Char $\left(\tilde{e}_{\langle x\rangle}\right)=1_{S_{x}}$. The theorem then follows from the fact that $\tilde{e}_{\langle x\rangle}$ is a pintegral combination of the u_{H} 's.

The theorem has several striking applications to Schur indices. We give two simple ones, the first of which has already appeared in [7].

Corollary 1 (L. Solomon). Let $\chi \in \operatorname{Irr}(G)$ have p-defect 0 . Then $p \nmid m(\chi)$.
Proof. The p-elements of G comprise a rational p^{\prime}-section S_{1}. Since χ vanishes on non-identity p-elements, $S_{1}(\chi)=\chi(1) /|G|$ is not divisible by p.

The theory of blocks with cyclic defect group [1] can be used to get corollaries of the main theorem which are more widely applicable than Corollary 1. One considers elements x of G which are p-regular and q-singular for some prime $q \neq p$. Here one should keep in mind the case where G is simple and q is a large prime divisor of $|G|$. If χ is an irreducible character of G whose q-defect group is cyclic and contains x_{q}, one can express $S_{x}(\chi)$ in terms of the irreducible q-Brauer characters of $C_{G}\left(x_{q}\right)$. The following corollary considers only the simplest case of this type, but one which occurs frequently.

Corollary 2. Let q be a prime which divides $|G|$ to the first power and suppose that a q-Sylow of G is self-centralizing. Let χ be an irreducible character of G such that $q \nmid \chi(1)$. Then $m(\chi)=1$ if χ is exceptional, and $m(\chi)$ divides the number of conjugate classes of elements of order q in G if χ is non-exceptional.

Proof. Let x be an element of order q in G, and let p be a prime different from q. Then the conjugates of $\langle x\rangle-\{1\}$ form a rational p^{\prime}-section S_{x}. Let x, x^{a}, x^{b}, \ldots, be a full set of non-conjugate powers of x, and let $N=N_{G}\langle x\rangle$.

If χ is exceptional, there is a non-principal character λ of $\langle x\rangle$ so that

$$
S_{x}(\chi)= \pm(1 / q)\left(\lambda^{N}(x)+\lambda^{N}\left(x^{a}\right)+\lambda^{N}\left(x^{b}\right)+\cdots\right)= \pm 1 / q
$$

Therefore $p \nmid m(\chi)$ for any prime p different from q. Since $q \nmid \chi(1)$, it follows that $m(\chi)=1$.

If χ is non-exceptional, then $S_{x}(\chi)= \pm(1 / q)(\varepsilon+\cdots+\varepsilon)$, where $\varepsilon= \pm 1$ and one ε appears for each of $x, x^{a}, x^{b} \ldots$. The result follows.

2. Examples

We shall apply the main theorem to $\operatorname{PSL}(3,3)$ and M_{11}. These are the two simple groups having an involution with centralizer isomorphic to $G L(2,3)$. In both examples we take $p=2$ and use rational 2^{\prime}-sections to estimate the 2-parts of Schur indices. In both examples it is clear that no odd prime can divide any Schur indices; the groups do not have the appropriate hyperelementary sec-
tions. We shall omit trivial calculations and merely state the results. The character tables can be found, for example, in [4] and [9].

Example 1. $\quad G=\operatorname{PSL}(3,3)$.
First note that $\operatorname{PSL}(3,3), S L(3,3)$ and $\operatorname{PGL}(3,3)$ are all isomorphic. In the notation of Steinberg [9], G has 12 conjugate classes, one each of type A_{1}, A_{2}, A_{3}, A_{4} and A_{5}, three of type B_{1}, and four of type C_{1}. There are four rational 2^{\prime}-sections, one consisting of the two classes of type A_{2} and A_{5}, the second consisting of the single class of type A_{3}, the third consisting of the four classes of type C_{1}, and the fourth (the 2-elements) consisting of the remaining classes. There are eight characters of even degree: four exceptional characters of degree 16 in the principal 13-block, three characters of degree 26 , and an irreducible character $\chi_{12}^{(2)}$ of degree 12 . All but the last of these can be shown to have odd Schur index by considering the rational 2^{\prime}-section consisting of the single class of type A_{3}. No rational 2^{\prime}-section eliminates $\chi_{12}^{(2)}$, but $1_{G}+\chi_{12}^{(2)}$ is the character of the doubly transitive action of G on the 13-point projective space over $G F(3)$, so $\chi_{12}^{(2)}$ has Schur index 1 .

Example 2. $\quad G=M_{11}$.
Here, Corollary 2 shows that a character with Schur index greater than 1 must have degree divisible by 10 . There are three such characters, all of degree exactly 10 . Our method eliminates one (the permutation character of M_{11} on 11 points), but fails to eliminate the other two, which are algebraically conjugate. One can restrict the latter characters to $G L(2,3) \leq M_{11}$ and find that the restrictions are multiplicity-free and contain characters of

$$
G L(2,3) / Z(G L(2,3))=S_{4} .
$$

By a basic property of Schur indices [4, Lemma 10.4] this proves that the two algebraically conjugate characters of M_{11} of degree 10 actually have Schur index 1.

Finally, it should be pointed out that there is an important case in which our method fails completely; namely when $p\left||Z(G)|\right.$. In this case all $S_{x}(\chi)$ are 0 unless χ contains the p-Sylow of $Z(G)$ in its kernel.

References

1. E. C. Dade, Blocks with cyclic defect groups, Ann. of Math., vol. 84 (1966), pp. 20-48.
2. A. Dress, A characterization of solvable groups, Math Zeitschr., vol. 110 (1969), pp. 213-217.
3. A. Dress and M. Küchler, Zur Darstellungstheorie Endlicher Gruppen I, Bielefeld, 1971.
4. I. M. Isaacs, Character theory of finite groups, Academic Press, New York, 1976.
5. K. Kronstein, Character tables and the Schur index, Proceedings of a Symposium on Representation Theory and Related Topics, Irving Reiner, ed., Amer. Math. Soc., Providence, R.I., 1971.
6. D. Littlewood, The theory of group characters and matrix representations of groups, 2nd ed., Oxford Univ. Press, Oxford, 1950.
7. L. Solomon, On Schur's index and the solutions to $G^{n}=1$ in a finite group, Math. Zeitschr., vol. 78 (1962), pp. 122-125.
8. -, The Burnside algebra of a finite group, J. Combinatorial Theory, vol. 2 (1967), pp. 603-615.
9. R. Steinberg, The representations of $G L(3, q), G L(4, q), \operatorname{PGL}(3, q)$, and $\operatorname{PGL}(4, q)$, Canadian J. Math., vol. 3 (1951), pp. 225-235.

University of Illinois
Urbana, Illinois
University of Wisconsin
Madison, Wisconsin

