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BOUNDED SOLUTIONS OF SCALAR,
ALMOST PERIODIC LINEAR EQUATIONS

BY

RUSSELL JOHNSON

1. Introduction

Consider a scalar, non-homogeneous differential equation

(*) c a(t)x + b(t),
where a and b are Bohr-almost periodic functions. If the mean value of a is not
zero, then Cameron [] showed that (*) admits a unique bounded solution, and
that said solution is almost periodic. One can now prove this result by observ-
ing that (*) has an exponential dichotomy, and appealing to general theorems
(e.g., [5] or [1]). If a has mean value zero, and if a(s) ds is bounded (and
hence a.p. by Bohr’s theorem), then it is easy to prove that one solution of (*) is
bounded if and only if all solutions are almost periodic.
Our interest is in the case when a has mean value zero, but a(s)ds is

unbounded. The example of [12] (which uses that of [4])shows that (*)may
then admit bounded solutions, but no almost periodic solutions. Stating our
results requires the introduction of the hull of the function f(t) (a(t), b(t))
(see 2.). The space may be given the structure of a compact, abelian topolo-
gical group [14]. Let/0 be normalized Haar measure on Y. Let be the set of
o for which the equation (*), defined by o (see .1)admits a unique
bounded solution. Let

fl-- {o fl: the equation (*)o, admits an almost automorphic solution}
(almost automorphy generalizes almost periodicity; see 2.5 and [18]). It turns
out that f fla.
We prove the following: (i)f and f are residual subsets of f (3.10), and (ii)

for "most" functions a, #o(fa)= 1 (3.11). An example shows that (iii) po(f)
may be zero (3.12). We also show that (iv) the example of [12] satisfies
po(f) 1 (3.14-3.16). Finally, (v) we indicate how altering the example of[12]
might produce an example with #o(f) 0 (3.17). It should be noted that (i)is
proved in the more general case when f is minimal (2.1).
We also consider the case when (*) admits no bounded solutions. Assuming

that f is minimal, we show in 4.2 that residually many 09 q have the property
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that all solutions to (1), are unbounded above and below (i.e., "oscillate"). An
example shows that all solutions to (1)o, may be bounded above (or below) for
all o in a set 1o fl which is measure-theoretically large (4.3).
The author would like to thank the referee for comments and suggestions

leading to improvement of this paper.

2. Preliminaries

2.1 DEFINITIONS. Let X be a compact metric space with metric d. Let (X, R)
denote a (real) flow on X. Say that (X, R)is minimal if each orbit {x. t: R}
is dense in X (x X). Say that (X, R)is almost periodic if, given e > 0, there is a
6 > 0 such that

d(x, y) < bd(x t, y t) < e, (x, y X, 6 R).
If (X, R) is another flow, and if : X- Y is continuous, then is a flow
homomorphism if (x" t) (x). (x X, R). If, in addition, z is a homeo-
morphism, then is a flow isomorphism. See [6].

2.2 DEFINITION. Let (X, R) and (Y, R) be minimal flows, and let r: X -+ Y
be a (necessarily surjective) flow homomorphism. Say that (X, R) is an almost-
automorphic (a.a.) extension of (Y, R)if rt-l(y)is a singleton for some (hence a
residual set of) y Y. See [18] and [19]. Of course, an a.a. extension of (Y, R)
may be isomorphic to (Y, R).

2.3 DEFINITIONS. Fix n, and let

C {f: R -+ R": f is bounded and uniformly continuous}.
Give C the compact-open topology. Ifre c and z e R, let

f(t)=f(t + z) (t R).
Define the hull C off to be cls {f: z R} C. Then fl is compact metric, and
the map

defines a flow on C. The map F: - R: r((o)= (o(0)"extendsfto l" in the
sense that, if (oo =fe g, then F((oo t)=f(t)te R). See [15, [17].

2.4 Remarks. A functionf C is Bohr almost periodic if and only if the hull
f off is minimal and a.p. [14]. In this case, f may be given the structure of a
compact abelian topological group [14]. Let 0 be normalized Haar measure
onlY. Let F extendfto f in the sense of 2.3. Then the mean value of F is given by

M(f) lim lff fn,-)-oo t- s f(s) ds F(co) dido(CO).

See [14].
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2.5 DEFINITION AND PROPOSITION. Say thatf C is almost automorphic (in
the sense of Bochner; see [2] and [18])/f, whenever (t,) is a sequence such that
f, 9 in C, then 9- t, f in C. It is shown in 18] thatf is almost automorphic if
and only if the hull f off has thefollowin9 property: there is an almost periodic
minimal flow (fo, R) and a flow homomorphism rt: Qfo such that
rt-lrt(f) {f) (thus (, R)is an a.a. extension of (Qo. R)).

The following result follows easily from Lemma 2.4 of [8].

2.6 PROPOSITION. Let (X, R) be minimal. Let 7 X R be a continuousfunc-
tion such that o 9(Yc s) ds is boundedfor some Y 2. Then there is a continuous
G: X R such that G(x t)- G(x)= o 9(x s)ds (x X, R).

3. Bounded solutions

3.1 Notation. Consider a scalar equation

(1) 5c + a(t)x b(t) (x R),

where a, b: R R are bounded and uniformly continuous. Define f: R
R2: t (a(t), b(t)). Let f be the hull off, and let F: f R2 "extendfto f" in
the sense of 2.3. We may write F(o9)= (A(o9), B(o9))(o9 ). Ifogo =f f, then
A(o9o t)= a(t), B(ogo t)= b(t) (t R).
Now consider the collection of equations

ic + A(o9 t)x B(o9 t) (o9 f).

Note that equation (1),o coincides with (1). Equations (1), generate a flow on
E R, as follows. Let (co, Xo) E, and let x(t) be the solution to (1)o
satisfying x(0)= Xo. Define (o9, Xo)’t (co "t, x(t)(t R). The flow (E, R)
has the following description: let (o9, Xo)" t= (o9 .t, x(t)); then

ot

(2) x(t)= Xo exp ds.

Note that the projection t: Z f: (o9, x)--. o9 is a flow homomorphism.

3.2 DEFINITION. The Sacker-Sell spectrum of equations (1)o,, denoted by
Sp (A), is defined as

{2 R: for all o9 fL the homogeneous equation 5c + (2 + A(o9 .t))x 0

does not admit an exponential dichotomy}

(see [15], [17]). (This definition also applies to n-dimensional systems.)
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3.3 Remarks. (a) For the one-dimensional equations (1)o,, one can show
using [15] or [17], that Sp (A)is the interval [a, b], where

a inf {c R" given e > 0, there exists a constant K such that

-j A(co s)ds + (c e)(t- s)for all > and all f,

and

sup c R" given e > O, there exists a constant such that

-t A(co s)ds < + (c + e)(t- s)for all >s and all f.

(b) If a(t)is Bohr almost-periodic (i.e., if (f, R)is a.p. minimal), then 3.3(a)
and 2.4 imply that Sp (A) {Ia A(co) do(co)} (/o is the normalized Haar meas-
ure on f).
Using 3.3(a), (b), ([17], Problem 7, p. 184), and ([11], Section 3), we have the

following result.

3.4 PROPOSITION. Suppose (f, R) is minimal (i.e., "A is minimal", or "recur-
rent"), and suppose 0 Sp (A). IfIo A(o s) ds is unboundedfor some (hence all)
09 , then

o e f" s p (co s) ds oe and inf A(co s) ds
0

is a residual subset ofn.  Z(n, a.p. minimal, we may replace "0 Sp (A)" by
"In A(co) d#o(co)= 0" (1o is the normalized Haar measure on f).

3.5 Remark. If 0 Sp (A), then each equation + A(co t)x 0 admits an
exponential dichotomy. Hence standard results [5], [13] imply that each equa-
tion (1)o admits a unique bounded solution. If (f, R)is minimal, if 0 e Sp (A),
and if o A(co. s) ds is bounded for some e) e f, then 2.6 and formula (2)imply
that every solution to (1)o is bounded (co e f).

In view of Remark 3.5, we will suppose the following.

3.6 Assumption. (D., R) is minimal, 0 e Sp (A), and Io A(o "s)ds is un-
bounded for some co e f. In particular, if (f, R) is a.p. minimal, we are assum-
ing that the mean value I-A(o)do(o)= 0.

We will study bounded solutions of equations (1)o.

3.7 LEpta. et o e f. Suppose inf o A(co s) ds -oo. The the equation
(1)o has at most one bounded solution.
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Proofi If Xl(t and x2(t) are two bounded solutions of (1),o, then

x(t) x(t) [x(O) x(O)] exp A(09. s) ds

The lemma clearly holds.

3.8 PROPOSITION. Assume 3.6, and suppose that some equation (1),o admits a
bounded solution. Then there is a unique minimal subflow (M, R)of (Z, R)(see
3.1), and (M, R)is an almost automorphic extension (see 2.2)of (, R).

Proof By 3.4 and 3.7, some equation (1)5 admits a unique bounded solution
x(t) with, say, x(0)- Xo. The orbit closure cls {(cb, Xo)" t: t R} intersects
n-l(cb) only at (cb, Xo). It also contains a minimal set M, which satisfies
n(M) f by minimality off. Hence M c n-1(o3) {(03, Xo)}, and (M, R)is an
a.a. extension of (f, R). Clearly M is the unique minimal subset of E.

3.9 DEFINITION. Assume 3.6. Define

fit,(A)= ogf’inf A(09 s) ds= -Let

H {B e C(f): for some 09 f, equation (1),o admits a bounded solution}.
Here we view equation (1),o as depending on B as well as 09. By 3.8(b), if B H,
then equation (1),o admits a bounded solution for all 09 f. For B e H, let M
denote the minimal set described in 3.8, and define

f(A, B)= {09 f: n-I((D) t’ M is a singleton}.

Examining 2.5, 3.4, 3.7, and 3.8, we have:

3.10 PROPOSrrION. Assume 3.6, and let B H.

(a) f(A)is a residual subset of f.
(b) t(A) {09 f: equation (1)o, admits a unique bounded solution}.
(c) ft(A) fl(A, B); hence f(A, B)is residual in

(d) If (f, R)is a.p. minimal, then f(A, B) {09 : equation (1)admits an
almost automorphic solution} is residual in

Proposition 3.10 states that f(A, B) and f(A) are large topologically. We
now analyze the measure-theoretic size of these sets when (f, R) is minimal and
a.p. (i.e., when (1) is a.p.). Let #o be normalized naar measure on f. Observe
that f(A, B) and f(A) are invariant, hence (by the Birkhoff ergodic theorem
[14]) both sets either have measure zero or measure 1.
Our results are as follows.

(I) For "most" functions A, one has #o(fa(A))= 1, and
#o(f(A, B))= 1 for all B e H.

hence
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(II) There is an irrational twist flow on the 2-torus K2 and a continuous
A: K2 R such that #o(fa(A))= 0. We do not know whether there is a.p.
minimal flow (f, R) and A e C(f), B H such that #o(O(A, B)) 0 (but see
3.17).

(III) If A and B are chosen as in [12], then one has #0(f,(A, B))= 1. We
prove this by showing that (m, R) is uniquely ergodic [14]. Compare this fact
with [10]: the a.a. minimal sets in the Millionikov and Vinograd examples
each have 2 ergodic measures.

3.11 THEOREM. Assume (f, R) is a.p. minimal. Let

Co(f) f C(f)" ff(oo) d#o(O9) O}.
There is a residual subset C1 c Co()) such that, if A C 1, then 3.6 holds and
to(fa(A)) 1.

Proof Suppose A has the property that po(fla(A))= 0. Let

Q= co e f" A(co s) ds is bounded below

Then o(Q)= 1 (3.7). Let L(o)=-inf Io A(e)’s)ds (co e Q). Then L is
#o-measurable, is finite on Q, and

(o. tt- (ot fo (o. I (o Q, t.
Now, by [9, Section 4], there is a residual subset C’ of Co(f)such that, if
A e C’, then A admits no such L. It is easily seen that

C1 {A e C’" 3.6 holds}
is also residual.

We return to statement (II). The construction in 3.12 was suggested by those
of Anosov in [1].

3.12 Example. Let R be an irrational number such that, for some con-
stant tr > 0, one has ]n + m] _> train for all n, m Z with n 4: 0. The set of
all such irrationals has Hausdorff dimension 1 and Lebesgue measure zero 1 6].
View the 2-torus K2 as the square [0, 1] x [-1/2, 1/2] with opposite sides
identified; give it the Euclidean metric d. Define a flow on K2 by

(:, y)--, (:, + t, y + . t) ((, y)/(; l)

(obvious identifications are made in defining this flow). Let 09o (0, 0) K2;
then 09o (t, t)(t R). By assumption on , there exists tr2 > 0 such that

tl & d(o. t, Oo) o-=/Itl.
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Now let (Y,),= be a sequence such that 0 < y, < 1 and ,=1 y, < . Let
9,: R [0, 1] be a continuously differentiable function, supported on

I, [- 2y- 2, 2y; 2],
satisfying (i) 9,(0)= 1; (ii) 10,(t)l for all t R (n 2 1). By choice of ,
there exists 3 such that (iii) 0 < a3 < 1; (iv)a3 depends on but not on n; (v)if

Q, {0} x [-a3 7/4, a3 /41 = K,
then the map i.: Q. x I, K2: (m, t)m. is injective (n 2 1). Finally, for
c > 0 and x e R, define

C

and let ; ()= r(, /4)( R, ).
Define functions L,: K2 R as follows (n k 1). If m e K2, and there exists

p (0, x)e Q. and e I, such that i,(p, t) m, then

otherwise, L.(m) 0. Then L, is continuous, L,(m) 2 0 for all m e K2, and

f .() o() 72" 7 -2 /2 /2.

Also, the function

is continuous, and

d
L.(CO "t)

t=0

A,(o)l < v; v. ..
In addition, if J, i, (Q, I,), then /o(J.) < or3 y,3.4?-z 4cr3 ,. Hence
E= ’O(Jn) < .

This last statement implies that, if V {09 K2: co belongs to at most finitely
many of the J,}, then #o(V)= 1 (the Borel-Cantelli lemma). The function
L(co) Z,= L,(co)> 0 is defined (i.e., finite) for all co V. Since

L is certainly not equal #o-a.e. to a continuous function on K2.
Let A(co) =1 a.(co) (co < K2). Then a is continuous. Let E be a count-

able dense subset ofR containing 0, and let Vo c {V. t: e E}. Then Vo V,
and/o(Vo) 1. For each R and co K2,

=1 0 n=l
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If co e Vo and E, then to A(co. s)ds L(co. t)- L(co). Hence if co Vo,
then to A(co. s) ds is bounded below by L(co). Using 2.6 and the fact that L is
not equal a.e. to a continuous function, it is easily seen that ’o A(co. s) ds is
unbounded for all co ft. Since x,- A,(co)dpo(co)= 0, r- A(co)d#o(co)= 0 (see
also [1]). Using formula (2), one shows that, if co Vo and equation (1)o admits
one bounded solution, then all solutions of (1), are bounded.

In conclusion: (K2, R) is a.p. minimal, A satisfies 3.6, and po(fl(A))= 0.
These are the conditions we wanted.

3.13 Remark. It is now easy to construct A and B so that #o(flo(A))- 0
and po()(A, B))= 1. Let A be as in 3.12, let x" K2 - R be a C function, and
let

d
x(co .t)l =oB(co) - + A(co)x(co).

Then f(A, B)= K2.
Finally, we consider (III). Suppose that equation (1) is the a.p. equation

constructed in [12] (actually, a class of equations is constructed in [12], so pick
one). Construct , A, B, and as in 3.1. By 2.6 and [12], o A(co.s)ds is
unbounded for all co D and A(co)do(co)- 0. Let (M, R) be the unique
minimal subflow of (E, R); by 3.8, it is almost automorphic. By [12], it is not
almost periodic.

3.14 LEMMA. /2o((A B)) 0 ifand only/f(M, R)is uniquely ergodic (has a
unique invariant measure" see [14]).

Proof () Suppose /o(f(A,B))=0. Let Mo={xCR’(co, x)M}
(co ). Then for/o-almost all co, card Mo, > 1. Let

g(co) max {x" x Mo}, g2(co) min {x’x M,,}.
The maps #," C(M) R"fn f(co, g,(co))dpo(co)(i 1, 2)define distinct in-
variant measures p, P2, on M. Hence M is not uniquely ergodic.

(.=) We prove the contrapositive. Suppose po(f(A, B))= 1. Let

Mo {m M" {m} rt-lrt(m) M}.
Let p be an invariant measure on M. Since rt(p)= to, we must have g(D)=
po(zt(D)) for all Borel sets D in M such that D c Mo. It follows that p is unique.

3.15. Next, we observe that an arbitrary minimal flow (/O, R) is uniquely
ergodic if and only if there is an m/ with the following property. Iff C()
and e > 0 are given, then there exists T > 0 such that [t-s[ > T,
It’ s’ > T imply

1
f(m. r)dr t’ s’. f(m. r)drl < "
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This is easily proved using techniques from [14, pp. 498-511].
3.16. Finally, we sketch the proof that (M, R) is uniquely ergodic. We

assume the reader has [12] before him, and use facts discussed there. Let 090 f
be that point such that equation (1)oo is the same as equation (1). Using
formula (2) and the fact that o A(mo" s)ds , one can show that the ele-
ment (COo, 0) of E is actually in M.

Define the density D(F) of a set F R to be

li-- 1
l([s, t] F),

O<t-s-oo S

where is Lebesgue measure on R. Let e > 0 be given. Let x(t) be the solution of
(1) such that x(0)--0, and let x(t)(n >_ 3) be the approximating solutions
defined in [12]. Using details of the construction ofx(t)and x(t), one can show
that, given > 0, there is an N such that

Letf C(M). Given e > 0, choose 6 < e/61lf[ such that

max {[ f(og, z)-f(o9, z’)[" (o9, z), (09, z’) M} < e/6 if [z z’[ < 6.

Note that (Oo, 0). t= (090 t, x(t)) M (t R). Now

----s. f(c r, x(r)) dr
t’ s’ f(c r, x(r) dr

-< It s
f( r, x(r)) -J(Oo" r, x.(r)){ dr

+
1
s.

f(o3o" r, x,(r))dr t’ s’ "’
f(oo .r, x.(r))dr

+ it,_s,i.,, }f(oo r, x,(r))--f(oo .r, x(r)) dr.

Choose N so that

n >_ N D{t R" x.(t)- x(t)l > ) < (.

We can then find T such that ]t s > T, t’- s’[ > T imply that the first
and third terms are less than e/3. Since x(t) is periodic, the map

r f(o90 r, x,(r))
is almost periodic, hence there is a T> Ta such that, if it-s] > T,
It’- s’ > T, then the middle term is less than e/3. It follows that (m, R)is
uniquely ergodic.

3.17 Remark. One might be able to find an a.p. equation such that
tto(ft,(A, B)) 0 by altering the functions A and B of[12] so as to make (M, R)
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non-uniquely ergodic (and, of course, using 3.15 and 3.16 to verify non-unique
ergodicity).

4. Unbounded solutions

In Section 4, we consider equations (1), for some fixed A, B e C(f). We are
interested in the behavior of solutions to equations (1),o when (f, R)is minimal
and some equation (1), admits no bounded solutions. Note this implies that
0 Sp (A)(3.5).

4.1 DEFINITION.
0o Zt, then

if 0 < 0o < rt, then

Define a flow on Zc f x [0, zt] as follows. If 0o 0 or

0o). .t, 0o) n, R);

(co, 0o)" t-- (co t, O(t)),
where

cot O(t)

=(cot0o) exp foA(co s) ds +joB(Co s) exp A(Co.r) dr ds.

Note that, if x(t) is the solution to (1)o with x(0) cot 0o, then x(t) cot O(t).
Also note that inftx(t)=-oe iff supt0(t)=r, and suptx(t)=oe iff
inft O(t) 0.

4.2 THEOREM. Suppose (fL R) is minimal, and suppose some equation (1)o
admits no bounded solutions. Then there is a residual subset Q f such that, if
Co , then all solutions to equation (1) satisfy inf x(t) oe, sup x(t) .

Proof. The first part of the proof is similar to that of[ll, Theorem 3.8]. Let

Let

E,-- {(Co, 0) Ec: 0
_

0 __< zt 1/n}.

K,={Co, 0)Ec:(Co, 0).tE, for all e R}.
Then K, is closed and invariant. Letf,(Co)= max {0: (Co, 0) K,}; thusf,(Co)is
the "upper endpoint" of K, ({09} x [0, zt]). Then f, is upper semi-continuous,
hence has a residual set f, of continuity points.

Suppose 090 is a continuity point off, such thatf,(o) > 0. There is a neigh-
borhood V of 09o such that f,(og)>0 if 09 V. Since f is minimal,

’= V t for some integer m. Invariance of K, now implies that there is a
6 > 0 such that f,(og) >_ > 0 for all o f.
Now, let M {(09, f,(og)): 09 f}. It is easily seen that M is invariant. Also,
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M f x [6, t 1/n]. This means that, if (co, 0o) M and Xo cot- 0o, then
cot- (zr 1/n) < x(t)< cot- 6, where x(t) is the solution to (1),o such that
x(0) Xo. This contradicts our assumption; hence f,(co)= 0 for all co f,.
That is, if co f,, then all solutions to (1),o are at some time less than or equal
to cot- (rt- 1/n).

Let Q1 _> f. Then if o9 Q1, every solution to (1), is unbounded
below. Similarly, one can find a residual subset Q 2 of f such that, if co Q 2,

then all solutions to (1),o are unbounded above. Let Q Q1 Q2.

4.3 Remark. Suppose (f, R) is a.p. minimal, and let #o be normalized Haar
measure on f. Suppose the assumptions of 4.2 are satisfied. Then po(Q) may be
zero. For example, let A: Kz R be the function constructed in 3.12. Consider
the equations (1), 5c A(co)(co e K2). Then solutions to (1), are of the form
x(t) Xo + o A(co. s) ds, hence are bounded below if co is in a subset Vo ofK2

satisfying po(Vo) 1.

4.4 Remark. Suppose (f, R)is minimal, and suppose 0 Sp (A). Let

G {B C(f)" some equation (1)o, admits no bounded solution}.
Then G is a residual subset of C(f). To see this, first assume that o A(co. s) ds
is unbounded for some co e f. By [17, Exercise 7, p. 204], there is an 03 f
such that ’o A(69. s) ds is bounded below. It follows that, if B(co)= 1 for all
co efL then B G. From this, one can show that G is residual in C(t2). If

o A(co. s) ds is bounded for some co f, the proof is even easier.
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