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DIRICHLET-FINITE FUNCTIONS
AND HARMONIC MAJORANTS

BY

SHINJI YAMASHITA

1. Introduction

For a differentiable real function u defined in the disk U {[ z < 1} in the
complex plane, the integral

(1.1) ff (1 Izl)lgrad u(z)] 2 dx dy
u

is called the o-weighted Dirichlet integral of u, where 0 <_ a < oz, z x + iy,
and Igrad u[2 ur,2. the Dirichlet integral of u is precisely Do(u). Notice
that D(u) <_ D,(u) if 0 <_/3 <_ a < oz. A prototype of our main theme is the
following well-known result"

THEOREM A. Let u be a harmonic function in U with Do(u) < oz. Then, for
each p, 0 < p < oz, the function u [P admits a harmonic majorant in U.

The last sentence means that there is a harmonic function v in U such that
u [P < v in U. A function-theoretic proof is as follows. The holomorphic func-

tion f in U with Re f= u and f(0) u(0), satisfies u If’(z) [2 dx dy < oz. It
then follows from the familiar result (see [2, Exercise 7, p. 106]; see [4,
Theorem] and [5, Theorem 1] for a further generalization) that f is of Hardy
class Hp for each p, 0 < p < , which, together with u IP<lf ]P, proves
Theorem A.

Let Q be a nonnegative constant, and consider the Euler-Lagrange differen-
tial equation

(1.2) Au=-Ux+Uyr=Qu in U,

of the variational problem to which the energy integral

ff grad u z+Qu2) dx dy (>Do(u))
u

leads; see [1, p. 258 ff.]. From the familiar fact on the elliptic differential opera-
tors, each solution u of (1.2) is C in U.
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THEOREM 1. Let u be a solution of(1.2) with D(u) < v for an , 0 < < 1.
Then u [2/ admits a harmonic majorant in U.

The above-mentioned Theorem A is the harmonic case Q 0 of the
following

COROLLARY. Let u be a solution of (1.2) with Do(u) < o. Then, for each p,
0 < p < oo, the function u p admits a harmonic majorant in U.

In effect, D/p(u) < Do(u)< oo for all p, 2 < p < oo, so that lu p admits a
harmonic majorant in U. Since ulq < ulp + 1 for 0 < q < 2 < p < oo, one
obtains the corollary.
We cannot replace the condition D(u)< oo in Theorem 1 by D+(u)< c

for any e > 0 in the harmonic case Q 0. Actually, consider u Re f in U,
where f(z) (1 z)-/2, f(0) 1. Since 1 ]z _< 11 z 1, it follows that

D+.(u) f (1 [zl)+] f’(z)l dx dy < oz.
u

If u 12/ would admit a harmonic majorant in U, then it follows from M. Riesz’s
theorem [2, Theorem 4.1, p. 54] thatf H2/, being a contradiction.

In Section 3 we shall consider a sufficient condition for a holomorphic
function in U to be of Hardy class H for 2 _< q < o in terms of its Taylor
coefficients, as an application of Theorem 1 in the specified case Q 0. Our
Theorem 2 may be compared with the known sufficient condition [2, Theorem
6.3, p. 97].

In Section 4 we shall consider the n-dimensional case for n > 3; Theorem 3
asserts that if u is a harmonic function with the finite, n-dimensional, -weighted Dirichlet integral in the unit ball B,, 0 _< _< 1, then [u[ for
p (2n- 2)/(n + a 2), admits a harmonic majorant in B,.

2. Proof of Theorem 1

We may suppose that u is non-constant. Set p 2/a. Since p >_ 2, and since

(2.1) A(lu IP p(p 1)lu IP-2 Igrad ul 2 4- pO.lul >_ o,
the function ]u ]P is subharmonic in U. Set 9(z) -log ]z I, and 6(z) 1
Izl, z e u. Since

(2.2) lim 6(z)-’9(z) 1,

it follows that there exists ro, 0 < ro < 1, such that

(2.3) g(z) < 2(z), ro __< z <

Set g,(z)= g(z)- g(r) for ro <r < 1 and z e U, and apply the Green formula
to the functions g, and ul on the annulus R(r)= {ro < z] < r}; we shall
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make use of 8/8v as the derivatives along the direction of the radii. Then,
observing that 9r(z) 0 on z r, and Agr(z) 0 in R(r), one obtains

-= ff u/ )I
R(r)

-J]z,=, lu(z)l (z)ldz[ z,=,o’(z) lu(z)lldzl

zl= 
g(z) dz + I2(r)- Jlzl=ro

=_ I,(r) + I2(r)+ I3(r).

u(z) lpr’ldz

Note that I,(r) 2zrE(0), where V is the least harmonic majorant of the sub-
harmonic function ]u p in z < r, being the Poisson integral of [u [P on the
circle z r. If Ii(r) is observed to be bounded for ro <r < 1, then [u [P
admits the least harmonic majorant V limr_. in U. To be more precise,
E’s are increasing as r increases, so that V is harmonic in U by the Harnack
theorem. This is the principal idea of the proof.
To prove that 11 (r) is bounded, it suffices to show that K(r), 12(r), and 13(r)

are bounded for ro < r < 1. Apparently, I3(r) is a constant. As for 12(r) we
observe that lu(z)Ip is smooth since p > 2 and therefore (O/Sv) lu(z) p is bounded
on the circle z to. Since Or(z) 9(z) g(r) 0 as r/ 1 on z ro, it
follows that Iz(r) has the limit as r/ 1. To prove that K(r) is bounded, we note
that

(2.4) 0 <_ K(r)

<_ fj’g(z)A( u(z ) dx dy
R(r)

r0<lzl<l

by means of (2.3). Therefore, the remaining point which requires verification for
the boundedness of !l(r) is that A < o.

For this purpose we first claim that W grad u 12 is subharmonic in U
because

2 2u2) 2QW>AW 2(u2,, + u + + O.
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Therefore, for each z e U,

(2.5) W(z)< -’22 6(z)-2 ff W(() d dq (( + it/)
I-zl < 2-1 6(z)

ff_< n-122+ 6(z)-z- (1 I I)=W()de d
I-zl <2- (z)

_< c ()--D()
_< c (z)--’,

hereafter, cj(j 1, 21) are positive constants. It then follows from (2.5) that
[grad u(z)[ c3 6(z)-- /P, whence

(2.6) [u(z)[ [u(0)[ + c4L(z), where L(z)= 6(z)-/p, z U.

Remembering the inequality (X + Y) 2(X + Y) for X, Y a 0, 2 > 0, one
obtains the following estimates from (2.6)"

[g(Z) [p-2 CsL(Z)p-2 + C6 C5 (Z)-I +2/p + C6

I(z) I" c (z). + o8 o (z)-’ + c8, z u.

Notice that ]u(z)[,-2 m 1 in the case p 2. In view of (2.1) one now evaluates

6(z) (u(z)[") 6(z)-2/"[e9 6(z)-+ 2/, + Cao] 6(z) [grad u(z)[ 2

Cls 6(z) grad u(z)[ 2 + c1.

Therefore A < , which completes the proof.

3. Taylor coefficients and Hardy class

THEOREM 2. Letf be afunction holomorphic in U with the Taylor expansion
f(z) Z,:o an z’, z U. Suppose that

(3.1) Z ’-/la.I <
n=l

for a certain q, 2 <_ q < , Thenf Hq. The constant 2/q in (3.1) is sharp in the
sense that we cannot replace 2/q by 2/q + e for any e > O.

It is known [2, Theorem 6.3, p. 97] that if

(3.2) Z ’-2 la.l <
n=l
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for a certain q, 2 < q < oo, then f H. To investigate the relations between
(3.1) and (3.2) is, therefore, interesting. It appears, however, to be impossible to
prove (3.1) (3.2)or (3.2) (3.1) by the H/51der inequality.
One merit of the condition (3.1) might be that, (3.1) is satisfied for each q,

2 < q < oo, provided that

(3.3)
n=l U

actually the sequence {n-2/q} is bounded. Therefore we have another proof of
the fact thatf is of Hardy class Hp for all p > 0 if (3.3) is satisfied.

Proof of Theorem 2. Since the case q 2 is well known we assume that
q > 2. Since 0 < 2/q < 1, it follows from the familiar result [3, pp. 8-9] that
(3.1) implies

ff (1 Izl)Z/ l f’(z)l dx dy <
u

Let f u + iv in U. By Theorem 1, both ]u and Iv 1 have harmonic major-
ants in U, whence the same is true of If < 2(]u + Iv I). Thereforefe H.
To prove the sharpness of 2/q we set

h(z) (1 z)- TM E b,,z" (bo 1)in U.
n=O

Since lb. I= O(nTM) as n - oo, it follows that

O(n-1-,) as n--

whence (3.1) holds on replacing 2/q and a. by 2/q + e and b,, respectively.
Apparently, h Hq.

4. Harmonic functions in the n-dimensional space

Let B, be the unit ball ( 7=x 1 in the n-dimensional
Euclidean space, n _> 3.

THEOREM 3. Let u be a harmonic function in B, (n >_ 3) such that

D(u)= j(1- Ixl)’lgrad u(x)] 2 dx < oo

u2 Thenforfor an , 0 <_ cz <_ 1, where dx dxl, dx, and grad u 12 E3 ;
p (2n 2)/(n + 0 2), the function u [ admits a harmonic majorant in B,.

The sharpness of the constant p (2n 2)/(n + 2)_> 2 remains open
even if 0 0.
The proof is in spirit the same as that of Theorem 1, and we shall give a
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sketch. The equality (2.1) is valid for the present p (even for Q > 0)which we
shall denote (2.1)’. We set g(x)= (n 2)-11 x 2-n to obtain

(2.2)’ lim i(x)-lg(x) 1,

where 6(x)= 1 ]x l, x e Bn. Thus the analogy (2.3)’ of (2.3)is again true in
the present case. By the similar argument of making use of the Green formula
after (2.3), one finds that the principal point to be proved is that

(4.1) A f 6(x) A(lu(x)]P) dx < .
r0<lxl<l

2Again, W ]grad u 12 is subharmonic in Bn because AW 2 ,k- Uxx > O.
Therefore (2.5) is turned to be

(2.5)’ W(X) C15 6(x)-n-aO(u) c16 (x)-n-, nn,
because the volume of the ball {y; Y- xl < 2- 6(x)) is c7 6(x)n.
Consequently,

(2.6)’ lu(x)l lu(0)l + x

where (x) fi(x)a, fl 1 (n + )/2. Considering (2.1)’ with Q 0, one now
evaluates

A(lu( )l + C o] 6(x) grad u(x)] 2

cz 6(x)lgrad u(x)]Z, x Bn,

because 1 + fl(p 2) 0. Thus, (4.1) holds, which completes the proof of
Theorem 3.
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