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LIE ALGEBRAS WITH THE SAME MODULES

BY

ANDY R. MAGID

Let L be a (finite-dimensional) complex Lie algebra and let // be the
category of finite-dimensional complex L-modules. /// is an abelian
subcategory, closed under tensor product, of the category of finite-dimensional
complex vector spaces. When L [L, L], the category /{ determines L [2,
Theorem 6.1, p. 62], but in general this is not the case. It is natural to inquire,
then, how much of the structure of L can be recovered from #. This paper
answers that question in the following form: if L i, i= 1, 2 are complex Lie
algebras, theorem 12 below describes how L1 and L 2 are related if they have
isomorphic module categories.

If G is the simply connected complex Lie group with Lie algebra L, then the
categories of finite-dimensional L-modules and G-modules are the same. The
category of G-modules is the same as the category of rational finite-
dimensional modules for a pro-affine algebraic group A(G). We are thus in-
terested in how closely the structure of A(G) determines G. (When G is solvable
as well as simply connected, this latter problem was solved in [10].)
We show that A(G) is a semi-direct product of a maximal normal affine

subgroup and a subgroup which is an inverse limit of tori, that the normal
affine is unique and the other subgroup is unique up to conjugacy by an
element of the unipotent radical of A(G). Thus the centralizer in this subgroup
of the unipotent radical is uniquely defined. The quotient of A(G) by this
centralizer is then seen to be affine, and to determine A(G). The problem then
becomes that of determining as much of the structure of G as possible from this
quotient. This problem in turn is reduced to the same problem for the radical of
G, which is solved by the methods of [10]: in fact, much of the work here can be
regarded as a revision of [10] keeping track of Levi factors.
Throughout, all Lie algebras, algebraic groups, and vectors spaces are

over C.
By an analytic 9roup G, we mean a connected complex Lie group. R(G)

denotes the Hopf algebra of representative functions on G [4, p. 496] (the
complex algebras generated by the matrix coordinate functions of the finite
dimensional analytic linear representations of G). Let A(G) be the pro-affine
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algebraic group with coordinate ring R(G) [7, Theorem 2.1, p. 1131]. There is a
canonical homomorphism s" G - A(G) such that if G is a linear complex alge-
braic group and f: G- G is an analytic homomorphism, there is a unique
algebraic morphism f-’. A(G)--, G such that j =f Thus finite dimensional
analytic G-modules are rational A(G)-modules and conversely, so A(G), as a
pro-affine algebraic group, determines the category of finite-dimensional analy-
tic G-modules. This category, as a tensored abelian category of finite-
dimensional vector spaces, can be used directly to define A(G) and R(G) [8,
Prop. 2.3], so analytic groups G and G 2 will have isomorphic categories of
finite-dimensional analytic modules if and only if A(G) and A(G 2) are isomor-
phic pro-affine algebraic groups.
The structure of A(G)is determined in [5]" s(G)is normal in A(G), and A(G)

is a semi-direct product s(G) T, where T is a pro-affine algebraic group which
is an inverse limit of tori (i.e., a pro-torus) whose character group X(T) is
isomorphic to the rational vector space Hom (G, C) [5, Theorem 6.1, p. 127]. G
has a faithful representation if and only if s is injective [4, Theorem 7.1, p. 522].
A nucleus K of G is a closed simply connected solvable normal subgroup such
that G/K is reductive. G has a nucleus if and only if G has a faithful representa-
tion; if G has a nucleus K and P is a maximal reductive subgroup of G then G is
the semi-direct product K. P [5, p. 113].
Now assume G has a faithful representation, let K be a nucleus of G and let P

be a maximal reductive subgroup. Then the pro-torus T above can be chosen
so that (P, T)= (e}. Moreover, the unipotent radical U of A(G)is affine with
dim (U)= dim (K)[5, Corollary 5.1, p. 124].

In the above decomposition A(G)= s(G). T, s(G)is not an algebraic sub-
group of A(G) in general" in fact, it is Zariski-dense. Nonetheless, we can
deduce an algebraic semi-direct product decomposition from it.

PROPOSITION 1. Let G be an analytic 9roup with a faithful representation, let
P be a maximal reductive subgroup of G, and let T be a pro-torus in A(G) such
that A(G) s(G) T (semi-direct product) and (T, s(P)) e. Let U be the unipo-
tent radical of A(G). Then Us(P)is a normal affine subgroup of A(G)with
A(G) (Us(P)). T (semi-direct product)and UT is a normal pro-affine subgroup
ofA(G) with A(G) (UT) s(P) (semi-direct product), and s-I(UT c s(G)) is a
nucleus of G.

Proof We regard G as a subgroup of A(G), so s is the identity. Then P is
Zariski-closed in A(G), so its image in A(G)/U is closed, and hence the inverse
image UP is closed in A(G). Similarly, UT is closed in A(G). Moreover, UP is
affine: for there is a finite-dimensional representation p of A(G) faithful on both
U and P, and p(UP) p(U). p(P)is a semi-direct product since p(U)is unipo-
tent and p(P) is reductive, so p is faithful on UP.

Next, we see that UT is normal" if p" A(G) GL(V)is a finite-dimensional
representation with V semi-simple as an A(G)-module, then for any nucleus K
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of G, p(K) is normal in p(G)and hence in its Zariski-closure p(A(G)) C,. Now
PT maps onto G-/p(K), and T is normal in PT, so p(K)p(T)= L is normal in
p(G). Then V is semi-simple as an L-module, and L is solvable, so (p(K), p(T))
acts trivially on V. It follows that (K, T) acts trivally on every semi-simple
A(G) module, so (K, T)_ U. Thus UT is normalized by K. Since UT is also
normalized by P, UT is normalized by G, and the Zariski-density of G in A(G)
implies UT is normal.
Now we consider UT c G. Every x in A(G) can be uniquely written as

x g(x)t(x), where g(x) G and t(x) T, so g(x)= xt(x)-1. If u U, then
9(u) UT G. If y ut is in G UT with u Uandte T, thenyt-l=uso
9(u) y. It follows that 9 is a bijection. If we regard A(G)as the inverse limit of
complex analytic groups, then in the inverse limit topology 9 is a homeomor-
phism. In particular, UT G is a closed, simply connected, solvable normal
subgroup of G of dimension equal to dim (U). This implies UT c G is a
nucleus of G, so UTc P=(UT G) P is trivial, and also
G (UT G)’P, so A(G)= G" T (UT)" P.

Finally, we now have A(G)= UT. P UP. T so A(G)is also the semi-
direct product of UP and T.

We will use Proposition 1 to show that the subgroup Us(P) of A(G) is
characteristic and that, if P is semi-simple, that T is determined up to conju-
gacy, so Us(P)and T depend only on A(G)and not on G.
We will need a property of pro-tori. Let T be a pro-torus whose character

group X(T)is divisible (i.e., is a rational vector space), let S be a pro-affine
subgroup of T and let S0 be the connected component of the identity in S. Then
there is a pro-affine subgroup To of T with T To So, X(So)and X(To)are
rational vector spaces with X(T)= X(To)(R) X(So), and S/So is pro-finite.
These facts are special cases of [11, Theorem 3.2, p. 24].

PROPOSITION 2. Let G be an analytic group with a faithful representation, let
P be a maximal reductive subgroup ofG and let T be a pro-torus in A(G) such that
A(G) s(G) T (semi-direct product) and (T, s(P)) e. Let U be the unipotent
radical of A(G). Then"

(i) H Us(P) is the (unique) maximal normal connected affine algebraic
subgroup of A(G), and any maximal reductive subgroup ofH is conjugate to s(P)
by an element of (s(G), s(G)) c U.

(ii) IfH/U is semi-simple and S is a pro-lotus in A(G) such that A(G) H S
(semi-direct product) and S centralizes a maximal reductive subgroup ofH, then S
is conjugate to T by an element of (s(G), s(G)) c U.

Proof (i) By Proposition 1, H is a normal, connected affine algebraic sub-
group of A(G) and T A(G)/H is an isomorphism. Thus A(G)/H is a pro-torus
with X(A(G)/H) divisible, so it has no connected affine subgroups other than
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{e}, and hence H contains every connected affine subgroup of A(G). If Q is a
maximal reductive subgroup of H, Q is conjugate to s(P) by an element of

(H, U) (A(G), A(G), A(G))= (s(G), s(G)).
(ii) Let Q be a maximal reductive subgroup of H centralized by S. By part

(i) we may assume Q s(P), after conjugation. Since US is normalized by Q,
us is normal in A(G), and by arguments similar to Proposition 1, US is a
connected pro-affine subgroup of A(G). Since A(G)= H S (U Q). S
(US)" Q, and Q is semi-simple, us is the pro-radical of A(G) (i.e., the inverse
limit of the radicals of any surjective inverse system of affine algebraic groups
with limit A(G)). By Proposition 1, A(G) (U. T). Q also, so UT is also the
pro-radical and US UT. Now S and T are both maximal reductive sub-
groups of US, so by [7, Theorem 3.3, p. 1138] they are conjugate by an element
of the closure of (U, US)_ (s(G), s(G)) c U.
Among the consequences of Proposition 2, we want to note in particular that

part (i) implies that the isomorphism type of the maximal reductive subgroup P
of G is determined by A(G). We also want to note that part (ii), along with
Proposition 1, implies that the nucleus s-1 (UT c s(G))is uniquely
determined. This merely reflects the fact that if H/U is semi-simple then a
maximal reductive subgroup of G is semi-simple, so any nucleus of G is actually
the radical of G. Hence part (ii) only could apply to groups with simply con-
nected radical.

Proposition 2 suggests that we make the following definitions:

DEFINITION 3. Let G be an analytic group with a faithful representation.
The subgroup H of Proposition 2(i)is the maximal affine of A(G), and the
quotient H/U is the reductive type of A(G). A pro-torus T in A(G)such that
A(G) H. T (semi-direct product) and T centralizes a maximal reductive
subgroup of H is called a complementary pro-tutus of A(G). If T is a com-
plementary pro-torus in A(G) and S is the centralizer of U in T, and if the
reductive type of A(G) is semi-simple, then A(G)/S is called the bottom 9roup of
A(G).

By Proposition 2(ii), the bottom group of A(G) is independent of the choice
of the pro-torus T. We will show that the bottom group of A(G) is affine and
can be characterized intrinsically, and that when the reductive type of A(G) is
simply connected, the bottom group determines A(G) (whence its name).

LEMMA 4. Let G be an analytic 9roup with a faithful representation, let H be
the maximal affine ofA(G) and suppose the reductive type ofA(G) is semi-simple.
Let be the bottom of A(G) and let p" A(G) fi, be the canonical surjection.
Then A is an affine aloebraic 9roup whose radical R is a semi-directfactor, and R
contains no central semi-simple elements. Moreover, H c Ker (p)= {e}. IrA’ is
an affine algebraic 9roup whose radical R’ is a semi-direct factor such that R’
contains no central semi-simple elements, and iff A(G) - A’ is a surjective homo-
morphism with H Ker (f)-- {e}, then A’ is isomorphic to .
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Proof. Let T be a complementary pro-torus of A(G). Let p" T- Aut (U)
represent T as inner automorphisms. Let S Ker (p)and let r p(T). Since
Aut (U)= Aut (Lie (U))is an affine algebraic group, r is a finite dimensional
torus. Let R be the semi-direct product U T. Any semi-simple central element
of R lies in T and hence comes from an element of T centralizing U. By
construction, any such element of T is trivial. Let P be a maximal reductive
subgroup of H centralized by T. P also acts on U, commuting with the action of
r, so we can form the semi-direct product/ P. Since A(G) UT. P, we have
an induced onto map A(G) - . P whose kernel is S. Thus/i A(G)/S has the
required properties.
From the decomposition A(G)= UT. P we see that f(UT)= R’ and that

P’ =f(P) is a maximal reductive subgroup of A’. Moreover, U’ =f(U)is the
unipotent radical of A’. Since R’ has no central semi-simple elements, f(S)-
{e}. Thus we have a surjection A(G)/S - A’. Let/ UT/S be the radical
of A. Then the map R R’ is an isomorphism on unipotent radicals so its
kernel is a normal closed subgroup of T T/S. Hence the kernel consists of
central semi-simple elements of ,q and is thus trivial. Since both p" P p(P)
and f: P P’ are also isomorphisms, the map A ---, A’ is an isomorphism.

To use Lemma 4, we need to recall some facts about representations of
analytic groups. Let G be an analytic group with a faithful representation, and
let P be a maximal reductive subgroup of G. Then there is an algebraic group
G’, an analytic injective homomorphism with Zariski-dense image f: G G’
and a torus T in G’ such that G’ is the analytic semi-direct product off(G)and
T, and f(P) and T commute [9, Theorem 10, p. 880]. Following the termino-
logy of [10], we call (G’, f) a split hull of G. By [10, Lemma 3], we can assume
that T contains no central elements of G’, in which case we say (G’, f) is a
reduced split hull.

THEOREM 5. Let G be an analytic group with simply connected radical
and let (G’, h) be a reduced split hull of G. Then the reductive type of A(G) is
semi-simple and G’ is isomorphic to the bottom group of A(G).

Proof For notational convenience we assume h is inclusion. Let P be a
maximal reductive subgroup of G. Since the radical K of G is a nucleus, P is
semi-simple and Proposition 2(i)implies A(G)has semi-simple reductive type.
Let U be the unipotent radical of G’ and let T be a torus in G’ with G’ G T
(semi-direct product) and (T, P) {e}. Exactly as in the proof of Proposition 1,
we see that (T,K)_ U so UT is normal in G’, UTc G’=K and
G’ (UT) P (semi-direct product), so UT is the radical of G’. Moreover, UT
contains no central semi-simple elements. Since G is Zariski-dense in G’, the
inclusion induces a surjective homomorphism f: A(G) G’. We show that
Lemma 4 applies to f: by [10, Theorem 1], To =f-I(T)is a pro-torus in A(G)
such that A(G)is the semi-direct product s(G). To and (To, s(P))= {e}. Let Uo
be the unipotent radical of A(G)and let Po s(P) By Proposition 2(i),
H Uo Po is the maximal affine of A(G) and by Proposition 1, To is a com-
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plementary pro-torus. Now Ker (f)is contained in To and To H {e}, so
Ker (f) c H {e}. By Lemma 4, we conclude that G’ is isomorphic to the
bottom group of A(G).

Next we will see that when G is simply connected the bottom group of A(G)
determines A(G).

THEOREM 6. Let G be a simply connected analytic 9roup. Then the bottom
9roup of A(G) determines A(G).

Proof Let U be the unipotent radical of A(G), let T be a complementary
pro-torus, let S be the centralizer of U in T and let So be the connected
component of the identity in S. Let be the bottom group of A(G) and let
p" A(G) i be the canonical surjection. As we noted above, there is a pro-
torus T1 in T with T So T1 (since X(T) =Hom (G, C)is a rational vector
space) and S/So is pro-finite. Since p(T)= p(T)is finite dimensional and the
connected component of Ker (p] T1)is in So, dimQ (X(T1))is finite. Since
X(T) X(So)@ X(T1), and dimQ (X(T1))is 0 or uncountable, dimo (X(T))
dimo (X(So)). Let H be the maximal affine of A(G). Then So centralizes H so
A(G) (H. T1) So and A’ A(G)/So is isomorphic to H. T1. Moreover, the
map p" A’- A has pro-finite kernel S/So. We claim that p" A’--* A is the
universal pro-finite extension [3, p. 410] of 3. We need to show that iff: A - A’
is a morphism of connected pro-affine algebraic groups with finite kernel thenf
is an isomorphism. Let P be a maximal reductive subgroup of G. Then
H Us(P) is simply connected. Let H’ and T’ be the connected components of
the identity off-I(H)and f-1(T1)in A (here we are regarding A’ as H.
Then A H’T’ and T’ is a pro-torus. Let F Ker (f). The surjection T’--
induces an injection X(T1)---, X(T’) which splits since X(T1)is a rational vector
space, and we have X(T’) X(T) @ X(F). But X(T’)is torsion free and X(F)is
finite, so F {e}. Thus we can recover A’ from i. To obtain. A(G), we need only
show that the dimension over Q of X(So) can be obtained from , since
A(G) A’ So. As we saw above, this dimension is the same as that of
X(T) =Hom (G, C). The analytic homomorphisms from G to C are the alge-
braic homomorphisms from A(G) to C, and these all vanish on T and hence S,
so the dimension in question is that of Hom (, C) (algebraic
homomorphisms).

COROLLARY 7. Let G1 and G2 be simply connected analytic groups. Then A(G 1)
is isomorphic to A(G 2) ifand only ifG and G 2 have reduced split hulls isomorphic
as algebraic groups.

Proof Combine Theorems 5 and 6.

Now let G1 and G2 be simply connected analytic groups, and suppose they
have reduced split hulls isomorphic as algebraic groups. We can assume the
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algebraic groups are actually the same, that is, there is an algebraic group G
and analytic embeddingsf" Gi G such that (G, fi) is a reduced split hull of G i.

Let T be the torus in G and P the maximal reductive subgroup of G/such that
G =f(G) T and (f(P,), T)= {e}.
The choice of T and P is not unique; we want to show that we can make

these choices such that T1 T2 and f (P Let U be the unipotent
radical of G and let R be the radical. Then we know UT R so there is 9 in
(R, R)with gT2g-I= T1. Let P’i =ff- l(gf2(P2)9-1). Clearly, P’2 is a maximal
reductive subgroup of G2 with (fz(P), T1)= {e}. Since fz(P2)is semi-simple,

f2(P2) (/2(P2),/2(P2)),
so 9fz(P2)g -1 is contained in (G, G) (f, (6 ), f, (6 )), and it follows that P’ is
also a maximal reductive subgroup of G1. Moreover, G =f(G)’T1. Let
T T1 and P gfz(P2)9-1. Replace G by its imagef(G,) sof becomes inclu-
sion. Then G is a Zariski-dense analytic subgroup of G containing P as a
maximal reductive subgroup, (P, T)= {e}, G G," T (semi-direct product),
R UT is the radical of G and G R P (semi-direct product). We also know
that R R m Gi is the radical (and a nucleus) of G, so G R i" P (semi-
direct product). Since G G" T (Ri. P). T and P normalizes Ri" T,
G (R T) P. It follows that R. T R. By definition, R contains no central
semi-simple elements. We claim that R is a reduced split hull of R: we need
only see that Ri is Zariski-dense in R. IfR is the Zariski-closure ofR in G, then
R
_
R and R. P contains G and is Zariski-closed in G, so R i. P G and

hence Rg R.
Thus the simply connected solvable analytic groups R have the same

reduced split hull R R. T. In [10] we determined the relationship between
Lie (R1) and Lie (R2)in such a case. We now recall the appropriate definition
with an extension to cover the case at hand. We recall that if L is a Lie algebra,
C is a nilpotent subalgebra, and a is a root of C on L, then La(C) (or just La)is
the corresponding root space.

DEFINITION 8. Let L, 1, 2 be solvable Lie algebras on which the semi-
simple Lie algebra H acts as derivations. An H-near isomorphism f: L1 - L 2

with associated root bijection 9 is an H-module isomorphism of L and L 2 with
the following properties:

(1) f([L1, L1])= [L2, L2] andf ILL,, L2] is a Lie algebra homomorphism.
(2) There are Cartan subalgebras C of L which are H-submodules such

thatf(C1) C2 andf IC1 is a Lie algebra homomorphism.
(3) If i denotes the set of non-zero roots of C on L, then there is a

bijection 9: 1 -2 such that
(a) f(L 1,.)= L2,,a)for all a in 1,
(b) f((c a(c))x) (f(c) 9(a)f(c))f(x)for all x in LI,, and c in C1, and
(c) 9 induces an isomorphism from the subgroup of CI’ generated by 1 to

the subgroup of C generated by 2.
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PROPOSITION 9. Let Gx and G2 be simply connected analytic subgroups ofthe
algebraic group such that G is a reduced split hull of G and G 2, and let P be a
maximal reductive subgroup of G and G 2. Then the radical of Lie (G x) is
Lie (P)-near isomorphic to the radical of Lie (G2).

Proof. Let T be a torus in G such that G Gi" T and (T, P)= {e}, and let
Ri, R be the radical of Gi, G respectively. We know that R R T and that R
is a reduced split hull of R by the above discussion. Let Li Lie (Ri) and let
L Lie (R). Let H Lie (P). In [10, Theorem 21] we showed how to construct
a near-isomorphism (for the trivial semi-simple algebra)f: L --,/--2. We will
show that this f is actually an H-near isomorphism.

Let S Lie (T) and M Lie (G). Since R is normal in G, it is normal in G
and hence Li is an ideal of M. The H-module action on L is then just Lie
multiplication. Now L L @ S, and f: L L 2 is /., L --/., 2 (inclusion
followed by projection). We check thatfis an H-module homomorphism: the
inclusion L ---, L is an H-module homomorphism, and since [H, S] -0, so is
the projection L ---, L 2. The Cartan subalgebras C are defined in the proof of
[10, Theorem 21] as follows. Let C be the centralizer of S in L. Then
C=Lc C. Since H centralizes S, [H,C]_C, and hence Ci is an H-
submodule of L. Thus f is an H-near isomorphism.

Proposition 9 has a converse. To state it simply, we make the following
definition, so as to avoid having to single out the special reductive subgroup P.

DEFINITION 10. Let Li, 1, 2 be Lie algebras. Then La and L2 are said to
be nearly isomorphic if there is a semi-simple Lie algebra H and Lie algebra
injections hi: H Li such that hi(H) is a maximal semi-simple subalgebra of Li,
and such that the radical of L is H-near isomorphic to the radical of L 2, with
the H-module structures induced from the

THEOREM 11. Let G, 1, 2, be simply connected analytic groups. Then the
Gi have reduced split hulls isomorphic as algebraic groups ifand only ifLie (G ) is
nearly isomorphic to Lie (G E).

Proof "Only if" was done in Proposition 9 and the discussion preceding it.
For "if’, we let L be the radical of Lie (G i) and let H be a semi-simple algebra
as in definition 10 andf: La --, L2 an H-near isomorphism. We will regard H as
a subalgebra of Lie (G) so that Lie (Gi)-- L H, and let P be the simply
connected, semi-simple subgroup of G with Lie (P) H. Let Ribe the radical
of Gg, so Lie (R)= Li. In [10, Theorem 22] we showed how to construct
isomorphic reduced split hulls R from R from the near isomorphism f. An
examination of that construction will yield the desired (isomorphic)reduced
split hulls of the

Let C be the Caftan subalgebra ofL of Definition 8, part (2), and let (I) be as
in part (3). If a e tI)i, then since [H, Ci]_ C, [H, L,,]

_
Li,,. Thus the Lie
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subalgebra Ni of Li generated by {Li,ala Oi} is an H-submodule. In the proof
of [10, Theorem 22] (which precedes the theorem), we defined an action D of Ci
on Ni such that D(c)(xa)= cxa a(c)x,a for a O, and xa L,.. Let/9 denote
the H-action on Ni. Then an easy calculation shows that

p(h)D(c)- D(c)p(h)= D([h, c]) for h in H and c in C
so there is an action of C + H on N compatible with D and p. This action of
C + H then extends to the nilpotent algebra U(L, Ci) of [10]. Now let Ai be
the subgroup of C’ generated by , and let T be a torus with character group
Ai. If a is a root of C on Li, let 2, be the corresponding character of T. In [10]
we define an action a of T on U(Li, Ci) such that if x L,, and T, a(t)x
,o(t)x. Thus if h H, (t)(hx)= h((t)x), so the actions of H (as a subalgebra
of C + H) and T on U(L, C) commute. Now let Ui be the unipotent algebraic
group with Lie algebra U(Li, Ci). T acts on U, and in [10] we show that
U.T (semi-direct product) is the split hull / of R to be produced. The
action of H on U(L, C) induces an action of P on U, commuting with the
action of T, and hence an action of P on R commuting with the action of
T. So we can form the semi-direct product G R" P. This is an algebraic
group, since the action of P on Ui is algebraic.

Lie (d,)= (Lie (R,) Lie (T))(R) Lie (P)= (L, Lie (T)) H,

and the construction is such that Lie (G) Li(R) H Lie ((7)is a Lie algebra
homomorphism. Thus the injections R R G and P G extend to an
analytic group injection Gi G, such that ( G. Ti (semi-direct product).
Since Ri is Zariski-dense in/, it follows that Gi is Zariski-dense in 0. By [10],f
induces an algebraic group isomorphism f: R1 R2, and since f is an H-
module homomorphism we see thatf is P-equivariant, and hence extends to an
algebraic group isomorphism G1 G2. So G and G2 have isomorphic split
hulls.

Theorem 11 and Corollary 7 combined describe when Lie algebras (or
simply connected analytic groups) have isomorphic module categories. We
summarize these facts in the following theorem.

THEOREM 12. Let Lx and Lz be Lie algebras and let Gi be the simply con-
nected analytic 9roup with Lie algebra L. Then the followin9 are equivalent:

(1) The categories Mod (L)offinite-dimensional modulesfor L and L2 are
isomorphic as tensored abelian categories of vector spabes.

(2) The categories Mod (G)offinite-dimensional modulesfor G and G 2are
isomorphic as tensored abelian categories of vector spaces.

(3) The algebras R(GI) and R(G2) of representative functions on G and G
are isomorphic as Hopf algebras.

(4) The Hopf algebras H(L) and H(L2) ofL and L2 [1, 2.8.16, p. 99] are
isomorphic as Hopf algebras.
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(5) The continuous duals of the universal enveloping algebras U(L1)and
U(L2) [1, 2.8.17, p. 100] are isomorphic as Hopfalgebras.

(6) A(G,) and A(G2)are isomorphic as pro-affine algebraic groups.
(7) G and G2 have reduced split hulls isomorphic as algebraic groups.
(8) L and L2 are nearly isomorphic.

Proof Since Mod (G,)= Mod (L,), (1)and (2)are equivalent. Since R(Gi),
as a Hopf algebra, determines and is determined by Mod (G i).[8, Prop. 2.3], (2)
and (3)are equivalent. Since H(L,)and R(G,)are isomorphic Hopf algebras, (3)
and (4) are equivalent. Since the continuous dual of U(L,)is H(L,)[1, 2.8.17,
p. 100], (4) and (5) are equivalent. Since A(G)determines and is determined by
R(G,), (6) and (3) are equivalent. By Corollary 7, (6)and (7)are equivalent, and
by Theorem 11, (7) and (8)are equivalent.
The equivalence of (1) and (8) can be regarded as an answer to how close the

category Mod (L) comes to determining the Lie algebra L. In general, there
may be many Lie algebras with the same module category--uncountably
many, even, as the example of [7, p. 1150] shows. One could still raise the
weaker question" given the category Mod (L), can we find some Lie algebra E
with Mod (L) Mod (/2)? If G is the simply connected analytic group with Lie
algebra L, then knowledge of Mod (L)implies that A(G)is known (although
the subgroup s(G) of A(G) is not known) and hence that the bottom group , of
A(G) is known. To find an/2, therefore, we need to find a simply connected
analytic group G’ in A which has A as a reduced split hull. Thus we want
to recognize which algebraic groups are reduced split hulls of simply connected
analytic groups. This is done in the following theorem.

THEOREM 13. Let G be an algebraic group which is the semi-direct product of
its radical R and a simply connected semi-simple subgroup P. Assume that P
commutes with a maximal torus T of R, that R has no central semi-simple ele-
ments, and that if T =/= {e} there is a non-trivial algebraic homomorphism
a: G C. Then G is the reduced split hull of a simply connected analytic
subyroup G’.

Proof. If T {e} we can take G’- G, so we assume T 4= {e} and hence the
existence of a: G --, C (non-trivial). Let U be the unipotent radical of G. Let
T (C*)tn. Choose , , e C linearly independent over Q. Let b: U --, C
be the restriction of a to U, which is non-trivial. Map U to T by sending u to

(exp (e b(u)),..., exp (nb(n)).
The image is Zariski-dense; let K be its graph. We can regard K as a subset of
UT. It is in fact a subgroup: if H exp ib(u)) then

tu’ (tu’t- ’)t and b(u’) b(tu’t- ’)
sine a vanishes on t, so tu’= (tu’t-)II exp (oqb(tu’t-)) from whence the
closure of K under multiplication readily follows. Regarding K as a graph we
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see that it is closed and homeomorphic to U, hence simply connected. It is
Zariski-dense in R since its Zariski-closure projects onto both U and T, and
hence normal in R. Since P and T commute, and b(pup- 1) b(u) for p e P and
u U, K is normalized by P. The subgroup G’= KP of G is then a Zariski-
dense simply connected analytic subgroup of G, with G’ R K. Thus
G’ T K T {e}, and since R KT, G’T G and this is a semi-direct
product. Thus G is a (necessarily reduced) split hull of G’.
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