THE REAL SEMI-CHARACTERISTIC OF A HOMOGENEOUS SPACE

BY

J. C. BECKER ${ }^{1}$

1. Introduction

The real Kervaire semi-characteristic of a closed orientable manifold of dimension $4 s+1$ is defined to be

$$
k(M)=\sum_{i} \operatorname{dim}\left(H^{2 i}(M, R)\right) \bmod 2
$$

The main purpose of this paper is to give a formula for the semi-characteristic of a homogeneous space G / H along the lines of Hopf and Samelson's formula for the Euler characteristic [4].

Recall that the Weyl group of a compact Lie group G (not necessarily connected) is $W(G)=N_{G}(T) / C_{G}(T)$, where $N_{G}(T)$ and $C_{G}(T)$ are respectively the normalizer and centralizer of a maximal torus T of the identity component of G. Hopf and Samelson's theorem states that the Euler characteristic of a connected homogeneous space G / H is given by

$$
E(G / H)=\left\{\begin{array}{cl}
|W(G)| /|W(H)|, & \operatorname{rank}(H)=\operatorname{rank}(G) \\
0, & \operatorname{rank}(H)<\operatorname{rank}(G)
\end{array}\right.
$$

For a connected orientable homogeneous space G / H of dimension $4 s+1$ we will show that

$$
k(G / H)=\left\{\begin{array}{cl}
|W(G)| / \mid W(H), & \operatorname{rank}(H)=\operatorname{rank}(G)-1, \\
0, & \operatorname{rank}(H)<\operatorname{rank}(G)-1,
\end{array}\right.
$$

as integers mod 2 (see Corollary (5.1)).
The similarity in the statement of these two results is also present in their method of proof which in each case involves analyzing vector fields on G / H. The Euler characteristic arises as an obstruction to finding a non-zero vector field on G / H, whereas Atiyah and Dupont [2] have shown that the semicharacteristic arises as an obstruction to extending a non-zero vector field to a field of 2-frames on G / H.

Received November 6, 1979.
${ }^{1}$ Partially supported by a National Science Foundation grant.

It is a pleasure to thank R. Schultz for several helpful conversations during the course of this work.

2. The characteristic of a k-field

It is well known that a compact smooth manifold M has an associated "Gauss map" whose degree is the Euler characteristic of M. To be precise, choose an embedding $c: M \rightarrow R^{s}$ with normal bundle v. Let τ denote the tangent bundle of M and \dot{M} the boundary of M. The restriction of the inclusion i : $M^{v} \rightarrow M^{\tau \oplus v}$ to \dot{M}^{v} is null homotopic by $v_{x} \rightarrow t N_{x} \oplus v_{x}, 0 \leq t \leq \infty$, where N is the outward normal vector field on \dot{M}. Applying the homotopy extension property we have $\tilde{i}:(M, \dot{M})^{\nu} \rightarrow M^{\dagger \oplus \nu}$. Then the degree of the map

$$
S^{s} \xrightarrow{c \neq}(M, \dot{M})^{v} \rightarrow M^{\tau \oplus v} \xrightarrow{i} S^{s}
$$

is the Euler characteristic of M.
There is an interesting generalization of this construction due to E. Y. Miller [5]. Suppose that $\Delta_{1}, \ldots, \Delta_{k}$ are linearly independent vector fields on M which are also tangent on \dot{M}. Let $\Delta: M \times R^{k} \rightarrow \tau$ denote the associated injection. The restriction of $\Delta \oplus 1: M^{R k \oplus v} \rightarrow M^{\tau \oplus v}$ to $\dot{M}^{R k \oplus v}$ is again canonically null homotopic so we obtain

$$
\widetilde{\Delta \otimes 1}:(M, \dot{M})^{R k \oplus v} \rightarrow M^{\tau \oplus v} .
$$

The map

$$
S^{k} \wedge S^{s} \xrightarrow{1 \wedge c \#} S^{k} \wedge(M, \dot{M})^{v}=(M, \dot{M})^{R \in \oplus v} \xrightarrow{\widetilde{\Delta \oplus 1}} M^{\tau \oplus v} \rightarrow S^{s}
$$

defines an element

$$
\begin{equation*}
\chi_{k}\left(M, \Delta_{1}, \ldots, \Delta_{k}\right) \in \pi_{k}\left(S^{\circ}\right) . \tag{2.1}
\end{equation*}
$$

It depends only on the homotopy class of the k-field $\left\{\Delta_{1}, \ldots, \Delta_{k}\right\}$ and its vanishing is a necessary condition that there exist a vector field \bar{N} on M which extends the outward normal N on \dot{M} and such that $\Delta_{1}, \ldots, \Delta_{k}, \bar{N}$ are linearly independent. Of course $\chi_{0}(M) \in \pi_{0}\left(S^{\circ}\right)=Z$ is the Euler characteristic $E(M)$.

We list now some of the properties of this element. In what follows, by a k-field on M (always assumed compact) we will mean k linearly independent vector fields on M which are also tangent on \dot{M}.
(2.2) Multiplicativity. Suppose that $\Delta_{1}, \ldots, \Delta_{p}$ is a p-field on M and $\delta_{1}, \ldots, \delta_{q}$ is a q-field on N. Define Δ_{j}^{\prime} on $M \times N, 1 \leq j \leq p$, by $\Delta_{j}^{\prime}(x, y)=i_{y^{*}} \Delta_{j}(x)$, where i_{y} : $M \rightarrow M \times N$ is the inclusion $x \rightarrow(x, y)$, and define $\delta_{i}^{\prime}, 1 \leq j \leq q$, similarly. Then $\Delta_{1}^{\prime}, \ldots, \Delta_{p}^{\prime}, \delta_{1}^{\prime}, \ldots, \delta_{q}^{\prime}$ is a $(p+q)$-field on $M \times N$ and

$$
\chi_{p+q}\left(M \times N, \Delta_{1}^{\prime}, \ldots, \Delta_{p}^{\prime}, \delta_{1}^{\prime}, \ldots, \delta_{q}^{\prime}\right)=\chi_{p}\left(M, \Delta_{1}, \ldots, \Delta_{p}\right) \chi_{q}\left(N, \delta_{1}, \ldots, \delta_{q}\right)
$$

$(M \times N$ has the product smooth structure which involves straightening the angle along $\dot{M} \times \dot{N}$ if both \dot{M} and \dot{N} are non empty.)

Suppose now that $M=M_{1} \cup M_{2}$ where M_{1} and M_{2} are topological n submanifolds of the smooth n-manifold M such that $M_{1} \cap M_{2}=\dot{M}_{1} \cap$ $\dot{M}=M_{12}$ say, and M_{12} is a smooth submanifold with boundary $\dot{M}_{12}=M_{12} \cap \dot{M}$. Then M_{1} and M_{2} inherit a smooth structure from M by straightening the angle along \dot{M}_{12}. If Δ is a 1 -field on M with the additional property that $\Delta^{12}=\Delta \mid M_{12}$ is tangent on M_{12}, it is easy to check that Δ induces a 1 -field Δ^{j} on $M_{j}, j=1,2$, uniquely determined by the condition that $\Delta^{j}\left|M_{j}-\dot{M}_{12}=\Delta\right| M_{j}-\dot{M}_{12}$.
(2.3) Excision. Suppose that $\Delta_{1}, \ldots, \Delta_{k}$ is a k-field on M such that $\Delta_{i}^{12}=\Delta_{i} \mid M_{12}$ is tangent on $M_{12}, 1 \leq i \leq k$. Then $\Delta_{1}^{j}, \ldots, \Delta_{k}^{j}$ is a k-field on M_{j}, $j=1,2$, and

$$
\begin{aligned}
& \chi_{k}\left(M, \Delta_{1}, \ldots, \Delta_{k}\right) \\
& \quad=\chi_{k}\left(M_{1}, \Delta_{1}^{1}, \ldots, \Delta_{k}^{1}\right)+\chi_{k}\left(M_{2}, \Delta_{1}^{2}, \ldots, \Delta_{k}^{2}\right)-\chi_{k}\left(M_{12}, \Delta_{1}^{12}, \ldots, \Delta_{k}^{12}\right)
\end{aligned}
$$

The proofs of (2.2) and (2.3) are routine and will be omitted.
(2.4) Theorem. Let M be closed, orientable, and odd dimensional. Let Δ be a 1-field on M. Then $\chi_{1}(M, \Delta) \in \pi_{1}\left(S^{\circ}\right)=Z_{2}$ is independent of Δ and is given by

$$
\chi_{1}(M, \Delta)=\left\{\begin{array}{cl}
k(M), & \operatorname{dim}(M) \equiv 1 \bmod 4 \\
0, & \operatorname{dim}(M) \equiv 3 \bmod 4
\end{array}\right.
$$

where $k(M)$ is the real Kervaire semi-characteristic of M.
This is implicit in the work of Atiyah and Dupont [2]. It is simply a matter of relating $\chi_{1}(M, \Delta)$ with the index defined there. Since the Hurewicz map

$$
\pi_{1}\left(S^{\circ}\right)=\pi^{\circ}\left(S^{1}\right) \rightarrow \widetilde{K O}^{\circ}\left(S^{1}\right)
$$

is an isomorphism we can work with the image of $\chi_{1}(M, \Delta)$ in $\widetilde{K O}{ }^{\circ}\left(S^{1}\right)$ which we again denote by $\chi_{1}(M, \Delta)$. Now Atiyah and Dupont define an element

$$
\text { Ind } \alpha_{M, 2}^{s} \in \widetilde{K O}^{s}\left(P_{s+1} / P_{s-1}\right)
$$

where $0 \leq s \leq 3$ and $\operatorname{dim}(M)+s \equiv 0$ (4). We have an exact sequence

$$
\widetilde{K O}^{\circ}\left(S^{1}\right)=\widetilde{K O}^{s}\left(P_{s+1} / P_{s}\right)^{j^{*}} \rightarrow \widetilde{K O}^{s}\left(P_{s+1} / P_{s-1}\right) \rightarrow \widetilde{K O}^{s}\left(P_{s} / P_{s-1}\right)=Z
$$

and, on comparing definitions, it can be shown that $j^{*}\left(\chi_{1}(M, \Delta)\right)=\operatorname{Ind} \alpha_{M, 2}^{s}$. From the calculation of $\widetilde{K O}^{s}\left(P_{s+1} / P_{s-1}\right)$ given in [2, Section 3] we see that j^{*} is injective and therefore $\chi_{1}(M, \Delta)$ is independent of Δ. The main theorem of [2] then gives the stated value for $\chi_{1}(M, \Delta)$.

Suppose now that $p: E \rightarrow B$ is a vector bundle over a closed manifold B. Let $D(E)$ and $S(E)$ denote the unit disk and sphere bundles (relative to some metric).
(2.5) Lemma. Suppose that $\delta_{1}, \ldots, \delta_{k}$ is a k-field on $D(E)$ and $\Delta_{1}, \ldots, \Delta_{k}$ is a k-field on B such that $p_{*} \delta_{1}=\Delta_{i} p, 1 \leq i \leq k$. Then $\chi_{k}\left(D(E), \delta_{1}, \ldots, \delta_{k}\right)=\chi_{k}(B$, $\left.\Delta_{1}, \ldots, \Delta_{k}\right)$.

Proof. There is the natural inclusion $p^{*}(E) \rightarrow \tau(D(E))$ and we have

$$
\tau(D(E)) \simeq p^{*}(\tau(B)) \oplus p^{*}(E)
$$

Write $\delta_{i}(e)=\delta_{i}^{\prime}(e) \oplus \delta_{1}^{\prime \prime}(e)$, where $\delta_{i}^{\prime}(e) \in p^{*}(\tau(B))$ and $\delta_{i}^{\prime \prime}(e) \in p^{*}(E)$. Since δ_{i} is homotopic to δ_{i}^{\prime} and $\delta_{i}^{\prime}(e)=(e, \Delta p(e))$, we may assume that $\delta_{i}(e)=(e, \Delta p(e))$, $1 \leq i \leq k$.

Let $s: B \rightarrow D(E)$ denote the zero section and observe that if θ is any vector bundle over B the following is homotopy commutative:

In fact we may take

$$
s(\Delta \oplus 1) s_{\#}\left(v_{b}, x, w_{b}\right)=\left(\theta_{b}, \Delta(b, x), \frac{1}{1-\left|v_{b}\right|} v_{b}, w_{b}\right),
$$

$v_{b} \in D(E), x \in R^{k}, w_{b} \in \theta$. And since the outward normal on $S(E)$ is given by $v_{b} \rightarrow\left(v_{b}, v_{b}\right) \in p^{*}(E)$, we may take

$$
\widetilde{\delta \oplus 1}\left(v_{b}, x, w_{b}\right)=\left(v_{b}, \Delta(b, x), \frac{1}{1-\left|v_{b}\right|} v_{b}, w_{b}\right) .
$$

It is clear now that $\overparen{\delta \oplus 1} \simeq s(\Delta \oplus 1) s_{\#}$.
Now choose an embedding $c^{\prime}: E \rightarrow R^{s}$ with normal bundle v^{\prime}. Let

$$
c=c^{\prime} s: B \rightarrow R^{s} \quad \text { and } \quad v=s^{*}\left(v^{\prime}\right)
$$

Then $v^{\prime}=p^{*}(v)$ and by the remarks above,

is homotopy commutative. The lemma follows.

3. G-manifolds

We shall eventually be dealing with both left and right G-spaces so we will adopt the standard notation for the orbit space: $G \backslash X$ if X is a left G-space and X / G if X is a right G-space.

Suppose that M is a smooth G-manifold having no isotropy subgroup of maximal rank. Let T be a maximal torus of G. A choice of a generator t of T determines a l-field Δ_{t} on M as follows: t defines a 1-parameter subgroup $R \subset T$ and we have $\tau_{0}(R) \subset \tau_{1}(T)$. Let $v \in \tau_{1}(T)$ denote the image of the canonical generator of $\tau_{0}(R)$ and define $\Delta_{t}(x)=\omega_{x^{*}}(v)$, where $\omega_{x}: T \rightarrow M$ is the evaluation map $s \rightarrow s x, s \in T$.

If H is a subgroup of G let (H) denote its conjugacy class, let $M_{(H)}$ denote the set of points of M having isotropy subgroup in (H) and let $\dot{M}_{(H)}^{(H)}$ denote the one-point compactification of $M_{(H)}$.
(3.1) TheOrem. If M is a G-manifold having no isotropy subgroup of maximal rank then

$$
\chi_{1}\left(M, \Delta_{t}\right)=\sum E\left(G \backslash \dot{M}_{(H)}, \infty\right) \chi_{1}\left(G / H, \Delta_{t}\right),
$$

the sum taken over all conjugacy classes of isotropy subgroups of M.
Proof (Cf. [3, Theorem (4.2)].) We proceed by induction on the dimension of M and on the number of handles in an equivariant handle decomposition of M as in [7]. The theorem holds vacuously for 0 -dimensional manifolds.

Consider first the case of the unit disk bundle $D(V)$ of a Riemannian G vector bundle V over an orbit G / H with rank $(H)<\operatorname{rank}(G)$. By Lemma (2.5),

$$
\begin{equation*}
\chi_{1}\left(D(V), \Delta_{t}\right)=\chi_{1}\left(G / H, \Delta_{t}\right) \tag{3.2}
\end{equation*}
$$

If K is an isotropy subgroup of $D(V)$ then some conjugate of K lies in H. Consider the case $(K)=(H)$. Then $V_{(H)}$ is a subbundle W of V, hence $D(V)_{(H)}=$ $D(W)$. Since $p: D(W) \rightarrow G / H$ is a G-homotopy equivalence, $E(G \backslash D(W)$, $\infty)=E(G \backslash D(W))=1$.

If K is a proper subgroup of H then

$$
D(V)_{(K)}=S(V)_{(K)} \times[0,1)
$$

since $v \in D(V)_{(K)}$ implies that $\lambda v \in D(V)_{(K)}, \lambda \neq 0$. Therefore

$$
G \backslash D(V)_{(K)}=G \backslash S(V)_{(K)} \times[0,1)
$$

and it follows that $E\left(G \backslash D(V)_{(K)}\right)=0$. Therefore

$$
\begin{equation*}
\sum E\left(G \backslash D \circ(V)_{(K)}, \infty\right) \chi_{1}\left(G / K, \Delta_{t}\right)=\chi_{1}\left(G / H, \Delta_{t}\right) \tag{3.3}
\end{equation*}
$$

The result for $D(V)$ now follows from (3.2) and (3.3).
Suppose now that M is obtained from N by attaching a G-handle; $M=N$
$\bigcup_{F} \mathscr{H}$ where $\mathscr{H}=D(V) \times{ }_{G / H} D(W), V$ and W Riemannian G-vector bundles over an orbit G / H. By (2.3),

$$
\chi_{1}\left(M, \Delta_{t}\right)=\chi_{1}\left(N, \Delta_{t}\right)+\chi_{1}\left(\mathscr{H}, \Delta_{t}\right)-\chi_{1}\left(N \cap \mathscr{H}, \Delta_{t}\right) .
$$

We may assume by induction on the number of handles that the result holds for N and by induction on dimension that the result holds for $N \cap \mathscr{H}$. Since $\mathscr{H}=D(V \oplus W)$ is a smooth manifold we have from above that the theorem holds for \mathscr{H}. It is now easy to check that the theorem also holds for M.

Given an action of a torus T on M, define the circle point set of M to be

$$
\begin{equation*}
\Sigma(M)=\left\{x \in M \mid \operatorname{dim}\left(T / T_{x}\right)=1\right\} \tag{3.4}
\end{equation*}
$$

(3.5) Corollary. If T acts on M without fixed points then

$$
\chi_{1}\left(M, \Delta_{t}\right) \equiv E(T \backslash \Sigma(M)) \quad \bmod 2
$$

Proof. First observe that

$$
\chi_{1}\left(T, \Lambda_{t}\right)= \begin{cases}1, & \operatorname{dim}(T)=1 \\ 0, & \operatorname{dim}(T)>1\end{cases}
$$

If T^{\prime} is a subgroup of T let $t^{\prime} \in T / T^{\prime}$ denote the image of t. Since T / T^{\prime} is again a torus

$$
\chi_{1}\left(T / T^{\prime}, \Delta_{t}\right)=\chi_{1}\left(T / T^{\prime}, \Delta_{t^{\prime}}\right)= \begin{cases}1, & \operatorname{dim}\left(T / T^{\prime}\right)=1 \\ 0, & \operatorname{dim}\left(T / T^{\prime}\right)>1\end{cases}
$$

Hence we have

$$
\chi_{1}\left(M, \Delta_{t}\right) \equiv \sum E\left(T \backslash \stackrel{\circ}{M}_{\left(T^{\prime}\right)}, \infty\right) \quad \bmod 2
$$

where the sum is taken over all isotropy subgroups T^{\prime} such that $\operatorname{dim}\left(T / T^{\prime}\right)=1$. It is easy to see that this sum is equal to $E(T \mid \Sigma(M))$.

4. Homogeneous spaces

In this section we evaluate $\chi_{1}\left(G / H, \Delta_{t}\right)$. We assume that G is connected but H need not be connected.

If rank $(H)=\operatorname{rank}(G)-1$ let $I_{G}(H)=C_{G}\left(T^{\prime}\right) / T^{\prime}$ where T^{\prime} is a maximal torus of the identity component of H. Since $I_{G}(H)$ is a connected compact Lie group of rank 1 it is either $S^{1}, S O(3)$, or S^{3}.
(4.1) Theorem. If $\operatorname{rank}(H)<\operatorname{rank}(G)-1$,

$$
\chi_{1}\left(G / H, \Delta_{t}\right)=0
$$

If $\operatorname{rank}(H)=\operatorname{rank}(G)-1$,

$$
\chi_{1}\left(G / H, \Delta_{t}\right) \equiv|W(G)| /|W(H)| \bmod 2
$$

Moreover, if $I_{G}(H)$ is $\operatorname{SO}(3)$ or S^{3} then $|W(G)| /|W(H)| \equiv 0 \bmod 2$, hence

$$
\chi_{1}\left(G / H, \Delta_{t}\right)=0
$$

Proof. Fix a maximal torus T^{\prime} of the identity component of H and a maximal torus T of G such that $T^{\prime} \subset T$. By Corollary (3.5),

$$
\begin{equation*}
\chi_{1}\left(G / H, \Delta_{t}\right) \equiv E(T \backslash \Sigma(G / H)) \quad \bmod 2 \tag{4.2}
\end{equation*}
$$

where $\Sigma(G / H)$ is the circle point set of G / H relative to the left action of T. If $\operatorname{rank}(H)<\operatorname{rank}(G)-1$, the circle point set is empty and we are done. Assume then, from now on, that rank $(H)=\operatorname{rank}(G)-1$. Let

$$
\begin{equation*}
N_{G}\left(T^{\prime}, T\right)=\left\{g \in G \mid g T^{\prime} g^{-1} \subset T\right\} \tag{4.3}
\end{equation*}
$$

and define

$$
\begin{equation*}
\phi: N_{G}\left(T^{\prime}, T\right) \rightarrow \Sigma(G / H) \tag{4.4}
\end{equation*}
$$

by $\phi(g)=g H$. To see that ϕ is well defined note that the T-isotropy subgroup of $g H$ is $T \cap g H g^{-1}$. Then $g \in N_{G}\left(T^{\prime}, T\right)$ implies that $g T^{\prime} g^{-1} \subset T \cap g H g^{-1}$ and therefore $\operatorname{dim}\left(T / T \cap g H^{-1}\right)=1$.

Since ϕ is T-equivariant we have

$$
\begin{equation*}
\psi=T \backslash \phi: T \backslash N_{G}\left(T^{\prime}, T\right) \rightarrow T \backslash \Sigma(G / H) \tag{4.5}
\end{equation*}
$$

Now $U(H)=N_{H}\left(T^{\prime}\right) / T^{\prime}$ acts on the right of $T \backslash N_{G}\left(T^{\prime}, T\right)$ by

$$
(T g)\left(h T^{\prime}\right)=T g h .
$$

This action is well defined since $h T^{\prime}=T^{\prime} h$ and $g T^{\prime} \subset T g$.
(4.6) $\quad \psi$ is $U(H)$-invariant and induces a homeomorphism

$$
T \backslash N_{G}\left(T^{\prime}, T\right) / U(H) \rightarrow T \backslash \Sigma(G / H)
$$

To prove (4.6) we first show that

$$
\phi: N_{G}\left(T^{\prime}, T\right) \rightarrow \Sigma(G / H)
$$

is onto. If $g H \in \Sigma(G / H)$ its isotropy subgroup $T \cap g H^{-1}$ has maximal rank in $g H^{-1}$. Hence $g^{-1} T g \cap H$ has maximal rank in H. Let $T^{\prime \prime} \subset g^{-1} T g \cap H$ be a maximal torus of the identity component H_{0} of H and let $h \in H_{0}$ be such that $h T^{\prime} h^{-1}=T^{\prime \prime}$. Then $h T^{\prime} h^{-1} \subset g^{-1} T g$ and we have $g h T^{\prime} h^{-1} g^{-1} \subset T$. Therefore $g h \in N_{G}\left(T^{\prime}, T\right)$ and $\phi(g h)=g H$.

It follows that the orbit map

$$
\psi: T \backslash N_{G}\left(T^{\prime}, T\right) \rightarrow T \backslash \Sigma(G / H)
$$

is onto. Obviously ψ is $U(H)$-invariant so it remains to show that if $\psi(T g)=$ $\psi(T \bar{g})$ there is $h \in N_{H}\left(T^{\prime}\right)$ such that $T g=T \bar{g} h$. Since $\psi(T g)=\psi(T \bar{g})$ we have $T g h=T \bar{g} H$, hence there is $h \in H$ such that $T g=T \bar{g} h$. We will show that $h \in N_{H}\left(T^{\prime}\right) . h=g^{-1} \mathrm{sg}$ for some $s \in T$ so

$$
h^{-1} T^{\prime} h=\bar{g}^{-1} s^{-1} \bar{g} T^{\prime} \bar{g}^{-1} s g \subset g^{-1} T^{\prime} g
$$

since $\bar{g} T^{\prime} \bar{g}^{-1} \subset T$. Hence

$$
h^{-1} T^{\prime} h \subset g^{-1} T g \cap H_{0} .
$$

Now $g^{-1} T g \cap H_{0}=T^{\prime}$ since $g T^{\prime} g^{-1} \subset T$ implies that $T^{\prime} \subset g^{-1} T g \cap H_{0}$. This completes the proof of (4.6).

By (4.2) and (4.6) we have

$$
\begin{equation*}
\chi_{1}\left(G / H, \Delta_{t}\right) \equiv E\left(T \backslash N_{G}\left(T^{\prime}, T\right) / U(H)\right) \quad \bmod 2 \tag{4.7}
\end{equation*}
$$

In order to compute this Euler characteristic we first determine the $U(H)$ isotropy subgroups of $T \backslash N_{G}\left(T^{\prime}, T\right)$.
(4.8) T he $U(H)$-isotropy subgroup of $T g$ is $g^{-1} T g \cap H / T^{\prime}$.

Suppose $T g h=T g$. Then $h \in g^{-1} T g$ and therefore $h \in g^{-1} T g \cap H$. Conversely, if $h \in g^{-1} T g \cap H$ then $T g h=T g$. Write $h=g^{-1} s g, s \in T$. Then, since $g T^{\prime} g^{-1} \subset T$,

$$
h T^{\prime} h^{-1}=g^{-1} s g T^{\prime} g^{-1} s^{-1} g=g^{-1} T g
$$

and therefore $h T^{\prime} h^{-1} \subset g^{-1} T g \cap H_{0}=T^{\prime}$. So $h \in N_{H}\left(T^{\prime}\right)$.
Let $I(H)=C_{H}\left(T^{\prime}\right) / T^{\prime}$. Then $I(H)$ is a finite subgroup of $I_{G}(H)=C_{G}\left(T^{\prime}\right) / T^{\prime}$. From (4.8) the $U(H)$-isotropy subgroups of $T \backslash N_{G}\left(T^{\prime}, T\right)$ are precisely the subgroups of $I(H)$ of the form $T^{\prime \prime} \cap H / T^{\prime}$ where $T^{\prime \prime}$ is a maximal torus of G such that $T^{\prime} \subset T^{\prime \prime}$. Note that $T^{\prime \prime} \cap H / T^{\prime}$ is cyclic since it is a subgroup of $T^{\prime \prime} / T^{\prime}$. It is easy to see that the situation may be rephrased as follows.
(4.9) The $U(H)$-isotropy subgroups of $T \backslash N_{G}\left(T^{\prime}, T\right)$ are the cyclic subgroups of $I(H)$ having the form $S \cap I(H)$ where S is a maximal torus (circle) of $I_{G}(H)$.
(4.10) If A is a $U(H)$-isotropy subgroup then $E(\operatorname{Fix}(A))=|W(G)|$.

Let $A=T^{\prime \prime} \cap H / T^{\prime}$ as above. Then $T^{\prime \prime} \cap H$ is an abelian extension of the torus T^{\prime} by the cyclic group and therefore A is topologically cyclic [1, P.80]. Let s be a generator of $T^{\prime \prime} \cap H$. We will now apply a standard argument. For $x \in G$ define $\theta_{x}: T \backslash G \rightarrow T \backslash G$ by $\theta_{x}(T g)=T g x$. In particular for θ_{s} : $T \backslash G \rightarrow T \backslash G$ we see that

$$
\operatorname{Fix}\left(\theta_{s}\right) \subset T \backslash N_{G}\left(T^{\prime}, T\right) \quad \text { and } \quad \operatorname{Fix}\left(\theta_{s}\right)=\operatorname{Fix}(A)
$$

Since θ_{s} is an isometry relative to a G-invariant metric, the Lefschetz number $\Lambda\left(\theta_{s}\right)$ of θ_{s} is equal to $E\left(\right.$ Fix $\left.\left(\theta_{s}\right)\right)$. We now have

$$
E(\operatorname{Fix}(A))=E\left(\operatorname{Fix}\left(\theta_{s}\right)\right)=\Lambda\left(\theta_{s}\right)=\Lambda\left(\theta_{e}\right)=E(T \backslash G)=|W(G)|
$$

where $e \in G$ is the identity. This proves (4.10).
(4.11) Let A be a $U(H)$-isotropy subgroup and $h \in N_{H}\left(T^{\prime}\right)$. If $A \neq h A h^{-1}$ then $\operatorname{Fix}(A) \cap \operatorname{Fix}\left(h A h^{-1}\right)=\Phi$.

Suppose $x \in \operatorname{Fix}(A) \cap \operatorname{Fix}\left(h A h^{-1}\right)$. If B is the isotropy subgroup of x then $A \subset B$ and $h A h^{-1} \subset B$. Since B is cyclic, $A=h A h^{-1}$.

To cut down on notation write $Z=T \backslash N_{G}\left(T^{\prime}, T\right)$. Let Z_{A} denote the set of points having isotropy subgroup A and, as before, let $Z_{(A)}$ denote the set of points having isotropy subgroup a conjugate of A. Now

$$
E(Z / U(H))=\sum \frac{|A|}{|U(H)|} E\left(\AA_{(A)}, \infty\right)
$$

and from (4.11), $\check{Z}_{(A)}=\bigvee \check{Z}_{A^{\prime}}, A^{\prime} \in(A)$. Therefore

$$
\begin{equation*}
\chi_{1}\left(G / H, \Delta_{t}\right)=E(Z / U(H))=\frac{1}{|U(H)|} \sum|A| E\left(\circ_{A}, \infty\right) \tag{4.12}
\end{equation*}
$$

the sum taken over subgroups $A \subset I(H)$ of the form $S \cap I(H), S$ a circle of $I_{G}(H)$.
To compute this sum we consider the three possibilities for $I_{G}(H)$ separately.
Case 1. $I_{G}(H)=S^{1}$. Then the only subgroup of $I(H)$ that meets the requirement is $I(H)$ itself. We then have $E\left(\dot{Z}_{I(H)}, \infty\right)=E($ Fix $(I(H)))=|W(G)|$, and

$$
\chi_{1}\left(G / H, \Delta_{t}\right)=\frac{1}{|U(H)|}|I(H)||W(G)|=\frac{|W(G)|}{|W(H)|}
$$

Case 2. $\quad I_{G}(H)=S O(3)$. Then $I(H)$ is a finite group of rotations of R^{3}. Since each rotation fixes a line and a rotation that fixes two distinct lines is the identity, we easily deduce:
(a) A subgroup of $I(H)$ of the form $I(H) \cap S, S$ a circle of $S O(3)$, is either maximal cyclic or the trivial subgroup $\{1\}$.
(b) If A and A^{\prime} are distinct maximal cyclic subgroups then $A \cap A^{\prime}=\{1\}$.

Now let A_{1}, \ldots, A_{n} denote the maximal cyclic subgroups of $I(H)$. Then

$$
E\left(\AA_{A_{i}}, \infty\right)=E\left(\operatorname{Fix}\left(A_{i}\right)\right)=|W(G)|
$$

and

$$
\begin{aligned}
E\left(\stackrel{\circ}{Z}_{\{1\}}, \infty\right) & =E\left(\operatorname{Fix}(\{1\}) / \bigcup_{1}^{m} \operatorname{Fix}\left(A_{i}\right)\right) \\
& =E(\operatorname{Fix}(\{1\}))-\sum_{1}^{m} E\left(\operatorname{Fix}\left(A_{i}\right)\right) \\
& =|W(G)|(1-n) .
\end{aligned}
$$

Hence

$$
\chi_{1}\left(G / H, \Delta_{t}\right)=\frac{|W(G)|}{|U(H)|}\left[\left(\sum_{1}^{n}\left|A_{i}\right|\right)+(1-n)\right] .
$$

Since each element of $I(H)$ lies in some A_{i} and $A_{i} \cap A_{j}=\{1\}, i \neq j$,

$$
\sum_{1}^{n}\left|A_{i}\right|=|I(H)|+(n-1)
$$

Therefore

$$
\chi_{1}\left(G / H, \Delta_{t}\right)=\frac{|W(G)|}{|U(H)|}|I(H)|=\frac{|W(G)|}{|W(H)|}
$$

Case 3. $I_{G}(H)=S^{3}$. Using the double cover $\pi: S^{3} \rightarrow S O(3)$ we deduce that $I(H)$ is either cyclic of odd order or $I(H)=\pi^{-1}(\Gamma)$ where $\Gamma \subset S O(3)$ [8; P.88].

If $I(H)$ is cyclic of odd order the subgroups of the form $S \cap I(H), S$ a circle of S^{3}, are $I(H)$ and $\{1\}$. Then

$$
E\left(\AA_{I(H)}, \infty\right)=E(\operatorname{Fix}(I(H)))=|W(G)|
$$

and

$$
E\left(\AA_{\{1\}}, D\right)=E(\operatorname{Fix}(\{1\}))-E(\operatorname{Fix}(I(H))=0
$$

It follows that $\chi_{1}\left(G / H, \Delta_{t}\right)=|W(G)| /|W(H)|$.
In the case where $I(H)=\pi^{-1}(\Gamma), \Gamma \subset S O(3)$, we see that:
(a) A subgroup of $I(H)$ of the form $I(H) \cap S, S$ a circle of S^{3}, is either maximal cyclic or the subgroup $\{+1,-1\}$.
(b) If A and A^{\prime} are distinct maximal cyclic subgroups then $A \cap A^{\prime}=\{+1,-1\}$.

The calculation of the right hand side of (4.12) now proceeds as in the $S O(3)$ case so we will omit the details. Once again we obtain $\chi_{1}(G / H$, $\left.\Delta_{t}\right)=|W(G)| /|W(H)|$.

To complete the proof of Theorem (4.1) we will show that $|W(G)| /|W(H)|$ is even if $I_{G}(H)$ is $S O(3)$ or S^{3}. We have a fiber bundle

$$
C_{G}\left(T^{\prime}\right) / T \rightarrow G / T \rightarrow G / C_{G}\left(T^{\prime}\right) .
$$

Let $\quad S=T / T^{\prime}$. Then $\quad C_{G}\left(T^{\prime}\right) / T=I_{G}(H) / S \quad$ so that $\quad E\left(C_{G}\left(T^{\prime}\right) / T\right)=$ $\mid W\left(I_{G}(H) \mid=2\right.$. Thus

$$
W(G)=2 E\left(G / C_{G}\left(T^{\prime}\right)\right)
$$

and to show that $|W(G)| /|W(H)|$ is even we will show that $|W(H)|$ divides $E\left(G / C_{G}\left(T^{\prime}\right)\right.$). Now $W(H)=N_{H}\left(T^{\prime}\right) / C_{H}\left(T^{\prime}\right)$ may be regarded as a subgroup of $N_{G}\left(T^{\prime}\right) / C_{G}\left(T^{\prime}\right)$ so that
(a) $|W(H)|$ divides $E\left(N_{G}\left(T^{\prime}\right) / C_{G}\left(T^{\prime}\right)\right)$.

We have a covering

$$
N_{G}\left(T^{\prime}\right) / C_{G}\left(T^{\prime}\right) \rightarrow G / C_{G}\left(T^{\prime}\right) \rightarrow G / N_{G}\left(T^{\prime}\right)
$$

so that
(b) $E\left(N_{G}\left(T^{\prime}\right) / C_{G}\left(T^{\prime}\right)\right)$ divides $E\left(G / C_{G}\left(T^{\prime}\right)\right)$.

From (a) and (b), $|W(H)|$ divides $E\left(G / C_{G}\left(T^{\prime}\right)\right)$.

5. The semi-characteristic

The previous Theorem (4.1) together with (2.4) leads to the following result concerning the real semi-characteristic of a homogeneous space.
(5.1) Corollary. Let G / H be a connected orientable homogeneous space of dimension $4 s+1$. Then, as integers mod 2 ,

$$
k(G / H)=\left\{\begin{array}{cl}
|W(G)| /|W(H)|, & \operatorname{rank}(H)=\operatorname{rank}(G)-1, \\
0, & \operatorname{rank}(H)<\operatorname{rank}(G)-1 .
\end{array}\right.
$$

Moreover, if $I_{G}(H)$ is $\operatorname{SO}(3)$ or S^{3} then $|W(G)| /|W(H)| \equiv 0 \bmod 2$, hence $k(G / H)=0$.

If $\operatorname{dim}(G / H)=4 s-1$ then Theorems (4.1) and (2.4) imply that $|W(G)| /|W(H)| \equiv 0 \quad \bmod \quad 2 \quad$ when $\quad G / H \quad$ is orientable and rank $(H)=\operatorname{rank}(G)-1$. However if G / H is not orientable this is not necessarily the case. Consider the space $U_{n} / S_{n-1} \int T^{n-1}$ where $S_{n-1} \int T^{n-1}$ is the wreath product of the symmetric group S_{n-1} with the $(n-1)$-torus T^{n-1} embedded in the usual way. We have

$$
\left|W\left(U_{n}\right)\right| /\left|W\left(S_{n-1} \int T^{n-1}\right)\right|=n
$$

and

$$
\operatorname{dim}\left(U_{n} / S_{n-1} \int T^{n-1}\right)=n^{2}-n+1
$$

Thus when $n-1=2$ (odd) we see that

$$
\operatorname{dim}\left(U_{n} / S_{n-1} \int T^{n-1}\right) \equiv-1 \bmod 4
$$

and

$$
\left|W\left(U_{n}\right)\right| /\left|W\left(S_{n-1} \int T^{n-1}\right)\right| \equiv 1 \bmod 2
$$

As an example of a class of homogeneous spaces having non-zero semi-characteristic consider the spaces $U_{n} / U_{s} \times U_{n-s-1}$. We have

$$
\left|W\left(U_{n}\right)\right| /\left|W\left(U_{s} \times U_{n-s-1}\right)\right|=\frac{n!}{s!(n-s-1)!}=m\binom{n-1}{s}
$$

Write $n-1=\sum \alpha_{i} 2^{i}$ and $s=\sum \beta_{i} 2^{i}, 0 \leq \alpha_{i}, \beta_{i} \leq 1$. Using the well known rule for computing binomial coefficients $\bmod 2(c f .[6, P .5])$ we see that $k\left(U_{n} / U_{s} \times U_{n-s-1}\right)=1$ if (a) n is odd and (b) $\beta_{i} \neq 0$ implies $\alpha_{i} \neq 0$, for all i.

From Theorems (4.1) and (3.1) we obtain under certain conditions a formula relating the semi-characteristic of a G-manifold to its orbit structure, which is similar to the well known formula for the Euler characteristic of a G-manifold.
(5.2) Corollary. Let M be an orientable G-manifold of dimension $4 s+1$ having no isotropy subgroups of maximal rank. Then, as integers mod 2,

$$
k(M)=\sum E\left(G \backslash \dot{M}_{(H)}, \infty\right)|W(G)| /|W(H)|
$$

the sum taken over all conjugacy classes of isotropy subgroups H such that $\operatorname{rank}(H)=\operatorname{rank}(G)-1$.

References

1. J. F. Adams, Lectures on Lie groups, W. A. Benjamin, New York, 1969.
2. M. F. Atiyah and J. L. Dupont, Vector fields with finite singularities, Acta Math., vol. 128 (1971), pp. 1-40.
3. J. C. Becker and R. E. Schultz, Fixed point indices and left invariant framings, Lecture Notes in Math. vol. 657, Springer, New York, 1978, pp. 1-31.
4. H. Hopf and H. Samelson, Ein Satz über die Winkungsräume geschlossener Lie'scher Gruppen, Comment Math. Helv., vol. 13 (1940), pp. 240-251.
5. E. Y. Miller, Letter to the author, 1974.
6. N. E. Steenrod, Cohomology operations, Princeton Univ. Press, Princeton, N. J., 1962.
7. A. G. Wasserman, Equivariant differential topology, Topology, vol. 8 (1969), pp. 127-150.
8. J. A. Wolf, Spaces of constant curvature, McGraw-Hill, New York, 1967.
