DEGREE OF BEST INVERSE APPROXIMATION BY POLYNOMIALS

R. K. BEATSON, C. K. CHUI,¹ AND M. HASSON

1. Introduction

Let π_n be the space of all algebraic polynomials with degree not exceeding n, and let $\|\cdot\|_p$ denote the L_p norm on the interval [-1, 1]. The purpose of this paper is the study of the speed of convergence of the error of *best inverse approximation* in L_p from π_n defined by

$$D_{n,p}(f) = \inf \{ \|1 - fP_n\|_p \colon P_n \in \pi_n \}.$$

This problem finds its origin in the method of least-squares inverses which was introduced by E. A. Robinson (cf. [11] and [12, pages 153–175]), in 1963 in connection with deconvolution of 2-length wavelets and inverse filtering in geophysical studies. Since then, this method has also been adopted and generalized in recursive digital filter design (cf. [13]). The validity of these procedures and the mathematical theory have been discussed in [3], where the present problem was proposed.

To avoid trivial cases, we will always consider those functions f which are not identically zero, but with non-empty zero-sets in [-1, 1] and $1 \le p < \infty$. The main result of this paper is the following.

THEOREM 1. Let $f \neq 0$ be a real analytic function on [-1, 1] and $1 \leq p < \infty$. There exist positive constants C_1 , C_2 depending only on f with the following properties:

(a) if f(x) = 0 for some $x \in (-1, 1)$, then

(1.1)
$$C_1 n^{-1/p} \le D_{n,p}(f) \le C_2 n^{-1/p}, \quad n = 1, 2, ...;$$

(b) if
$$f(x) \neq 0$$
 for all $x \in (-1, 1)$ but $f(-1)f(1) = 0$, then

(1.2)
$$C_1 n^{-2/p} \le D_{n,p}(f) \le C_2 n^{-2/p}, \quad n = 1, 2, \dots$$

It will be seen that the analyticity condition can be weakened. However, since our method of proof depends very heavily on the zero structure of an

© 1982 by the Board of Trustees of the University of Illinois Manufactured in the United States of America

Received May 5, 1980.

¹ The research of this author was supported in part by a grant from the U.S. Army Research Office.

analytic function, we do not state the strongest possible result. In the next section, preparatory results on interpolating polynomials will be established. These results will be applied in Section 3 to prove our main theorem. Final remarks and open questions will be included in the final section.

2. Preliminary results

Throughout this paper, all L_p norms are taken over [-1, 1] unless otherwise stated. We have the following result.

LEMMA 1. There exists a positive constant C_3 independent of $p, 1 \le p \le \infty$, with the following properties. Let $P_n \in \pi_n$. If $P_n(0) = 1$ then

$$\|P_n\|_p \ge C_3 n^{-1/p}$$

and if $P_n(1) = 1$ then

(2.2)
$$||P_n||_p \ge C_3 n^{-2/p},$$

for all n = 1, 2, ...

If $1 \le p < \infty$ and $P_n \in \pi_n$, we have

$$\frac{1}{2}\int_{-\pi}^{\pi}|P_n(\cos\theta)\sin\theta|^p\,d\theta=\int_{-1}^{1}(1-x^2)^{(p-1)/2}|P_n(x)|^p\,dx\leq \|P_n\|_p^p.$$

Hence, by a result of Nikol'skii on trigonometric polynomials (cf. [10] and [14, p. 229]), we obtain

(2.3)
$$||P_n||_p \ge 2^{-1-1/p}(n+1)^{-1/p} \sup |P_n(\cos \theta) \sin \theta|$$

 $\ge 2^{-1-1/p}(n+1)^{-1/p} |P_n(0)|,$

so that (2.1) follows. On the other hand (cf. [14, page 236]),

$$||P_n||_{\infty} \leq (p+1)^{1/p} n^{2/p} ||P_n||_p.$$

Hence, (2.2) follows.

From Lemma 1 or directly from (2.3) there follows:

COROLLARY 1. Let $0 < \varepsilon < 1$. There exists a positive constant C_{ε} such that

(2.4)
$$\sup \{|P_n(x)|: |x| \le 1-\varepsilon\} \le C_{\varepsilon} n^{1/p} \|P_n\|_p$$

for every polynomial $P_n \in \pi_n$ and $1 \le p \le \infty$.

We also have the following, which is in the opposite direction to Lemma 1:

LEMMA 2. There exists a positive constant C_4 and polynomials P_n , $Q_n \in \pi_n$, $n = 1, 2, \ldots$ such that $P_n(0) = 1$, $Q_n(1) = 1$ and $||P_n||_p \le C_4 n^{-1/p}$, $||Q_n||_p \le C_4 n^{-2/p}$, for $1 \le p < \infty$.

The main tool in the proof of this lemma is a quadrature formula technique

for finding extremal polynomials. This useful technique was possibly first used by Freud [7] in proving a result of Erdös and Turán [6]. More recently, many interesting applications have been given by R. A. DeVore, for example, in his lecture notes [5]. Another application occurs in [1]. Let $L_n \in \pi_n$ be the Legendre polynomials. We define the polynomials P_n as follows: $P_1 \equiv 1$ and $P_n = P_{4m-2}$ for $4m - 2 \le n \le 4m + 1$, m = 1, 2, ..., where

$$P_{4m-2}(x) = (L_{2m-1}(x)/xL'_{2m-1}(0))^2.$$

Clearly, $P_n(0) = 1$ for all *n*. Using the quadrature formula technique (cf. [5], pp. 180–181) we can conclude that

$$(2.5) ||P_n||_1 \le Cn^{-1}$$

and

(2.6)
$$\sup_{1/2 \le |x| \le 1} |P_n(x)| \le Cn^{-1}$$

for all n = 1, 2, ..., where C is an absolute constant. From Corollary 1 and (2.5), we conclude that $||P_n||_{\infty}$ is a bounded sequence in n. If 1 , then

$$||P_n||_p^p \le ||P_n||_{\infty}^{p-1} ||P_n||_1 \le C ||P_n||_{\infty}^{p-1} n^{-1}$$

by (2.5). That is, we have proved the inequality for P_n in the lemma.

We will now construct $\{Q_n\}$. Each Q_n will be non-negative and monotone increasing on [-1, 1]. We choose $Q_{2m} = Q_{2m-1}$ for m = 1, 2, ... where

$$Q_{2m-1}(x) = c_m \int_{-1}^{x} \left(\frac{L_m(t)}{t - t_{m,m}} \right)^2 dt$$

and c_m is a normalizing constant chosen so that $Q_{2m-1}(1) = 1$. Here,

$$-1 < t_{1,m} < t_{2,m} < \cdots < t_{m,m} < 1$$

are the zeros of the *m*th Legendre polynomial L_m in increasing order. Hence,

$$Q_{2m-1}(1) = \int_{-1}^{1} \lambda_m(t) dt,$$

and integration by parts gives

$$\|Q_{2m-1}\|_1 = \int_{-1}^1 (1-t)\lambda_m(t) dt,$$

where

$$\lambda_m(t) = c_m [L_m(t)/(t-t_{m,m})]^2$$

Now, let $A_i(m)$ be the weight associated with $t_{i,m}$ in the Gauss-Legendre quad-

rature formula with nodes at the zeros of L_m . Using this quadrature formula, and the fact that $\lambda_m(t_{i,m}) = 0$ for i = 1, ..., m - 1, we find

$$\|Q_{2m-1}\|_{1} = \sum_{i=1}^{m} A_{i}(m)(1 - t_{i,m})\lambda_{m}(t_{i,m})$$

= $A_{m}(m)(1 - t_{m,m})\lambda_{m}(t_{m,m})$
= $(1 - t_{m,m})\int_{-1}^{1}\lambda_{m}(t) dt$
= $(1 - t_{m,m})Q_{2m-1}(1)$
= $1 - t_{m,m}$.

The result follows since a theorem of Bruns (cf. [5, p. 20]) shows that

$$C'm^{-2} \leq 1 - t_{m,m} \leq C''m^{-2}.$$

We will also need the following lemma on Hermite interpolation by polynomials. A related lemma appears in [2].

LEMMA 3. Let $-1 \le x_1 < x_2 < \cdots < x_r \le 1$ and let k be a non-negative integer. Then there exists a positive constant C_6 such that for any integer $n \ge r(k+1) - 1$ and real numbers $c_{ij}(n)$, $1 \le i \le r$ and $0 \le j \le k$, there exists a polynomial $P_n \in \pi_n$ with

(2.7)
$$P_n^{(j)}(x_i) = c_{ij}(n), \quad 1 \le i \le r, \ 0 \le j \le k,$$

(2.8)
$$||P_n||_p \le C_6 n^{-1/p} \max\{|c_{ij}(n)|: 1 \le i \le r, 0 \le j \le k\},$$

for all $p, 1 \leq p \leq \infty$.

To prove this result, we first construct a sequence of polynomials $h_n \in \pi_n$ satisfying $h_n^{(j)}(0) = \delta_{j,0}, 0 \le j \le k$, and

(2.9)
$$||h_n||_{L^{\infty}[-2,2]} \leq C, ||h_n||_{L^1[-2,2]} \leq Cn^{-1}$$

for some absolute positive constant C and all n. Here and throughout, $\delta_{j,k}$ denotes the usual Kronecker delta symbol. Indeed, by Lemma 2, there exist $k_n \in \pi_n$ with $k_n(0) = 1$ and $||k_n||_p \le C_4 n^{-1/p}$, $1 \le p \le \infty$. Set $k_n = 1 - l_n$, and $\tilde{h}_{nk} = 1 - l_n^k$. Since $||l_n||_{\infty} \le C_4 + 1$ and

$$\tilde{h}_{nk} = (1 - l_n)(1 + l_n + \dots + l_n^{k-1}) = k_n(1 + l_n + \dots + l_n^{k-1}),$$

we have

$$\|\tilde{h}_{nk}\|_{\infty} \leq C_4 \frac{(C_4+1)^k-1}{(C_4+1)-1} \leq D \text{ and } \|\tilde{h}_{nk}\|_1 \leq Dn^{-1}$$

for all *n*. Furthermore, it is clear that $\tilde{h}_{nk}^{(j)}(0) = \delta_{j,0}, 0 \le j \le k$. Defining the other \tilde{h}_n by

$$\tilde{h}_{kn+1} = \tilde{h}_{kn+2} = \cdots = \tilde{h}_{k(n+1)-1} = \tilde{h}_{kn+1}$$

and $h_n(x) = \tilde{h}_n(x/2)$, we see that $\{h_n\}$ has the desired properties.

Choose m = r(k + 1) - 1 and the polynomials $t_{ij} \in \pi_m$ so that

$$t_{ij}^{(l)}(x_s) = \delta_{i,s} \, \delta_{j,l}, \quad i, s = 1, \dots, r \text{ and } j, l = 0, \dots, k.$$

Then the sequence of polynomials

$$q_n(x) = \sum_{i=1}^{r} \sum_{j=0}^{k} c_{ij} t_{ij}(x) h_{n-m}(x-x_i)$$

will have all the required interpolation properties. Since also

$$|q_n(x)| \le \max |c_{ij}| \sum_{i=1}^r \sum_{j=0}^k ||t_{ij}||_{\infty} |h_{n-m}(x-x_i)|,$$

and, for n = m, m + 1, ...,

$$||q_n||_{\infty} \le \max |c_{ij}|C'$$
 and $||q_n||_1 \le \max |c_{ij}|C''(n+1)^{-1}$,

it follows that

$$||q_n||_p \le \max |c_{ij}| C'''(n+1)^{-1/p}$$

for some absolute constants C', C'', and C'''.

We also have the following result, the proof of which is analogous to that of Lemma 3 above except that one uses the end-point case rather than the midpoint case of Lemma 2.

LEMMA 4. Let k be a non-negative integer. Then there exists a positive constant C_7 such that for any $n \ge 2k + 1$ and real numbers $c_{1j}(n), c_{2j}(n), 0 \le j \le k$, there exists a $P_n \in \pi_n$ with

$$P_n^{(j)}(-1) = c_{1j}(n), \ P_n^{(j)}(1) = c_{2j}(n), \ 0 \le j \le k,$$
$$\|P_n\|_p \le C_7 n^{-2/p} \max_{0 \le j \le k} \{\max(|c_{1j}|, |c_{2j}|) \text{ for all } p, 1 \le p \le \infty\}$$

3. Proof of the main theorem

We now have all the tools for the proof of Theorem 1. We first prove the upper bound in part (a). Write

$$f(x) = (x - x_1)^{k_1} \cdots (x - x_r)^{k_r} h(x) \equiv g(x) h(x)$$

where $h(x) \neq 0$ on [-1, 1], and $-1 \leq x_1 < \cdots < x_r \leq 1$, with at least one x_i in (-1, 1). Let $K = \max(k_1, \ldots, k_r)$. By [9], (cf. [8] for more complete results), there exists a constant C_8 depending on f and a sequence $\{P_n\}, P_n \in \pi_n$, such that

$$\left\|\left(\frac{1}{h}\right)^{(j)} - P_n^{(j)}\right\|_{\infty} \le C_8(n+1)^{-2},$$

n = 0, 1, ..., j = 0, 1, ..., K. In particular, this means that $P_n^{(j)}(x)$ is bounded, j = 0, 1, ..., K. Lemma 3 now guarantees the existence of a sequence of polynomials $\{Q_n\}, Q_n \in \pi_n$, so that

$$Q_n^{(j)}(x_i) = -P_n^{(j)}(x_i), \quad i = 1, ..., r; j = 0, ..., K,$$

and

$$||Q_n||_p \leq C_9 n^{-1/p}.$$

Then we have

$$(P_n + Q_n)^{(j)}(x_i) = 0, \quad i = 1, ..., r; j = 0, ..., K,$$

so that, with m = r(K + 1) - 1,

$$(P_n + Q_n)(x) = g(x)t_{n-m}(x),$$

where $t_{n-m} \in \pi_{n-m}$ and

$$\left\|\frac{1}{h(x)}-g(x)t_{n-m}(x)\right\|_{p}\leq C_{10}n^{-1/p}.$$

Therefore, we have

$$D_{n,p}(f) \le \|1 - ft_{n-m}\|_p = \left\| h\left(\frac{1}{h} - gt_{n-m}\right) \right\|_p$$

$$\le \|h\|_{\infty} \left\| \frac{1}{h} - gt_{n-m} \right\|_p \le C_2 n^{-1/p}$$

which completes the proof of the upper bound in part (a).

We now proceed to the proof of the lower bound in part (a). Let $Q_n^* \in \pi_n$ be chosen such that

$$D_{n,p}(f) = \|1 - fQ_n^*\|_p.$$

We may suppose without loss of generality that one of the interior zeros of f is at zero. Then $f(x) = x^k h(x)$ where h(x) is analytic and $|h(x)| \ge \theta > 0$ on $[-\alpha, \alpha]$ for some $\theta > 0$ and $0 < \alpha < 1$. Now, by what we just proved, we have

$$||1 - x^k h(x) Q_n^*(x)||_{L^p[-\alpha,\alpha]} \le D_{n,p}(f) \le C_2 n^{-1/p}.$$

This implies that

$$\|x^{k}Q_{n}^{*}(x)\|_{L^{p}[-\alpha,\alpha]} \leq \frac{1}{\theta} \|x^{k}h(x)Q_{n}^{*}(x)\|_{L^{p}[-\alpha,\alpha]} \leq C_{11}, \quad n = 0, 1, \ldots,$$

and so, by the inequality between L^p and L^{∞} norms for algebraic polynomials (see [14], page 236),

(3.1)
$$\|x^k Q_n^*(x)\|_{L^{\infty}[-\alpha,\alpha]} \leq C_{12} n^2.$$

178

Since h is analytic, we can find a sequence $\{P_n\}$, $P_n \in \pi_n$, so that

(3.2)
$$||h - P_n||_{L_{\infty}[-\alpha, a]} \le C_{13} n^{-4}$$

Then we have

$$D_{n,p}(f) \ge \|1 - x^k h(x) Q_n^*(x)\|_{L^{p}[-\alpha,\alpha]}$$

$$\ge \|1 - x^k P_n(x) Q_n^*(x)\|_{L^{p}[-\alpha,\alpha]} - \|x^k Q_n^*(x)(h(x) - P_n(x))\|_{L^{p}[-\alpha,\alpha]}.$$

By Lemma 1, (3.1), and (3.2), we find that for all sufficiently large n,

$$\|1 - x^k P_n(x) Q_n^*(x)\|_{L^{p}[\alpha,\alpha]} \ge C_{14} n^{-1/p}$$

and

$$||x^{k}Q_{n}^{*}(x)(h(x) - P_{n}(x))||_{L^{p}[-\alpha,\alpha]} \leq C_{15}n^{-2},$$

so that

$$D_{n,p}(f) \ge C_1 n^{-1/p}, \quad n = 1, 2, \dots$$

This completes the proof of part (a) of the theorem. The proof of part (b) of Theorem 1 follows almost exactly the same lines as that of part (a), where we replace Lemma 3 by Lemma 4.

4. Final remarks

As remarked in Section 1, the analyticity condition in Theorem 1 can be weakened. In fact the theorem holds for any function f which can be written in the form f = qh where q is a polynomial and $h \in C^{k+4}[-1, 1]$ with $h(x) \neq 0$ in [-1, 1] and k is the maximum order of the zeros of q in [-1, 1]. Under the analyticity condition we have the following "saturation result".

THEOREM 2. Let $f \not\equiv 0$ be a real analytic function on [-1, 1] and let $1 \leq p < \infty$. Then

(4.1)
$$\lim_{n \to \infty} n^{1/p} D_{n,p}(f) = 0 \Leftrightarrow f \text{ is zero free in } (-1, 1),$$

and

$$\lim_{n \to \infty} n^{2/p} D_{n,p}(f) = 0 \Leftrightarrow f \text{ is zero free in } [-1, 1].$$

This result follows immediately from Theorem 1 and the obvious fact that if f is real analytic and zero-free in [-1, 1] then $D_{n,p}(f) = O(n^{-k})$ for any k > 0 and $1 \le p \le \infty$.

There are many questions still to be answered in this area. For instance, the problems of finding $D_{n,p}(|x|^{\alpha})$, of simultaneous inverse approximation, and of inverse quasi-rational approximation, are mentioned in [4].

References

- 1. R. K. BEATSON, The degree of monotone approximation, Pacific J. Math., vol. 74 (1978), pp. 5-14.
- 2. ——, On the degree of approximation with Hermite interpolating side conditions, J. Approx. Theory, vol. 28 (1980), pp. 197–206.
- C. K. CHUI, Approximation by double least-squares inverses, J. Math. Analysis and Appl., vol. 75 (1980), pp. 149–163.
- ("Problems and results on best inverse approximation" in Approximation Theory III, E. W. Cheney, Ed., Academic Press, N.Y., 1980, pp. 297-304.
- 5. R. A. DEVORE, The approximation of continuous functions by Positive Linear Operators, Lecture Notes in Math. no. 293, Springer-Verlag, N.Y. 1972.
- 6. P. ERDÖS and P. TURÁN, On interpolation III, Ann. of Math., vol. 41 (1940), pp. 510-553.
- G. FREUD, Über einen Satz von P. Erdös and P. Turán, Acta Math. Acad. Sci. Hungar., vol. 4 (1953), pp. 255-266.
- M. HASSON, Derivatives of the polynomials of best approximation, J. Approx. Theory, vol. 29 (1980), pp. 91-102.
- 9. V. N. MALOZEMOV, Simultaneous approximation of a function and its derivatives by algebraic polynomials, Dokl. Akad. Nauk SSSR, Ser. Math., vol. 170 (1966), pp. 773-775.
- S. M. NIKOL'SKII, Inequalities for integral functions of finite degree and their application in the theory of differentiable functions of many variables, Trudy Mat. Inst. Steklova, vol. 38 (1951), pp. 244–278.
- 11. E. A. ROBINSON, "Structural properties of stationary stochastic process with applications" in *Time Series*, M. Rosenblatt, Ed., Wiley, N.Y., 1963.
- 12. E. A. ROBINSON, Statistical communication and detection. Hafner, N.Y. 1967.
- 13. J. L. SHANKS, "The design of stable two-dimensional recursive filters" in Proc. UMR-M. J. Kelley Commun. Conf., Univ. of Missouri, Rolla, 1970.
- 14. A. F. TIMAN, Theory of approximation of functions of a real variable. Translated by J. Berry, Macmillan, N.Y., 1963.

University of Connecticut Storrs, Connecticut Texas A & M University College Station, Texas University of Alabama University, Alabama