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THE ISOMORPHISM PROBLEM FOR INCIDENCE
ALGEBRAS OF MOBIUS CATEGORIES

BY

PIERRE LEROUX

Introduction

M6bius cagegories were introduced in [7] to provide a unified setting for
M6bius inversion. They include locally finite partially ordered sets (posets),
Cartier and Foata monoids (see [2]), free categories [9], and a wide class of
so-called "triangular categories" which are intimately related with the familiar
objects of enumerative combinatories (subsets, subspaces, partitions, permuta-
tions, etc. [8]). One obtains combinatorial applications by studying inversion
relations in the incidence algebra I(Cg) of the category cg, over a field K (see [3]).
This approach was introduced by G. C. Rota in 1964 for locally finite posets
and has been fruitfully developed since then (see [4] for example).

In 1970, R. P. Stanley proved that if P and Q are finite posets with isomor-
phic incidence algebras, then they are isomorphic as posets [12]; this result
was later extended to arbitrary locally finite posets. The introduction of
M6bius categories, and the possibility that different ones play the same role
with respect to M6bius inversion, motivated an attempt to solve the analogous
"isomorphism problem"’ Does I(Cg) 1() imply cg ? Striking examples
(the first one is due to R. P. Stanley) show that the answer to this question is
negative for general MiSbius categories and @ (see Examples 1.5, 1.6, and
2.9).

In this paper, we try to determine how much structure of the category cg is
determined by its incidence algebra I(ff). First we show that the set fro of
vertices (or objects) of ff can be recovered from l(C) upon division by its
Jacobson radical (corollary 1.2). However to get more information about c,
one has to make some further finiteness assumptions. The main result is the
following: If and @ are finitely generated (Definition 2.3) MiSbius categories
with isomorphic incidence algebras, then ff and have isomorphic length n
graphs" (o, c,)_ (o, ,), n > 1. This implies Stanley’s theorem, i.e. the
positive answer to the isomorphism problem for locally finite posets and a
similar theorem for finitely generated free categories (Applications 2.8).
A fundamental tool here is the so-called "standard topology" of I(ff), which,

when is finitely generated, is essentially determined by the decreasing seq-
uence of product ideals J" of the Jaeobson radical J of 1(if). This implies, for
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instance, that ifb: I(rg) I() is an algebra homomorphism and if b restricts
to a bijection bo" rgo o on vertices or if rgo is finite, then b is continuous,
and our main result follows. Note that all the continuous homomorphisms
tp: I(rg) 1() for MiSbius categories have been characterized in [3, Section 5]
as maps of the form

i.e. substitution of an element b(f) I() for eachf cg, where b: rg I()is
an "admissible map".

It also follows that any automorphism of I(Cg) is continuous if cg is a finitely
generated M6bius category. Because of the analogy with the algebra of formal
power series, we define the Laffrange inversion problem for such categories to be
that of the explicit inversion of the automorphisms of l(rg) (Section 3).
The author is grateful to Richard Stanley, Adriano Garsia, John Sarraill6,

and Franqois Lemay for many fruitfull discussions and also to the Mathematics
department of U.C.S.D. for its warm hospitality during his 1978-79 sabbatical
leave.

1. The incidence algebra

We consider categories as sets of morphisms, here called arrows, equipped
with a partial composition law which satisfies the usual rules concerning assoo
ciativity and identity arrows. In a category c, we identify the objects, here
called vertices, with their associated identity arrows; this set ego of vertices is
then a subset of cg. We say that cg is decomposition-finite if for each arrowfofc
the set (f)= {(f’, f")lf’ f"= f} is finite.

f--f’ of"
The incidence al#ebra I(rg) of rg over an arbitrary field K is then defined to be
the vector space K of all functions a from cg to K together with a multiplica-
tion defined by

(or fl f , ot f fl f ), or, l Cg), f rg
(f)

I(Cg) is easily seen to be an associative K-algebra with identity element 6
defined by

gi(f) z(f rgo), fe rg,

where ;t denotes the truth function on statements.
Note that rg is naturally embedded in I(rg) by identifying f rg with the

function f: rg K defined by f(h) ;t(f h), h rg. With this identification,
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for f, g 6 g, we have f f g if the composite f g is defined in cg, and 0
otherwise. Also for c, d 6 cgo, i.e. vertices of cg, and g 6 I(),

(c d)(h) (h) x(h (c, d)), h ,
where (c, d) denotes the set of arrows of with domain c and eodomain d. We
sometimes use a formal sum notation: y (f)f. In the above ease, we
have

c d E (f)
f (C, d)

These possibly infinite sums can be given a rigorous setting in terms of
"summable families" of elements of I(), or equivalently in terms of limits in
I(), which indeed is a topological algebra with respect to the so-called "stan-
dard topology"; this is simply the product topology, on K, of the discrete
topology on K. See [3] for more details.
Examples of incidence algebras are the algebras of formal power series on a

set of (commuting or not) variables, the incidence algebra of a locally finite
poset, and the group algebra of a finite group.

is called a Mbius category if it is a decomposition-finite category for
which the incidence algebra I() has the property that I(), is invertible
iff (c) 0, c o. M6bius categories can also be characterized by the fact
that each arrow f of admits only a nite number of strict decompositions
ff f2 f or equivalently, for decomposition-finite categories, has
finite length l(f) in the sense of Mitchell [10 p. 80]. We refer the reader to [3]
for more details on M6bius categories and their incidence algebras.
We use the following definition for the Jacobson radical () of a ring :

J(A) a Ab, c A, 1 bac is invertible.
Propositions 1.1 and 1.4 which follow are straightforward generalizations of

results of R. P. Stanley [12], [4].

POPOSITON 1.1. Le be a Mbius category. The 3acobson radical ()
(I()) is the set

Proof Indeed, in I(), is invertible iff

so is in (I()) iff (c) 0, c o.

COROLLARY 1.2. If is a Mbius cateoory, there is a canonical isomorphism
I()/J(C) -K which is induced by the restriction to o c of functions

I(rg). |
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COROLLARY 1.3. Let c and be MObius categories and let " I(C)- I()
be an algebra homomorphism. Then b(J(C))_ J().

Proof
that

Let o be in j(rg), with (o) J(@). Then there exists d o such

+ 0;

t is invertible in I() but b(6- xso 6 x- -since it has value 0 on d o. This is a contradiction.
)= 6 x-1() is not

I
PROPOSITION 1.4. Let c and be Mfbius cateoories and let" I(C) I()

be an aloebra isomorphism. Then there is an inner automorphism ofI() such
that the composite isomorphism

$=i(cg) v I() ’.., I()
can be restricted to a bijection d?o" qYo -’* o on vertices.

Proof The isomorphism " l(ff) I() must preserve the Jacobson radi-
cals so it induces an isomorphism i of algebras

K I(qY)/J(Cg) I()/J()
As it lies in K, the set co is the unique, up to a bijection, maximal family of
orthogonal primitive idempotents of K. This must be preserved by which
consequently restricts to a bijection Wo" Co o. Then

is a family oforthogonal idempotents ofI() such that d J(), Vd o.
Define fle I() by fl(f)= dff)(f) where d(f) is the codomain off , or
equivalently fl o * d. It is easily seen that fl is invertible and that
d fl fl d, Vd o, so that fl induces the desired inner automorphism of
I(). |

Hence ifI(ff) I(), ff and have the same set of vertices, up to a bijection.
We cannot conclude however that, as in the case of locally finite posets, ff and

are isomorphic M6bius categories, as the two following examples, and others
given later, show.

Example 1.5 (Due to Richard P. Stanley). Let L and M be commutative
monoids generated respectively by {a, b, c} and {x, y, z}, with relations ab ac
and x2 xy respectively. Then L and M are non isomorphic M6bius monoids,
i.e. MObius categories with only one vertex, but the mapping x--a, y--a-
b + c, z--.c extends to an algebra isomorphism I(M) ; I(L).

Example 1.6. This example is similar to the preceding one. The categories
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involved this time are deltas, i.e. their only circuits are the identity arrows" Let

’ and d/g be the categories generated by the graphs

x
u

and

c

with relations da ea, db dc and ux vx, ux uy, respectively. Then again,
1(5)- 1(’), but and d///are non isomorphic M6bius categories.

However, L and M, as well as and ’, although not isomorphic, have
"isomorphic presentations"; roughly speaking, they have the same number of
arrows of each length. We make this precise in the next section.

2. Finitely generated M6bius categories

Let cg be a fixed M6bius category. For each element n in the set N of natural
numbers, let cg {f Cgll(f n} be the set of arrows of cg of length n. Then
cgo is the set of identity arrows, or vertices, of cg, as before, and cg is the set of
length 1 arrows, called elementary or indecomposable arrows of cg. The pair
(ego, cg,) forms a (directed multi-) graph called the lenfth n 9raph ofCg; (cg0, c6’ 1)
is also called the elementary #raph of cg. For c, d 6 cg0., we define cg,(c, d)=
cg c Cg(c, d), the set of length n narrow "from c to d" in cg. In a MiSbius
category cg, cg is a minimal set of generators since any arrow is the composite
of elementary arrows.

DEFINITION 2.1. We will say that is countably #enerated (respectively
countably presented) if Vc, d cgo, the set c6’ 1(c, d)(resp, the set Cgn(C, d), /n N)
is countable.
For n 6 N, we define also the sets

J. J.(qY)= { I()ll(f < n =,. (f)= 0).
For instance, Jo I(rg) and J1 J, the Jacobison radical of I(rg). J. is easily
seen to be a closed ideal of l(rg), with J,+ = J., and Jn/Jn+ as vector
spaces. Note also that for n > 1, the ideal product J" is contained in J. and that
in fact J. is the topological closure J" of J". We are now in a position to prove
the following basic theorem"

THEOREM 2.2. Let and be countably oenerated Mfbius categories with
homeomorphically isomorphic incidence algebras. Then the elementary 9raphs
(o, c1) and (f o, f 1) are isomorphic #raphs. Moreover if and are countably
presented, they have isomorphic lenoth n oraphs, Vn N.

Proof Let tk" I(Cg) I() be a bicontinuous algebra isomorphism. By pro-
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position 1.4 we can assume that b restricts to a bijection bo: o--’o on
vertices. For n > 1, we have

b(j,(rg)) b(j()) q(j(cg))= j()= j(),

and for c, d o, induces linear isomorphisms

c  0(c)  o(d)

Hence under the hypothesis of countability, a dimension argument shows that
there is a bijection ft.(c, d)m .($0(c), $o(d)) yielding the desired graph
isomorphism. I
DEFINITION 2.3. cg is said to the finitely generated if Vc, d e cgo,

(1) the set cg(c, d) is finite,
(2) the set [c, d] {e cgo leg(c, e):/: b :/: if(e, d)} is finite.

Example 2.4. (a) Any locally finite poset P is a finitely generated MObius
category. Indeed in this case, rg o is the set of elements of P; elementary arrows
correspond to "covers" in P so rg (c, d) < 1, and condition (2) is exactly the
local finiteness property of P. The graph (rg o, rg a) is usually called the Hasse
diagram of P.

(b) For a MObius monoid M, condition (2) is trivially satisfied and condi-
tion (1) says that M has a finite number of generators.

(e) Given a (directed multi-) graph F, the free category rg(F) generated by F
is the category whose vertices are those of 1" and whose arrows are paths using
ares of F. rg(F) is always a MObius category and its elementary graph is
exactly F. Hence rg(F) is finitely generated iff for all vertices c, d of F,
(1) the set F(c, d) of ares from c to d is finite,
(2) there is only a finite number of vertices e of F "between" and d, i.e. with a
path from a to e and one from e to d.

PROPOSITION 2.5. Let rg be afinitely generated MObius category and choose
c, d rgo. Then, Vn > 1,

(1) rg.(c, d)is finite (rg is finitely presented),
(2) c,Jn,d=c,Jn,d.

Moreover, if rgo is finite, rg. is finite and J. J".

Proof For n > 1 and for each f cg.(c, d), we choose arrows xe and y, such
that f= xs ys, l(x.)= 1, l(yy)= n- 1. This shows that cg.(c, d)is contained
in the image of the following map which is induced by composition"

U (bPl(c’ e) x cg._ t(e, d)--, Cg(c, d).
e [c, d]

Hence a simple induction on n gives the first part of the proposition.
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To prove part (2), we define, for e [c, d],

Se {X cg (C, e) lx xs. for some f Cg(c, d)}
and for x S,

V, {h Cg(e, d) lx, oh x and Yx oh h}
and proceed by induction on n, assuming that the statement is true for n 1,
Vc, d cgo. Suppose 0 e c J. d. Define, for e [c, d] and x
by

fl, x(h)= o(x h) 7.(h V, x). h e

Then fie, xee*J.-**d=e*J"- *,d, i.e. fl,x=e*fl’,*d, with
fl’, J"- , and can be expressed as a finite sum where e and x range in the
finite sets [c, d] and Se respectively’

= E x,3, E x,e,ff
e, e,

.d

Thus e c J" d. This completes the proof since we already know that
J"
_

J,. Finally, if cgo is finite, of. is obviously finite and we have

J.=c,J.,d=c,J,d_J,
c,d c,d

since J" is an ideal and the sum is over the finite set cgo x o. |

Proposition 2.5 is central, as we will see, because the standard topology of
I() for a MObius category cg is closely related to the decreasing sequence of
ideals j.(c).

THEOREM 2.6. Let c and be MObius cateoories, finitely 9enerated, and
let oh" I()--, I(f) be an aloebra homomorphism. If either o is finite or ck
restricts to a bijection o - o, then is continuous.

Proof Let {gh}hn be a net ha I(Cg) over a directed set (H, <) such that
limh n h 0. We wish to show that limn n b(ct) 0 in I() also.

If cgo is finite, then U. )7,--- Cgk is finite so there exists ho 6 H such that
h > ho implies cth(f) 0, ’f 6 U., i.e. l(f) < n, that is ah J,(). Then_

s"(e)=_
by Corollary 1.3. So P(h)(g)= O, g

_
with l(g) < n, and we are done.

In the ease where b restricts to a bijeetion Co o, one shows in a similar
manner that d, b(h), e has 0 as a limit in I(), Vd, e o, which is
sufficient. |
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COROLLARY 2.7. Let rg and be finitely generated Mibius categories with
isomorphic incidence allebras. Then and have isomorphic presentations, i.e.
Vn > 1 the length n graphs (rgo, n) and (fo, ) are isomorphic.

Proof By Proposition 1.4, there is an isomorphism " I(qq)- 1(9) which
induces a bijection (go -* o. By Theorem 2.6, $ is bicontinuous and Theorem
2.2 applies. |

Applications 2.8. (1) Posets. If P and Q are locally finite posets with isomor-
phic incidence algebras, they are isomorphic as posets. Indeed, by Corollary
2.7, they have isomorphic Hasse diagrams, which determine the order relations.
This was first proved by R. P. Stanley in [12, 1970] for finite posets.

(2) Free catetories. If qf and are freely and finitely generated by the
graphs r" and A respectively and have isomorphic incidence algebras, then, by
Corollary 2.7, F (rgo, qfl) g (o, 1) A and hence the categories rg and
themselves are isomorphic.

The following example shows that the hypothesis of finite generation is
necessary in Theorem 2.6 and Corollary 2.7.
Example 2.9. Let rg and be the free categories generated by the indicated

graphs

respectively. Then I(qq) and I(@) are isomorphic algebras, although the graphs
themselves, and the categories, are not isomorphic. This is because there is an
infinite dimensional complement H "of j2(q) in J2(Cg). Elements of H, like

x,y,, behave like indeterminates and one of them can be mapped into
to give the isomorphism.

3. The Lagrange inversion problem for M6bius categories

Combining Proposition 1.4 and Theorem 2.6 one can easily prove the follow-
ing useful result"

PROPOSITION 3.1. Let rg be afinitely generated MObius category. Then every
automorphism ofI(rg) is continuous. Ifo is finite, every endomorphism ofI(Cg) is
continuous.

The special case where is a locally finite poset P was obtained by K.
Bac!awski in [1] as a by-product of his characterisation of the automorphisms
of I(P).
Again the hypothesis of finite generation cannot be relaxed as the category

of Example 2.9 shows. Any non identity linear automorphism or endomap of
will extend to a non-continuous automorphism or endomorphism of
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If and are M6bius categories then any continuous algebra homomor-
phism qb: I() I() is of the form

c( o(f)f} a(f)(f), o . I(c),
fc

that is, the extension by substitution of an admissible map : I(); this
means (see [3], Section 5) that

(1) the family {(f)}f is summable in I(),
(2) o (c) , the identity element of/(),
(3) (f) (g)= (fg)iffg is defined in , 0 otherwise.

Example 3.2. Let be the free commutative monoid generated by n letters,
say X1, Xn. Then I() is isomorphic to KX 1, Xn]] the formal power
series algebra. By Proposition 3.1, any endomorphism of KX, X] is
continuous, hence is obtained by substitutions X F 1, Xn-Fn in the
formal power series, where F 1, Fn are themselves elements ofKX1,...,

with zero constant terms, as follows easily from the notion of admissible maps;
furthermore the endomorphism is an automorphism iff the Jacobian determin-
ant of F1, Fn is non-zero. For the case n 1, this characterization of the
automorphisms of K[X is given by E. Spiegel in [11, Theorem 2.1].
Note then that the Lagrange inversion formula in n variables gives explicitly

the inverse of any automorphism of KX1, Xn (see [5] for example). It is
then natural to try to extend this calculus to other finitely generated M6bius
monoids or categories. Consequently we state the following problem.

Problem 3.3. The Lagrange inversion problem for a finitely generated
M6bius category consists in characterizing and explicitely inverting the auto-
morphisms of its incidence algebra I().
For instance, if is the totally ordered set with n elements, I() is the

algebra of n x n triangular matrices. It is then easy to see, using results of R. P.
Stanley [12], that the automorphism group of I() is isomorphic to the group
of invertible affine transformations of the form

Xl--al, lX -k al, 2x2 -k -I- al, n-lXn- h" al,
x2 !- a2, 2 x2 -- -" a2, n- 1Xn- q- a2, n

Xn- an- 1, n- Xn- "1- an- 1, n,

the Lagrange inversion formula being that which gives explicitely the inverse of
the triangular matrix

al, al, 2 al, n- al, n

a2,2 a2,.n-1 a2, n

0 an-l,n-1 an-l,n
1
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