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A REPRESENTATION THEOREM IN STRICTLY
PSEUDOCONVEX DOMAINS

BY

STEVEN R. BELL

Introduction

Let f be a smooth bounded strictly pseudoconvex domain contained in C".
In this note, the dual space of H(), the space ofholomorphic functions on f
which are smooth up to the boundary, ischaracterized as a space of holomoro
phic functions, H-o(f). The duality is exhibited via an extension of the usual
L2 inner product and this allows a strong converse to a theorem in [1] to be
proved concerning the linear span of the Bergman kernel function in H(R)(fi)
and sets of determinacy.

In [1], it is shown that every function in H(R)(fi) is the Bergman projection of
a function in C(R)(fi) which vanishes to arbitrarily high order on bf. In the
present work, this result is improved" every u in H() is the Bergman projec-
tion of a function in C() which vanishes to infinite order on bf.
The methods and results have applications in the theory of boundary beha-

vior of biholomorphic mappings.

1. Preliminaries

Throughout this note, f will denote a smooth bounded strictly pseudocon-
vex domain contained in C. p: C - R will be a C defining function for i.e.,

{z: p(z) < 0}, b {z: p(z)= 0}, and dp 4 0 on b.
Let s be positive integer.
W(fl) is the Sobolev space of complex valued functions on fl with inner

product given by

(u, v> 2-1"1 In D’uD’v.
Iotl_<s

/-P(f) is the subspace of W(f) consisting of holomorphic functions. For u
and v in H(f), the inner product becomes

Ou
Ozlairs
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where, as usual,

OZk 2

Vo(fl) is the closure of C(l))in W(fl).
W-() is the dual space of Vo(/) and is identified with the space of distrib-

utions 2 such that

is finite. W-(F/) is a Banach space with this norm. We write (2, b)0 for
H-(F/) will denote the subspaee of W-(F/) consisting of holomorphie

functions. For f in

H(fi) (]_>o H’(fl) is a Freehet space of holomorphic functions on
which are smooth up to the boundary. The family of H’(fl) norms define the
Frechet topology on
H-(/) [.),o H-(fl) is a topological vector space under the usual

inductive limit topology.
P will denote the Bergman orthogonal projection of L2(/) onto its subspaee

H(/) of holomorphie functions. K(w, z) is the Bergman kernel function. K
and P are related via

Pf(z) (f K(., Z))o fn K(z, w)f(w) dV, for f6 L2(fl).

When is smooth bounded and strictly pseudoconvex, it is known that P is
bounded from W(F/) to H(F/) for each s (see Kohn [5]), and that
K(w, z) C(f/x ) (Kerzman [4]).
A set O = F/will be called a set of determinacy for H(/) (- < fl < oo) if

the only function in H(fl) which vanishes on D is the zero function.

2. Results

For F/a smooth bounded strictly pseudoconvex domain contained in C" and
for s a positive integer, we obtain"

THEOREM 1. There is a bounded operator Os: HS() Wo(f) such that
PCpSu u for all u

THEOREM 2. The operator A defined via

A(z) (f K(., z))s E K(z, w) O’f (w) clV, 
Ial_<s

a na.a h i omo phi m of
To 3. H()is dense in H-().
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THEOREM 4. There is a non-degenerate sesquilinear pairing

< )o: H(f) x H-(R)(f) C
which exhibits H() and n- oo(n) as bein# mutually dual. Furthermore,

(f, g)o

wheneverfand g are in L2(fl). In general, the pairing is given by( g)o when

THEOREM 5. The norm fll, is equivalent to the norm

Ilfll--Sup

Furthermore, u H(f) is in I-P(fl) if and only if Ilull, < c.

THEOREM 6. The linear span of{K(’, z)" z D} is dense in H() ifand only

ifD is a set of determinacyfor H-

THEOREM 7. If U is in H(f), then u edp for some c in C(f)which
vanishes to infinite order on bf.

3. The proofs

3.1 Proof of Theorem 1. The construction of s is discussed in [1] and [2].
Let di > 0 be small enough so that dp =p 0 on {z: (z) _< } A. If {b,}7’= is a
C partition of unity of A/2 supported in A,, and {z}% are complex direc-
tions such that dp/dz 0 on Supp $, then a suitable ’ can be written as

where the O are defined inductively via

$u0= ,
ui ,u oo’+

Here, (0/0) stands for differentiation in the VO/VO direction times.
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can be written as

aU
pk@Su= b,kDUpk= ,k-Z

Ial <k< N Ial < k < N

where the b’s are in C(I), and N (1/2)(s + 1)s.
Ifu 6 H(), then @u vanishes to order s 1 onb i.e., D@u() 0 for all
6 b, g g s- 1 (see [1], [2]). Hence @u 6 I(). Furthermore,

k, mN,
I1- k s,

(Here, we have used integration by parts and the fact that u is holomorphic.)
Hence,

ll ull Cllull for u H().

n() is dense in n(fl) because C() is dense in (fl) and P is bounded
from () to H(fl). Finally, POu u because

u=u-v where

3.2 Proof of Theorem 2. A is a bounded operator from
because for u 6 n’(f) and 6 C(f), we obtain

(Asu, )o w K(z, w) (w) dV,-d (u, P)s

using Fubini’s theorem and the fact that K(z, w) e C(f x t) (Kerzman [4]).
Hence,

Sup {l<u, POLl" 4, 1},
because P is bounded from W() to
The relation (ASu, )o (u, P)s extends to hold for all u e HS(f) and

Vo(f). From this, it follows easily that A is one to one because ifAu 0,
then

0 (ASu, (I)Sv)o (u, PSv)s (u, v)

for all v e H(t2). Hence u 0.
To see that A is surjective, notice that for fe H-S(),

(f, (IVu)o

is a continuous anti-linear functional on H"(). Hence, there is a function
F e H’(t2) such that (f, (IVu)o (F, u) for all u e H(t2). Let u K(., z) to
obtain AF(z)= (.f, (IRK(., Z))o.
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The proof of Theorem 2 will be finished if we show that

f(z) ( f, osr( Z))o.
To do this, we will need to use a stability property of the Bergman kernel
function proved by Greene and Krantz [7]. Let

f, {z" p,(z) < 0} where p, p + e,

and let K,(w, z) be the Bergman kernel function associated to f,. Greene and
Krantz prove that

ILK,(’, z)- g(’, z)llH,,,,- 0
as e 0 for all t. Using the same partition of unity and complex directions as in
the construction of * in the proof of Theorem 1, we can define operators

for small e > 0. It is easy to check that K,(., z) ’K(., z) in o(fl) as
0. Hence

(f K(., Z))o Lim (f K(., Z))o
eO

Lim f(w)K,(w, z)dV =f(z).
eO

Henf(z) K(’, Z))o A*F(z), and the proof of Theorem 2 is complete.

3.3 ProofofTheorem 3. It suffices to prove that A maps n()into n()
because n()is dense in n’(). If u n(), then

Idu
wA’u(z) X (w r(., z)

I,Is Ow" Ow" K(’, z)
0

, wt o

=P( (-1)Il O

The function inside the brackets is in C*(); hence, A’u e H*().

3.4 Proof of Theorem 4. If u e H(t) and v e H-(t)), then the pairing
(u, V)o is defined to be (’u, V)o where s is any integer such that v e H-(t2).
The pairing is well defined because (’u- 2u, f)o 0 for all fin
and H(t) is dense in H-(R)(t)) by Theorem 3.
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If g is a continuous linear functional on H(R)(f), then g satisfies

I,(u) -< (const)llull,,.,.,
for some s. Therefore, there is a function f H(f) such that

2(u) (u, f) (eCsu, f) (u, AY)o (u, AY)o.

Hence, 2 is represented by Af6 H-(f).
If r/is a continuous linear functional on H-oo(f), then for each s, there is a

function b lo(f) such that r/(v) (v, b)o for all v H-(f). Restricting v
to be in n(f) reveals that eb Pb2 P(#3 =’". Write u P(k 6 n(R)(t)
Now r/(v) (v, U)o, because if v H-’(ta), then rt(v)- (v, U)o
(v, b (1)U)o, and this is zero because (f, b (1)U)o 0 for allf6 n().
The non-degeneracy of ( )o follows from the relation

(u, v) (u, Av)o for u and v in H(f)
and the isomorphism and density theorems.

3.5 Proof of Theorem 5. Given u 6 H(f) such that Ilull, < oo, we wish to
show that u 6 H(f) and that c

Let f and (I) be defined as in the proof of Theorem 2. Write

Then Pff, e H(R)(tq) because ff has compact support in D, and

<u,P,,>o <u,,>o Ilull
Hence,

Now,
[lull 2

Ileo[I._.(-- sup {l<PO, >o1 ’c5(); IlOll-- 1}
Sup I<u, P>n,()l -< Sup Ilull,)IIP11.,

So I111. cllll. o ten () ad I111 Cllll.
The second inequality I111 1111 ro.ow from

I<, >ol I<, >ol I111o, I111-

for u and v in n().

3.6 Proofof Theorem 6. Given D fl, the linear span of {K(., z)" z e D} is
not dense in H() if and only if there is a function e 0 in H-(fl) such that
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0 (K(’, z), 0)o for all z D if and only ifD is not a set ofdeterminacy
for holomorphic functions in H- (f).

3.7 Proof of Theorem 7. The proof is inspired by a construction due to
L. Htirmander.
Suppose that u is in n(t). We construct bsin Wo(f) such that Pb u and

s-lll- 2-. Then

is the desired C function which vanishes to infinite order on b withP u.
Suppose , 2,..., ff- have been constructed. Let &u. We construct
in () with P 0 and

Ct + then satisfies the induction hypothesis. Choose w in Cg() with

+
so small that

This is possible because

and

mt- @em is in (), projects to zero, and

+
This completes the proof of Theorem 7.

4. Remarks

(1) Theorem 6 has applications in the theory of boundary behavior of
biholomorphic mappings. If fx and f2 are two smooth bounded domains in C
such that span {Ka,(’, z)" z e f} is dense in n(-), 1, 2, then biholomor-
phic mappings between fl and f2 extend smoothly to the boundary (see [2]).

(2) The inverse to the operator A can be written down explicitly. The
orthogonal projection of W’(f) onto n’(f) defines an n(f) Bergman kernel
function K(w, z) which satisfies P, f(z) (f, K,(’, z) > for allfin W(f). K
has many properties in common with the usual kernel function.
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We now define : H(f)-, H(f) via

12f(z) fta Ks(z’ w)f(w) dV,,,, (f Ks(’, Z))o.

It is easy to check that

(b) AS/2 /

(c) /2 is compact self adjoint on HS(f) and satisfies

(/u,

extends to be a bounded operator from H-*(f) to H’(f) via

ef(z) < f, o’r,( Z))o,
and this is the inverse of

(3) The operator’ can be made canonical. Let V be the Wo(fl) orthogonal
complement of the closed subspace of functions b in 14ao(f such that
(b, f)o 0 for allfin n(f). Let Q be the orthogonal projection of Wo(t) onto
V. The canonical ’ is given by [,oi QO.

(4) H-(f) is the space of holomorphic functions which satisfy finite
growth conditions at the boundary, i.e., u is in H-(R)(f) if and only if upk is in
L(f) for some integer k.

(5) The special Sobolev inequality I(f, g)01-< cllfll ,{.)I1 11 -..)holds
for f and in H(R)(t)) in any smooth bounded domain.
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