A NEW LOWER BOUND FOR THE PSEUDOPRIME COUNTING FUNCTION

Carl Pomerance

1. Introduction

A composite natural number n is called a pseudoprime (to base 2) if

$$
2^{n-1} \equiv 1 \quad(\bmod n)
$$

The least pseudoprime is $341=11 \cdot 31$. Let $\mathscr{P}(x)$ denote the number of pseudoprimes not exceeding x. It is known that there are positive constants c_{1}, c_{2} such that for all large x,

$$
c_{1} \log x \leq \mathscr{P}(x) \leq x \cdot \exp \left\{-c_{2}(\log x \cdot \log \log x)^{1 / 2}\right\}
$$

The lower bound is implicit in Lehmer [6] and the upper bound is due to Erdös [4]. Very recently in [9] we have obtained an improvement in the upper bound. There have been improvements on the lower bound, but they have only concerned the size of the constant c_{1}. For example, see Rotkiewicz [13].

In this paper we show that there is a positive constant α such that for all large x,

$$
\mathscr{P}(x) \geq \exp \left\{\left(\log x^{\alpha}\right)\right\}
$$

In particular, we may take $\alpha=5 / 14$.
Erdös conjectures that $\mathscr{P}(x)=x^{1-\varepsilon(x)}$ where $\varepsilon(x) \rightarrow 0$ as $x \rightarrow \infty$. See Pomerance, Selfridge, Wagstaff [10] for more on this.

Our main result holds for pseudoprimes to any base and in fact for strong pseudoprimes to any base (see Section 2 for definitions). Moreover our result holds if we just count those pseudoprimes n with at least $(\log n)^{5 / 14}$ distinct prime factors.

On the negative side, if $\mathscr{P}^{\prime}(x), \mathscr{P}^{\prime \prime}(x)$, and $\mathscr{P}^{k}(x)$ denote respectively the counting functions for pseudoprimes that are square-free, not square-free, and have at most k distinct prime factors, then we cannot show any one of $\mathscr{P}^{\prime}(x) / \log x, \mathscr{P}^{\prime \prime}(x), \mathscr{P}^{k}(x) / \log x$ is unbounded.

We wish to thank H. W. Lenstra, Jr. and S. S. Wagstaff, Jr. for some helpful comments during early stages of this paper.

[^0]
2. Preliminaries

If b, n are natural numbers and $(b, n)=1$, let $l_{b}(n)$ denote the exponent to which b belongs modulo n. Let $\lambda(n)$ denote the largest of all the $l_{b}(n)$ where b varies over a reduced residue system modulo n. We always have $l_{b}(n) \mid \lambda(n)$. From the theorem on the primitive root we have, for prime powers p^{a},

$$
\lambda\left(p^{a}\right)= \begin{cases}p^{a-1}(p-1) & \text { if } p>2 \text { or if } a \leq 2 \\ 2^{a-2} & \text { if } p=2 \text { and } a \geq 3\end{cases}
$$

For a general n we have $\lambda(n)$ equal to the least common multiple of the $\lambda\left(p^{a}\right)$ for the $p^{a} \| n$.

A composite natural number n is called a pseudoprime to base b if

$$
b^{n-1} \equiv 1 \quad(\bmod n)
$$

If n is an odd pseudoprime to base b and if there is an integer $k \geq 0$ such that $2^{k} \| l_{b}(p)$ for each prime factor p of n, then n is called a strong pseudoprime to base b. This slightly unorthodox definition is easily seen to be equivalent to the usual definition of strong pseudoprime (see [10], for example).

If $m \geq 1, b \geq 2$ are integers, we let $F_{m}(b)$ denote the m th cyclotomic polynomial evaluated at b. We have $F_{m}(b) \geq 1$. If $F_{m}(b)$ is divisible by a prime p with $l_{b}(p) \neq m$, then $m=p^{k} l_{b}(p)$ for some integer $k>0$. In this case, p is called an intrinsic prime factor, and is evidently unique. The common case for prime factors q of $F_{m}(b)$ is for $l_{b}(q)=m$. Such prime factors q are called non-intrinsic or primitive. Moreover $F_{m}(b)$ has at least one primitive prime factor except in the cases $m=1, b=2 ; m=2, b=2^{n}-1$ for some integer $n \geq 2 ; m=6, b=2$. This result is due to Bang [2] and many others. (Artin [1] is a more accessible reference on this topic.) Thus if $m=p c$ where p is prime and larger than the largest prime factor of c and if $c \neq l_{b}(p)$, then every prime factor of $F_{p c}(b)$ is primitive and $F_{p c}(b)>1$.

If \mathscr{S} is a set, by $\# \mathscr{S}$ we mean the cardinality of \mathscr{S}.

3. The constant E

If $n \geq 2$ is an integer, let $P(n)$ denote the largest prime factor of n. Let $\Pi(x, y)$ denote the number of primes $p \leq x$ such that $P(p-1) \leq y$. Let

$$
E=\sup \left\{c: \Pi\left(x, x^{1-c}\right) \gg x / \log x\right\} .
$$

Erdös [3] showed that $E>0$. In [8] we showed that $E>0.55092$. Furthermore we indicated that a new result of Iwaniec [5] and our method give $E>0.55655$. Erdös [4] conjectured that $E=1$. We remark that $E=1$ follows from the method of [8] and the conjecture of Halberstam (see Montgomery [7], equation 15.10) that Bombieri's theorem holds for moduli up to $x^{1-\varepsilon}$ rather than just up to $x^{1 / 2-\varepsilon}$.

The interest in the constant E comes from the following result which is a variation on a theme of Erdös (see [3]).

Theorem 1. For every $\varepsilon>0$, there is an $x_{0}(\varepsilon)$ such that for each $x \geq x_{0}(\varepsilon)$, if A is the least common multiple of the integers up to $\log x / \log \log x$, then

$$
\#\{a \leq x: \lambda(a) \mid A, \text { a square-free }\} \geq x^{E-\varepsilon}
$$

Proof. We may assume $E>\varepsilon>0$. Let $z=(\log x)^{(1-E+\varepsilon / 2)^{-1}}$. Let

$$
\mathscr{A}=\{p \leq z: p \text { prime }, p-1 \mid A\} .
$$

From the definition of E, there is a $\delta>0$ such that for all large x,

$$
\Pi(z, \log x / \log \log x) \geq \delta z / \log z
$$

If p is a prime with the properties $p \leq z, P(p-1) \leq \log x / \log \log x$, and yet $p \notin \mathscr{A}$, then it must be that there is a prime power $q^{c} \mid p-1$ with $c \geq 2$ and $q^{c}>\log x / \log \log x$. Now the number of such primes p is at most

$$
\sum\left[z / q^{c}\right] \ll z(\log \log x / \log x)^{1 / 2}=o(z / \log z)
$$

Thus for all large x we have

$$
\# \mathscr{A} \geq(\delta / 2) z / \log z
$$

Now let \mathscr{N} denote the set of square-free integers $a \leq x$ composed only of the primes in \mathscr{A}. Every member p of \mathscr{A} satisfies $p \leq z$, so that \mathscr{N} has at least as many elements as \mathscr{A} has subsets of cardinality $[\log x / \log z]$. Thus, for large x,

$$
\begin{aligned}
\# \mathscr{N} & \geq\binom{ \# \mathscr{A}}{[\log x / \log z]} \geq\left(\frac{\# \mathscr{A}}{[\log x / \log z]}\right)^{[\log x / \log z]} \\
& \geq \frac{1}{z}\left(\frac{(\delta / 2) z / \log z}{\log x / \log z}\right)^{\log x / \log z} \\
& =\frac{1}{z}\left(\frac{\delta}{2}\right)^{\log x / \log z} \cdot x^{E-\varepsilon / 2} \geq x^{E-\varepsilon}
\end{aligned}
$$

But if $a \in \mathscr{N}$, then $a \leq x, a$ is square-free, and $\lambda(a) \mid A$.

4. The main result

Let $\mathscr{P}_{b}(x)$ denote the number of pseudoprimes to base b that do not exceed x.
Theorem 2. For every $\varepsilon>0$ and integer $b \geq 2$, there is an $x_{0}(\varepsilon, b)$ such that for all $x \geq x_{0}(\varepsilon, b)$, we have

$$
\mathscr{P}_{b}(x) \geq \exp \left\{(\log x)^{E /(E+1)-\varepsilon}\right\} .
$$

Proof. Let $\varepsilon>0, b \geq 2$ be given. Let x be large and let $y=(\log x)^{(E+1)^{-1}}$. Let A denote the least common multiple of the integers up to $\log y / \log \log y$. Let p denote the first prime that is congruent to 1 modulo 2 A . By Linnik's
theorem (see Prachar [11], Kapitel X, Satz 4.1) there is an absolute constant c with

$$
\begin{equation*}
p \leq A^{c} \leq y^{2 c / \log \log y} \tag{1}
\end{equation*}
$$

Let q be any fixed prime between $A+1$ and $2 A$. Let

$$
\mathscr{N}=\left\{a \leq y: \lambda(a) \mid A, a \text { square-free, } a \neq l_{b}(q), a q \neq l_{b}(p)\right\} .
$$

The last two conditions delete at most 2 elements that otherwise would be in \mathscr{N}. By Theorem 1 and possibly deleting some elements of \mathscr{N}, we may assume $\# \mathscr{N}=\left[y^{E-\varepsilon}\right]$.

For each set $\mathscr{S} \subset \mathscr{N}$ with at least 2 elements, let

$$
n(\mathscr{S})=\prod_{a \in \mathscr{S}} F_{p q a}(b)
$$

We claim that
(i) $n(\mathscr{S})$ is a pseudoprime to base b,
(ii) $n(\mathscr{S}) \leq x$, and
(iii) if $\mathscr{S}^{\prime} \subset \mathscr{N}, \not \mathscr{S}^{\prime} \geq 2, \mathscr{S}^{\prime} \neq \mathscr{S}$, then $n\left(\mathscr{S}^{\prime}\right) \neq n(\mathscr{S})$.

Our theorem then follows, for we have for large x

$$
\begin{aligned}
\mathscr{P}_{b}(x) & \geq 2^{\# \mathscr{N}}-\# \mathscr{N}-1 \\
& >2^{y^{E-\varepsilon-1}}-y^{E-\varepsilon}-1 \\
& \geq \exp \left\{(\log x)^{E /(E+1)-\varepsilon}\right\} .
\end{aligned}
$$

We now show (i). Let m denote the least common multiple of the elements of \mathscr{N}. We claim that if $a \in \mathscr{N}$, then

$$
\begin{equation*}
F_{p q a}(b) \equiv 1 \quad(\bmod p q m) \tag{2}
\end{equation*}
$$

First, since every prime factor of $F_{p q a}(b)$ is primitive $\left(l_{b}(p) \neq q a, p>P(q a)\right)$, we have

$$
F_{p q a}(b) \equiv 1 \quad(\bmod p q) .
$$

Next, since every prime factor of $F_{q a}(b)$ is primitive $\left(l_{b}(q) \neq a, q>P(a)\right)$, if r is such a prime factor, then $r \equiv 1(\bmod q)$, so $r \nmid m$. Hence we have $\left(F_{q a}(b), m\right)=1$. Thus

$$
F_{p q a}(b)=\frac{F_{q a}\left(b^{p}\right)}{F_{q a}(b)} \equiv \frac{F_{q a}(b)}{F_{q a}(b)}=1 \quad(\bmod m)
$$

since $\lambda(m)|A|(p-1)$ and m is square-free imply $b^{p} \equiv b(\bmod m)$. We thus have (2) and so $p q m \mid n(\mathscr{S})-1$. Thus

$$
n(\mathscr{S})\left|\prod_{d \mid p q m} F_{d}(b)=b^{p q m}-1\right| b^{n(\mathscr{S})-1}-1
$$

Also, since \mathscr{S} has at least 2 elements, $n(\mathscr{S})$ is composite. Thus $n(\mathscr{S})$ is a pseudoprime to base b.

For (ii), note that if x is large and using (1),

$$
\begin{aligned}
n(\mathscr{S}) & <b^{p q \Sigma_{a \in \mathscr{S} a}} \leq \exp \left\{p q(\log b) \sum_{a \in \mathscr{N}} a\right\} \\
& \leq \exp \left\{p q(\log b) y^{E-\varepsilon+1}\right\} \\
& \leq \exp \left(y^{E+1}\right) \\
& =x .
\end{aligned}
$$

Now note that if r is a prime factor of $F_{p q a}(b)$, then $l_{b}(r)=p q a$. This immediately gives (iii).

Remarks. (1) We mentioned above that from [8] we have $E>0.55655$. Thus

$$
E /(E+1)>0.35755>5 / 14
$$

(2) Some people like to insist in their definition of pseudoprime to base b that it be odd. Note that all of the pseudoprimes created in the proof of Theorem 2 are odd and in fact are relatively prime to every prime $r \leq 2 p q$. Also note that

$$
2 p q>\exp (\log \log x / \log \log \log x) \text { for all large } x .
$$

(3) In the proof of Theorem 1, if we insist in the definition of \mathscr{A} that $p \neq 2$, we have the same theorem as before, but now every member of \mathcal{N} is odd. Thus in the proof of Theorem 2, we conclude that if r is any prime factor of $n(\mathscr{S})$, then $l_{b}(r)$ is odd. Since also $n(\mathscr{S})$ is odd (Remark 2), we conclude that the pseudoprimes $n(\mathscr{S})$ are all strong pseudoprimes.
(4) We would still obtain our result if we restricted \mathscr{S} to those subsets of \mathscr{N} which have a majority of the elements of \mathscr{N}. The pseudoprimes so constructed have at least $(\log x)^{5 / 14}$ distinct prime factors.
(5) A slight modification of the above proof gives a lower bound for $\mathscr{P}_{b}(x)$ that has an explicit dependence on b :

$$
\mathscr{P}_{b}(x) \geq \exp \left\{(\log x / \log b)^{E /(E+1)-\varepsilon}\right\}
$$

for all $x \geq b^{x_{0}(\varepsilon)^{2}}$, where $x_{0}(\varepsilon)$ is the constant in Theorem 1. To see this, we change the definition of y in the proof of Theorem 2 to

$$
y=(\log x / \log b)^{(E+1)^{-1}}
$$

Then if $x \geq b^{\left.x_{0(\varepsilon)}\right)^{2}}$, we have $y \geq x_{0}(\varepsilon)$, so that Theorem 1 can be used to estimate $\# \mathscr{N}$.
(6) Consolidating Remarks 1 and 5, we have an absolute constant C such that for all $b \geq 2$ and $x \geq b^{c}$,

$$
\mathscr{P}_{b}(x) \geq \exp \left\{(\log x / \log b)^{5 / 14}\right\}
$$

5. Cyclotomic pseudoprimes

If $b \geq 2$ is an integer and if $1 \leq d_{1}<d_{2}<\cdots<d_{k}$ are integers, we shall call the number $\Pi F_{d_{i}}(b)$ a cyclotomic number to base b. A cyclotomic pseudoprime to base b is then a cyclotomic number to base b which is also a pseudoprime to base b. For example, $341=F_{5}(2) F_{10}(2)$ is a cyclotomic pseudoprime to base 2. Let $\mathscr{C}_{b}(x), \mathscr{P} \mathscr{C} \mathscr{C}_{b}(x)$ denote respectively the counting functions for the cyclotomic numbers to base b, the cyclotomic pseudoprimes to base b.

It is clear that Theorem 2 holds for $\mathscr{P P}_{b}(x)$ in place of $\mathscr{P}_{b}(x)$. Our point is that Theorem 2 is near to best possible for cyclotomic pseudoprimes. Indeed $\mathscr{P} \mathscr{C}_{b}(x) \leq \mathscr{C}_{b}(x)$ and an argument which uses estimates for the partition function $p(n)$ (see Rademacher [12]) shows that

$$
\mathscr{C}_{b}(x)=\exp \left\{(\log x)^{1 / 2+o(1)}\right\}
$$

This is the same estimate we would have for $\mathscr{P}_{\mathscr{P}}^{b}(x)$ if we knew, as Erdös has conjectured, that $E=1$.

We conclude that if there is to be substantial further progress on lower bounds for $\mathscr{P}_{b}(x)$, one will have to consider pseudoprimes to base b that are not cyclotomic.

References

1. E. Artin, The orders of the linear groups, Comm. Pure Appl. Math., vol. 8 (1955), pp. 355-366.
2. A. S. Bang, Taltheoretiske Undersøgelser, Tidsskrift Math., vol. 5, IV (1886), pp. 70-80 and 130-137.
3. P. Erdös, On the normal number of prime factors of $p-1$ and some related problems concerning Euler's ϕ-function, Quart. J. Math. (Oxford Ser.), vol. 6 (1935), pp. 205-213.
4. P. Erdös, On pseudoprimes and Carmichael numbers, Publ. Math. Debrecen, vol. 4 (1956), pp. 201-206.
5. H. Iwaniec, On the Brun-Titchmarsh theorem, to appear.
6. D. H. Lehmer, On the converse of Fermat's theorem, American Math. Monthly, vol. 43 (1936), pp. 347-354 (see the third footnote on p. 348).
7. H. L. Montgomery, Topics in multiplicative number theory, Lecture Notes in Math., vol. 227, Springer-Verlag, Berlin-Heidelberg-New York, 1971.
8. C. Pomerance, Popular values of Euler's function, Mathematika, vol. 27 (1980), pp. 84-89.
9. - On the distribution of pseudoprimes, Math. Comp., to appear.
10. C. Pomerance, J. L. Selfridge, and S. S. Wagstaff, Jr., The pseudoprimes to $25 \cdot 10^{9}$, Math. Comp., vol. 35 (1980), pp. 1003-1026.
11. K. Prachar, Primzahlverteilung, Springer-Verlag, Berlin, 1957.
12. H. Rademacher, Topics in analytic number theory, Springer-Verlag, New York, 1973 (see Section 121).
13. A. Rotkiewicz, On the number of pseudoprimes $\leq x$, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., No. 381-409 (1972), pp. 43-45.

University of Georgia
Athens, Georgia

[^0]: Received January 11, 1980.

