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CRITERIA FOR APPROXIMATION BY
HARMONIC FUNCTIONS

BY

T. W. GAMELIN

1. Summary

In [1], P. R. Ahern gives "geometric" conditions which ensure that every
continuous function on K, harmonic in the interior of K, can be approximated
uniformly on K by functions harmonic in a neighborhood of K. Here we
observe that Ahern’s conditions can be sharpened to yield necessary and
sufficient conditions for such approximation to obtain. The proofdepends on a
simple characterization of stable boundary points, which facilitates the evalua-
tion of certain logarithmic potentials.

2. Statement of the Theorem

Let K be a compact plane set. By D(K) we denote the space of continuous
functions on K which are harmonic on the interior / of K. The Choqueot
boundary of D(K) coincides with the set R of regular boundary points of K.
For each p K there is a unique probability measure/n carried on R, called
the harmonic measure for p, which satisfies u d#;, u(p) for all u D(K).

Let H(K) denote the space of functions harmonic in a neighborhood of K,
and let H(K) denote the uniform closure of H(K)in C(K). A point q tK is a
stable boundary point for K if there is an open set containing K\{q) which has q
as a regular boundary point. The set of stable boundary points, denoted by P,
coincides with the Choquet boundary of H(K). Since H(K-) D(K), evidently
P R. For more details and further references, see [3] and [6].,
The outer boundary of a compact set K is the union of the boundaries of the

components of the complement K of K. The remaining boundary points com-
prise the inner boundary of K. Ahem [1] proves that the following two "geo-
metric" conditions together imply that H(K)= D(K):

(1) For all p 6/,/n is supported on the outer boundary of K.
(2) The inner boundary of OK (not of K!) has zero area.

Our object is to establish the following sharpened version of Ahern’s
theorem. The geometric nature of Ahern’s conditions are sacrified for condi-
tions that are both necessary and sufficient for approximation.
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THEOREM. In order that H(K)= D(K), it is necessary and sufficient that the
following two conditions hold:

(3) lav is carried on P for all p (.
(4) H(OK)= C(OK).
It is well known that outer boundary points of K are stable, (of. [3]), so that

(1) implies (3). It is also well known that if K\P has zero area, then H(K)=
C(K). (We will presently give a proof of this fact.) Applying this result to 0K
instead of K, we see that (2) implies (4). Hence the theorem indeed represents a
generalization of Ahern’s theorem. The examples cited bY Ahern show that
neither (3) nor (4) in itself is sufficient to guarantee that H(K)= D(K).

Proofofnecessity. Suppose D(K), so that R P. Then (3) is valid.
By Kellogg’s theorem, (cf. [6]), (OK)\K has zero logarithmic capacity, hence
zero area. Since every point of P is a point of stability of the boundary of 0K,
the unstable boundary points of 0K have zero area. Consequently H(OK)=
C(OK), and the necessity of (3) and (4) is established.

3. A characterization of stable boundary points

Before proving the sufficiency, we give an elementary characterization of
stable boundary points. A special case of the following lemma was used by T.
McCullough [4, Theorem 1]. See also [5, Section 3].

LEMMA. A point p K is a stable boundary point ofK ifand only ifthere isa.
sequence of probability measures {trn}= with the following properties:

(5) The closed supports ofthe tr, are compact subsets ofK which converge to
the singleton {p}.

(6) If u is defined and subharmonic in a neighborhood of p, then

u(p)= lim f uda,,.

Proof Suppoose first that p is stable. Let {K.}. be a sequence of compact
= K.+ , and (R) K K. Let 2. be the harmonic measuresets such that K._ .=

for p on OK.. Since p is stable the 2, converge weak-star to the point mass at p.
Consequently there are discs A.= {[z- p[ < r.} such that r. 0 and
2.(A.) 1. Define tr. to be the restriction of 2. to A., normalized to have unit
mass. That is, 2.(A.)a. 2. ]a.. The measures tr. evidently satisfy (5).

Let u be subharmonic near p. Its Laplaeian Au is defined near p as a positive
measure, say Au tr near p. If

1
h(z) f log [z w da(w),

then h is subharmonic on the complex plane and Ah tr. Thus A(u h)= 0
near p, and u h is harmonic near p. Replacing u by h, we may assume that u is
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defined and subharmonic on the cOmplex plane. Subtracting a constant from u,
we may furthermore assume that u < 0 on K1. Then

so that

u(p) < lim inf I u da,.

On the other hand, since u is upper semi-continuous, and the supports of the
an’s cluster at p, we have

lim sup f u dan < u(p).

Thus (6) is valid.
To prove the converse, suppose that such measures an exist. Let U be an

open set containing K\{p}, such that is disjoint from the closed supports of
the an. If p is not in the closure of any single component of U, then p is a regular
boundary point for U, (cf. [3]), and hence a stable boundary point for K. So we
can suppose that p is in the closure of some component V of U. If q V, and q
is harmonic measure on tO V for q, then

v(z) f log z (I d2q(() log z q

is subharmonic on C\{q}. Moreover, v vanishes off V, and by upper semi-
continuity, v > 0 on tO V. Since 2q is supported on tO V, from [6, Theorem III, 1]
we have liminfv(z)>0 as zV. Now v is harmonic on V\{q}, and
v(z)- + as z q, so that v > 0 on V. Since

lim sup v(z)= v(p)= lim v da, O,

v is a "barrier" at p. So p is a regular boundary point of V, hence of U (cf. [3]),
and p is a stable boundary point of K. This proves the lemma.

COROLLARY. Let p be a stable boundary point ofK, and let a be a finite real
measure on the complex plane, such that

f log

Then

(7) lim
Kc, zp f log l( z dt(()= f log l( P d(),

providing the limit exists.
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Proof. Write g g+ g-, where g+ > 0 and - > 0 are mutually singular,
and apply the lemma to the logarithmic potentials of g+ and 0- separately.
This leads to the identity

(8) ,lirn I [f log [-z[ dg()] da,(z)= I log ]-p[ d(),

which holds even when the limit in the left hand side of (7) fails to exist. When
the limit in (7) does exist, then the property (5) of the as shows that the limit
coincides with the limit in (8). This proves the corollary.
For g a measure on K define

(9) (z) log [z w d(w),

wherever the integral converges absolutely. Since is a convolution of a
locally integrable function and a measure, exists a.e. (dx dy), and V is itself
locally integrable. If 0 a.e. (dx dy), then 0. The importance of in
approximation theory stems from the following eily proven fact" the meure
g is orthogonal to H(K) if and only if V 0 on K. We immediately obtain the
following corollary to the corollary.

COROLLARY. If Ct is a measure on K ortho#onal to H(K), then 0 on K,
and (p) 0 at every stable boundary point p at which the definin# inte#ral (9)
converles absolutely.

In particular, it is clear now that H(K) C(K) as soon as K\P has zero area.
In this case, if 0 is orthogonal to H(K), then V 0 a.e. (dx dy), and 0 0.

Completion of proof of the theorem. To prove the sufficiency of the condi-
tions (3) and (4), we follow closely the proof given by Ahern, using the preced-
ing corollary.
Assume (3) and (4) are valid. By Choquet theory, it suffices, to show that the

only real measure on R orth.ogonal to H(K) is zero. We define V as in (9).
Let W be a component of K, and let q 6 W. Then

f log 1( zl dial(z) log 1 q

providing either W, or is a regular boundary point of W. Since

ff log I( zl d/a(z)dll()-< f log I ql dl lg)< ,
we can apply Fubini’s theorem to obtain

V(q) ff log z dla(z) do()

f
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Since # is carried on P, and V 0 wherever defined on P, the latter integral is
zero, and V(q)= O. Hence V 0 off dK, 0 is orthogonal to n(c3K) C(gK),
and O. This completes the proof of the theorem.
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