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TRANSFORMATION GROUP C*-ALGEBRAS WITH
HAUSDORFF SPECTRUM

BY

DANA P. WILLIAMS

The results in this note grew out of an attempt to investigate the topology of
the primitive ideal space of transformation group C*-algebras. In [8], some
progress was made when the group concerned was abelian. In particular, the
primitive ideal space was shown to be homeomorphic to a quotient topological
space where the topology is easy to compute [8, Theorem 5.5 and Corollary
5.6].
With this description of the topology at hand for abelian groups, it seems

appropriate to ask which transformation group C*-algebras have Hausdorff
primitive ideal space, or even Hausdorffspectrum. The characterization ofsuch
algebras given here depends on the fact that the space of closed subgroups of an
abelian group and the space of closed subgroups of its dual group are homeo-
morphic in a natural way. The space of subgroups is given the compact, Haus-
dorff topology introduced by J. M. G. Fell in [1].
The existence of the homeomorphism mentioned above may be of some

interest in itself. Finding an explicit description of the topology on the sub-
groups, even for abelian groups, can be a formidable task, and one is en-
couraged to produce alternate, if not necessarily easier, means of calculating it.

Let G be a locally compact abelian group and let ( be the dual group.
Denote the corresponding spaces of closed subgroups by E and E, respectively.
Recall that a base for the topology on E is indexed by finite collections of open
subsets of G, {O1, 02, On}, and compact subsets of G, K, and that a
typical bases element is

qI(, K)= {H 6 ," H c Oi cP i= 1, 2, n and H K=b}.
If H s E, then let H+/- {tr s t" tr(h)= 1, for all h s H}. It follows from the
Pontryagin Duality Theorem and lemma 2.13 of [7] that the map defined by
H H- is a bijection of E onto .
THEOREM. The map ofE onto , defined by H -, H+/- is a homeomorphism.

Proof Since E is compact and is Hausdorff, it will suffice to show only
continuity. Let {H,}, A be a net in E converging to H. It will be enough to show
tha,t every subnet of {H},A has a subnet which converges to H-.
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Let {H}a A’ be a subnet. Since is compact there is a sub-subnet, {H}r, A",

which must converge to something. Thus, there is a C Z such that H Cx.
Let a s C" and h H. By passing to a still further subnet if necessary, we

may assume there exist hr r and ar H such that the hr converge to h in G
and the ar converge to a in G. Since the hr eventually lie in a compact subset of
G, the ar(hr) converge to a(h). In particular, a(h)= 1 and C+/-

_
H+/-.

To complete the proof we need to show the reverse inclusion. Somewhat
surprisingly, this fact is not immediate. The argument given here uses the
continuity of inducing representations, so we postpone the proof of the
theorem to give two lemmas and introduce some notation.

Let fo be a non-negative, real-valued function in C(G) which does not vanish
at the identity. For each H s E, define to be the left Haar measure on H with
the property that

Jx fo(t) dx(t)= 1.

The {x} are called a continuous choice of Haar measures and have the
property that, for every fs Co(G),

is continuous [3, p. 908].
Also, let Indan(1) denote the representation of G induced from the trivial

representation on H. Recall from the definitions in [6] that Ind(1) acts on the
completion of C(G) (here C(G) is identified with C(G) (R) C in the usual way)
with respect to the inner product given on f, 0 C(G) by

(f g> Ix g* f(t) da, x(t),

where g*(t)= g(t-). The action is given, for s e G, by

Ind (1)(s)(f)(t) f(s- t).
The first lemma is well known, but we were unable to find an appropriate

reference in the literature. A complete proof may be found in [8, Lemma 5.1].

LEMMA 1. ker (Ind (1))= {f Co(()" f(a)= 0, for all H+/-}

Sketch of the Proofi G/H is also a locally compact abelian group and we
may choose a Haar measure, t, on G/H such that

fix Ixf(st) dx(t) d#x(D) f(s)

for every f Cc(G).
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It is not difficult to show that Ind (1) is unitarily equivalent to a representa-
tion R on L (G/H, 1). Namely, if s G andf L2(G/H),

R(s)(f)() f(s -1. ).
However, if # C(G) then R(a) 0 if and only if

R(g)(f) 0 for every f L2(G/H) cn L(G/H).
The latter holds if and only if (R(o)(f)) (a) 0 for every a H (G/H) A
simple computation shows (R(o)(f))^(a)= (a)0(a). Since f is arbitrary, it
follows from the above remarks that R(O)= 0 if and only if (tr)= 0 for every
a H+/-. QED

The proof of the next lemma is actually based on a special case of the
well-known fact that H- Indan (1) is continuous when Fell’s inner hull kernel
topology is put on the space of representations of G [2]. For convenience, we
give a short self-contained proof here. The reader may find the proof interesting
as it may be extended easily to cover more general settings (cf. For example, [8,
Lemma 4.9]).

LEMMA 2. If {Ha}a A converges to H in Z, and cr H1, then there is a subnet,
{Hr}reA, with a e H and trv converging to a in .

Proof. If the lemma were false, then there would be an open neighborhood
of a, q/, and a subnet, {Hr}r A’, such that H c ’ for every .

Let g, h C(G) and let (g, h) denote the inner product in the space of

zr Indan (1). That is,

(g, h) f.. h* g(t) danv(t).
tl

Since the {dan} are a continuous choice of Haar measures, (g, h) converges to

n
h* g(t) dan(t (g, h),

where <., ) denotes the inner product in the space of z Ind (1). If f C(G)
as well, then since z(f)(g)=f, g, a similar argument shows <z(f)(g), h)
converges to (z(f)(g), h). Now, since ]lgllr (g, g)/2 converges to []gl]
(g, g)/2 for each g C(G) by the above, it is easy to see that (zr(f)(g), h)v
converges to (z(f)(g), h) for everyf C*(G).
Letf C*(G) be such thatfis 1 at a and zero offq/. There are g, h C(G)

such that (z(f)g, h) p O. However, by Lemma 1, z(f)= 0 for every . Thus
(z(f)(g), h)r converging to (z(f)(g), h) implies that the latter is zero. This
contradiction completes the proof. QED

Proof of the theorem. Suppose a H+/-. By Lemma 2 we may, passing to a
subset if necessary, find tr H which converge to a. If a Cx, then there
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exists a compact neighborhood of a, K, such that K c C b. However, since
the He converge to C-, the H must eventually also satisfy n K b. This
contradiction completes the proof. QED

Now, let C*(G, f) be the C*-algebra associated with the locally compact
transformation group, (G, f) (see [8] for further definitions and references). For
s G and x , let the image of the s-action on x be denoted by s x. Recall
that the stability group at x, S, is {s G: s x x}. Notice that even though
the map of G x f f, defined by (s, x) s.x, is jointly continuous, the
natural map from f to E, x--, S, often fails to be continuous.

It will be necessary to assume that the natural maps from GISt, to G x are
homeomorphisms for each x. Recall that this hypothesis will be automatically
met if (G, f) is second countable and O/G is To [4].
Combining the last theorem with the results in [8], it is possible to prove the

following.

THEOREM. Suppose that G is abelian and the maps of G/S onto G. x are
homeomorphisms for each x f. Then the spectrum ofC*(G, f) is Hausdorff in
the Jacobson Topology if and only if the map x-- Sx is continuousfrom to Y,
and f/G is Hausdorff.

Proof First suppose that C*(G, f)^ is Hausdorff. The argument in [8,
Proposition 4.16] shows that f/G must be To. One can see without too much
difficulty that the arguments in [8, Theorem 4.11 and Lemma 4.5(2)] show that
there is a continuous injective map off/G into Prim C*(G, ), even if C*(G,
is not assumed to be quasi-regular. The hypothesis of quasi-regularity is used
only to insure the existence of a map from Prim C*(G, ) to f/G. Thus,
must be Hausdorff, since Prim C*(G, f) is.

Moreover, by [5, Corollary 19], C*(G, f) must be quasi-regular, and in fact,
the assumption on the natural maps from G/Sx to G x implies that C*(G, ) is
EH-regular [5, Proposition 20 and definitions p. 223].

It now follows from [8, Theorem 5.5] that C*(G, f).^ is homeomorphic to the
quotient topological space obtained from f/G x G by identifying (G.x, co)
and (G y, a) if and only if G x G y and coS trS. Suppose x x in f,
but S, - S. Since E is compact, it may be assumed that Sx, C. Moreover, as
in the proof of [8, Lemma 4.9], C_S,. By the previous theorem,
S+/- C+/-
,--* S,. Therefore, there exist tr S+/- converging to tr C+/- with

iris :/: 1, the trivial character. Since (G.x, ) and (G.x, 1) have the same
class in the quotient, it follows that {(G. x, try)} converges to both (G. x, 1)
and (G.x, tr). Since these are district elements in the quotient space,
C*(G, f)^ could not be Hausdorff.
On the other hand, if f/G is Hausdorff, then, as above, C*(G, ) is EH-

regular and Prim C*(G, f) is homeomorphic to the quotient described above.
Moreover, by [8, Proposition 3.2], C*(G, f) is C. C. R, and in particular,
Prim (G, f) is homeomorphic to the spectrum.
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Suppose that [G. x, a] is a net in the quotient converging to both [G. x, a]
and [G. y, 09]. By [8, Corollary 5.6], it may be assumed that (x, a) (x, a)in
f x G and that there are s G as well as o S such that (s x, o9 try)
(y, 09). Since f/G is Hausdorff, G. x G. y. But the 09 must converge to
ogtr-t. If y Sr is continuous then S---, S and oa- S. In particular,
(G. x, tr) and (G" y, 09) represent the same element in the quotient. QED

Remark. It follows from this proof and the remarks preceeding the theorem
that if (G, f]) is second countable, then the hypothesis on the maps from G/S to
G x can be dropped entirely from the statement of the theorem.
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