EMBEDDINGS OF $S^{n} \times M$ IN $S^{n+2} \times M$ FORM A GROUP

BY

Stanley Ocken ${ }^{1}$

Introduction

This paper describes group structures for a large class of codimension two embedding problems. The classic example of algebraic structure in an embedding problem is furnished by the knot cobordism groups of [9], [11], [13]. Our general study uses homology surgery theory, first developed and applied to the codimension two placement problem in [7].

Let M be an arbitrary k-dimensional compact manifold. This paper classifies standard M-knots, i.e., embeddings $f: S^{n} \times M \rightarrow S^{n+2} \times M$ which are homotopic, rel boundary, to the standard inclusion. Using a definition of cobordism based on concordance of embeddings, we prove that the set $G_{n}^{t}(M)$ of cobordism classes of such M-knots forms an abelian group in a natural way, provided $n \geq 2$ and $n+k \geq 4$. This was known previously for M simply connected [7] and for a certain class of non simply connected M [16]. Herein we treat the general case by devising a variant of surgery theory which studies the normal cobordism problem for simply split simple homotopy equivalences [5], [8]. The desired group structure is obtained by exhibiting $G_{n}^{t}(M)$ as a subgroup of a relative homology surgery group in this theory. For all M, we interpret this group structure geometrically. When M is a point, $G_{n}^{t}(M)$ coincides with the knot cobordism groups of [11], [13], wherein the group operation is defined by taking connected sum of knots.

Two embeddings $f, g: S^{n} \times M \rightarrow S^{n+2} \times M$ are called cobordant if f is concordant to $\phi f \psi$, where ϕ and ψ are certain allowable automorphisms of $S^{n+2} \times M$ and $S^{n} \times M$ respectively. The set of cobordism equivalence classes is denoted $G_{n}^{t}(M)$; see Section 1 for a precise definition, as well as the reason for including the superscript " t " in the notation. Our results are valid for M a smooth (resp. piecewise linear, topological) manifold, provided we restrict attention to smooth (resp. piecewise linear locally flat, topological locally flat) embeddings and concordances, and require ϕ and ψ to be diffeomorphisms (resp. piecewise linear homeomorphisms, homeomorphisms). For simplicity, discussions and results are stated for the smooth case.

The groups $G_{n}^{t}(M)$ do not, in general, satisfy the fourfold periodicity proved

[^0]in [13] for the knot cobordism groups C_{n}, which correspond to G_{n}^{t} (point) in the piecewise linear or topological cases. To remedy this, we defined in [16] a larger cobordism set $G_{n}(M)$, based on embeddings in $S^{n+2} \times M$ of manifolds simple homotopy equivalent to $S^{n} \times M$. In this paper, we construct a family of (abelian) relative surgery obstruction groups $\Gamma_{*}^{s s}(\Psi)$, where Ψ is a commutative square functorial in $\pi_{1}(M)$. Our main technical result is:

Theorem 3. For $n \geq 2, n+k \geq 4$, there is a bijective surgery obstruction map $\theta: G_{n}(M) \rightarrow \Gamma_{n+k+3}^{s s}(\Psi)$.

Since the groups $\Gamma_{*}^{s s}(\Psi)$ satisfy fourfold periodicity, we obtain $G_{n}(M) \simeq$ $G_{n+4}(M)$. The isomorphism is constructed geometrically as follows:

TheOrem 5. For $n \geq 2$ and $n+k \geq 4$, there are geometrically defined isomorphisms

$$
G_{n}(M) \xrightarrow{\cdot \times C P^{2}} G_{n}\left(M \times C P^{2}\right) \xrightarrow{\simeq} G_{n}\left(M \times I^{4}\right) \xrightarrow{=} G_{n+4}(M)
$$

For related constructions in the simply connected case, see [7]. In particular, this result provides a geometric interpretation of the periodocity of knot cobordism groups; cf. [7], [2], [12].

The relative homology surgery groups $\Gamma_{*}^{s s}(\Psi)$ in turn depend on absolute surgery groups $L_{*}^{s s}(\pi)$, with $\pi=\pi_{1}(M)$. These groups contain the obstruction to finding a normal cobordism from a given normal map with target $M \times S^{1}$ to a simple homotopy equivalence which is simply split along $M \times \mathrm{pt}$, where pt is a basepoint of S^{1} [8], [5]. We exhibit a splitting

$$
L_{n}^{s s}(\pi \times Z) \simeq i_{*} L_{n}(\pi) \oplus L_{n-1}(\pi)
$$

for $n \geq 6$. Note that both Wall groups which appear on the right are the groups $L^{s}(\pi)$, which study simple homotopy equivalences; cf. [17]. The groups $L_{*}^{s s}$ are related to the groups $L_{*}^{s t}$ of [10], which study the "super-simple" homotopy equivalences defined in [6].

In order to interpret geometrically the group structure in $G_{n}^{(t)}(M)$, we consider, as in [16], the case that M has non-empty boundary. (Here, and throughout this paper, the superscript " (t) " indicates that we are discussing either the fake or standard cobordism groups.) In this situation, an M-knot is required by definition to coincide on the boundary with the standard inclusion. As a result, $G_{n-1}^{(t)}(M \times I)$ admits a groups operation, defined by "stacking" embeddings along part of the boundary. For $n \geq 2$, this group structure coincides with the algebraically defined one of Theorem 3 above. Furthermore, there is a natural map

$$
\dot{J}_{M}: G_{n-1}^{(t)}(M \times I) \rightarrow G_{n}^{(t)}(M),
$$

obtained by viewing $S^{n-1} \times M \times I$ as a neighborhood of the equator in $S^{n} \times M$. For M^{k} any compact manifold, we prove:

THEOREM 1. If $n+k \geq 4$, the map $G_{n-1}^{(t)}(M \times I) \rightarrow G_{n}^{(t)}(M)$ is an isomorphism for $n \geq 3$, and an epimorphism for $n=2$.

The commutativity of the stacking operation may be explained, as in [16, Section 13], by studying the two stacking operations in $G_{n-2}^{(t)}(M \times I \times I)$.

We obtain as a result the following "partial unkotting theorem" for M-knots.
Theorem 2. Let $f: S^{n} \times M \rightarrow S^{n+2} \times M$ be a standard M-knot, with $n \geq 2$ and $n+k \geq 4$. Let N be any (arbitrarily small) neighborhood of $S^{0} \times M$ in $S^{n+2} \times M$. Then there exist diffeomorphisms $\phi: S^{n+2} \times M \rightarrow S^{n+2} \times M$ and $\psi: S^{n} \times M \rightarrow S^{n} \times M$, and an M-knot $g: S^{n} \times M \rightarrow S^{n+2} \times M$ such that:
(i) g coincides with the standard inclusion outside N.
(ii) $g=\phi f \psi$.

Thus every standard cobordism class contains a representative which coincides, away from two copies of M, with the standard inclusion. Theorems 1 and 2 generalize the result of [7] that the natural map $\# i_{0}: C_{n+k} \rightarrow G_{n}^{t}(M)$, defined by taking the connected sum of a classical knot with the standard inclususion, is a bijection for M a closed, simply connected, piecewise linear or topological manifold.

Section 1

We recall the definition of $G_{n}^{t}(M)$, where M is a compact manifold with possibly nonempty boundary. A parametrized knot in M, or more briefly a standard M-knot, is an embedding $f: S^{n} \times M \rightarrow S^{n+2} \times M$ which is homotopic, rel ∂, to the standard inclusion i_{0}. Two M-knots f and g are conjugate provided there exist diffeomorphisms

$$
\phi: S^{n+2} \times M \rightarrow S^{n+2} \times M \quad \text { and } \quad \psi: S^{n} \times M \rightarrow S^{n} \times M
$$

such that:
(i) ϕ and ψ are the identity on the boundary.
(ii) There exist homotopies rel $\partial, \pi_{M} \phi \sim \pi_{M}$ and $\pi_{M} \psi \sim \psi$, where π_{M} denotes projection to M.
The M-knots f_{0} and f_{1} are concordant provided there exists a smooth embed$\operatorname{ding} F: S^{n} \times M \times I \rightarrow S^{n+2} \times M \times I$, such that:
(i) $F(x, i)=\left(f_{i}(x), i\right), i=0,1 ; x \in S^{n} \times M$.
(ii) F coincides with i_{0} on the boundary.

Finally, f and g are cobordant provided they are conjugate to concordant M-knots. The set of cobordism equivalence classes so obtained is denoted $G_{n}^{t}(M)$. Technically speaking, an M-knot comes equipped with a framing $\bar{f}: S^{n} \times M \times D^{2} \rightarrow S^{n+2} \times M$; we sometimes omit reference to the framing in order to simplify the exposition. See [16, Section 1] for complete information.

In order to realize the entire surgery obstruction group which we propose to define, we must study fake M-knots. Such a knot is defined by a triple (f, X, ξ), where:
(i) $\xi: S^{n} \times M \rightarrow X$ is a simple homotopy equivalence of manifolds which has zero normal invariant and restricts to a diffeomorphism on the boundary.
(ii) $f: X \rightarrow S^{n+2} \times M$ is an embedding such that $f \circ \xi$ is homotopic rel ∂ to the standard inclusion.
The definition of the cobordism relation is given in [16, Section 8$]$; the resulting set of equivalence classes is denoted $G_{n}(M)$. Let $T_{0}=S^{n} \times M \times D^{2}$ and $W_{0}=D^{n+1} \times M \times S^{1}$ denote the corresponding tube and complement of the standard embedding i_{0}. Then there is an associated characteristic map $\hat{F}: S^{n+2} \times M \rightarrow S^{n+2} \times M$ such that:
(C1) $\pi_{M} \hat{F} \sim \pi_{M}$ rel ∂.
(C2) $\hat{F} \mid T=(\bar{f})^{-1}: T \rightarrow T_{0}$.
(C3) The complementary map $F=\hat{F} \mid W: W \rightarrow W_{0}$ is a simple homology equivalence with coefficients $Z\left[\pi_{1}(M)\right]$.
See [16, Section 2] for details.
The last condition motivated [7] to construct a surgery theory for studying homology equivalent manifolds. We now indicate briefly the results of [7] which we need.

Let $\pi=\pi_{1}(M)$, and let $\Pi: Z[\pi \times Z] \rightarrow Z[\pi]=\Lambda$ be induced by projection. Set $d=n+k+2$, the dimension of W_{0}.

First, there exists a surgery group $\Gamma_{d}(\Pi)$ for $d \geq 5$ which contains the obstruction $\sigma(G, B)$ to finding a normal cobordism rel ∂ from a given normal $\operatorname{map}(G, B), G: W \rightarrow W_{0}$ to a simple Λ homology equivalence. Of course we assume that $G \mid \partial W$ is a simple Λ-homology equivalence to begin with [7, 1.7 and 2.1].

Next suppose given a normal map $(F, B), F: W \rightarrow W_{0}$ with F a simple Λ homology equivalence of pairs, together with a surgery group element $\gamma \in \Gamma_{d+1}(\Pi)$. If $d \geq 5$, there is a normal cobordism (H,C), H:Z $\rightarrow W_{0}$ from (F, B) to a normal map which we shall denote

$$
(\gamma \cdot F, \gamma \cdot B), \gamma \cdot F: \quad \gamma \cdot W \rightarrow W_{0}
$$

also a simple homology equivalence of pairs, such that $\sigma(H, C)=\gamma[7,1.8$ and 2.2].

This last result permits the construction of new M-knots by surgery, starting from a given M-knot f with complementary map $F: W \rightarrow W_{0}$, as follows. Since F is the restriction of the simple homotopy equivalence \widehat{F}, F is covered by a canonical bundle map which we shall henceforth not mention. Given $\gamma \in \Gamma_{d+1}(\Pi)$, construct $\gamma \cdot F: \gamma \cdot W \rightarrow W_{0}$ as above. The manifold $\gamma \cdot W$ will be the complement of the new knot. Define

$$
\gamma \cdot \hat{F}=(\bar{f})^{-1} \cup \gamma \cdot W: \quad T \cup \gamma \cdot W \rightarrow T_{0} \cup W_{0}=S^{n+2} \times M
$$

note that the domain of this map is obtained by pasting the original tube to the
new complement. Then $\gamma \cdot \hat{F}$ is homotopic rel ∂ to a diffeomorphism g, provided γ is in $\Gamma_{d+1}(\Pi)$, the kernel of the natural map $\Gamma_{d+1}(\Pi) \rightarrow L_{d+1}(\pi)$. Define

$$
\gamma \cdot f=(g \mid T) \circ f: T_{0} \rightarrow S^{n+2} \times M
$$

This yields a new M-knot, whose cobordism class depends only on that of f. Hence there is an induced action of $\tilde{\Gamma}_{d+1}(\Pi)$ on $G_{n}^{t}(M)$. Similar remarks apply to $G_{n}(M)$; see $[16$, Sections 4,9$]$ for details.

An important invariant of a cobordism class $x \in G_{n}^{(t)}(M)$ is its "Seifert surface obstruction" $\rho(x) \in L_{n+k+1}(\pi)$. This is defined to be the Wall surgery obstruction of the restriction of the map $F: W \rightarrow W_{0}=D^{n+1} \times M \times S^{1}$ to the transverse inverse image of $D^{n+1} \times M \times \mathrm{pt}$. We shall show later that the natural map $i: G_{n}^{t}(M) \rightarrow G_{n}(M)$ is injective, and that $x \in G_{n}(M)$ is in the image of i if and only if $\rho(x)$ acts trivially on the simple homotopy triangulations of $D^{n} \times M$. This is the reason for the " t " in the notation " $G_{n}^{t}(M)$ ".

Section 2

This section determines the isotropy subgroup of the trivial cobordism class under the action of $\tilde{\Gamma}_{d+1}(\Pi)$. Let

$$
k_{*}: L_{d+1}(\pi \times Z) \rightarrow \Gamma_{d+1}(\Pi)
$$

be the natural map, and let

$$
\cdot \times S^{1}: L_{d}(\pi) \rightarrow L_{d+1}(\pi \times Z)
$$

be induced by crossing normal maps with a circle [17]. The composite $k_{*}\left(\cdot \times S^{1}\right)$ is easily seen to take values in $\Gamma_{d+1}(\Pi)$, which vanishes if d is even [16, p. 18].

Proposition 1. Let $\alpha \in L_{d}(\pi), d \geq 6$. Then $k_{*}\left(\alpha \times S^{1}\right) \cdot x=x$ for all $x \in G_{n}^{(t)}(M)$.

Remark. The lack of this result in [16] forced the author to assume that $k_{*}\left(\cdot \times S^{1}\right)$ is the zero homomorphism. For reasons that will become clear later, it was in fact necessary to assume that the composite

$$
L^{n}(\pi) \xrightarrow{\cdot \times S^{1}} L(\pi \times Z) \xrightarrow{k_{*}} \tilde{\longrightarrow}(\Pi)
$$

is zero. This is the circle perfect condition on $\pi=\pi_{1}(M)$ [16, Section 17].
Proof. For convenience, we consider only the case $x \in G_{n}^{t}(M)$. Minor variations of the proof yield the result in the fake case; see [16, Sections 8-10] for necessary information.

Let $F: W \rightarrow W_{0}$ be the complementary map of a knot in the cobordism class x. By [7, 13.7], we may assume that F induces an isomorphism on π_{1}. We shall
use the diffeomorphism $\bar{f}: T_{0} \rightarrow T$ to identify T_{0} and T. Set $\partial_{+} W=\partial W \cap \partial T$; note that this is identified with $S^{n} \times M \times S^{1}=\partial_{+} W_{0}$.

Let $\gamma=k_{*}\left(\alpha \times S^{1}\right)$. We construct $\gamma \cdot F$ by doing surgery on id_{W} to obtain a simple homotopy equivalence $\left(\alpha \times S^{1}\right) \cdot \mathrm{id}_{W}$; then

$$
\gamma \cdot F=F \circ\left(\left(\alpha \times S^{1}\right) \cdot \mathrm{id}_{W}\right) .
$$

Since $L_{*}\left(\pi_{1}\left(\partial_{+} W\right)\right) \rightarrow L_{*}\left(\pi_{1}(W)\right)$ is an epimorphism for all n, the surgery may be performed on a collar neighborhood $\partial W \times I$ of ∂W in W. Write $W=\partial_{+} W \times I \bigcup_{\partial+W \times 0} \bar{W}$.

If $d \geq 6$, let $h: X \rightarrow S^{n} \times M \times I$ be the simple homotopy equivalence obtained by using α to do surgery rel ∂ on $\mathrm{id}_{S^{n \times M \times I}}$, as in [18, 5.8 and 6.5]. If $d \geq 7$, the s-cobordism theorem yields a diffeomorphism $\xi: S^{n} \times M \times I \rightarrow X$ such that

$$
h \circ \xi: S^{n} \times M \times I \rightarrow S^{n} \times M \times I
$$

is a homotopy from $\mathrm{id}_{S^{n \times M \times 0}}$ to a diffeomorphism

$$
\psi: S^{n} \times M \times 1 \rightarrow S^{n} \times M \times 1 .
$$

Write $\theta=h \times S^{1}$ and $\gamma=k_{*}\left(\alpha \times S^{1}\right)$. We have realized our desired surgery obstruction by the map of collars

$$
\theta: X \times S^{1} \rightarrow \partial_{+} W_{0} \times I
$$

Pasting back the tubes and complements, we see that $\gamma \cdot \hat{F}$ is the composite

$$
\begin{aligned}
T \bigcup_{S^{n} \times M \times 1}\left(X \times S^{1}\right) & \bigcup_{S^{n \times M} \times 0} \bar{W} \xrightarrow{\left(\psi \times D^{2}\right) \cup \theta \cup \text { id }} \\
& T \cup\left(\partial_{+} W \times I\right) \cup \bar{W} \xrightarrow{\hat{F}} S^{n+2} \times M .
\end{aligned}
$$

This follows from naturality of surgery obstructions. Then $\gamma \cdot f$ is, by definition, $(g \mid T) \circ \bar{f}$, where $\overline{f:} T_{0} \rightarrow T$ is the given framed knot and g is a diffeomorphism homotopic rel ∂ to $\gamma \cdot \hat{F}$.

To see that $\gamma \cdot f$ is cobordant to f, construct the diffeomorphism

$$
\begin{aligned}
\Phi=\left(\psi^{-1} \times D^{2}\right) \cup & \left(\xi^{-1} \times S^{1}\right) \cup \mathrm{id}: \\
& T \cup\left(X \times S^{1}\right) \cup \bar{W} \rightarrow T \cup\left(\partial_{+} W \times I\right) \cup \bar{W}=S^{n+2} \times M
\end{aligned}
$$

Then $\gamma \cdot f$ may be rewritten as the composite

$$
T_{0} \xrightarrow{(\Phi \mid T) \circ \tilde{f}} S^{n+2} \times M \xrightarrow{g \circ \Phi^{-1}} S^{n+2} \times M .
$$

Now observe that $(\Phi \mid T) \circ \bar{f}=\bar{f} \circ\left(\psi^{-1} \times D^{2}\right)$ as a result of our identification of T_{0} and T. Hence $\gamma \cdot f$ is cobordant to f as desired.

The s-cobordism theorem used in the above argument fails when $d=6$. The proposition may be proved in this case by using a modified definition of $G_{n}^{(t)}(M)$ in the case $n+k=4$; see [16, pp. 43, 59]. We leave the details to the reader.

Conversely, [16, 6.2 and 10.6.2] show that if $d \geq 5$ and $\gamma \in \tilde{\Gamma}_{d+1}(\Pi)$ acts trivially on $x_{0} \in G_{n}^{(t)}(M)$, then $\gamma=k_{*}\left(\alpha \times S^{1}\right)$ for some $\alpha \in L_{d}(\pi)$. It follows that $k_{*}\left(L_{d}(\pi) \times S^{1}\right) \subset \widetilde{\Gamma}_{d+1}(\Pi)$ is the isotropy subgroup of x_{0} for $d=n+k+2 \geq 6$.

Section 3

The next part of this paper is devoted to showing that $k_{*}\left(L_{d}(\pi) \times S^{1}\right)$ is the isotropy subgroup for all classes $x \in G_{n}(M)$. To accomplish this goal, we follow the idea of [16, Section 11] and try to map $G_{n}(M)$ to an appropriate relative surgery group. Specifically, we wish for a diagram with exact bottom row

in which the right-hand square commutes, i.e.,

$$
\theta(\gamma \cdot x)=m_{*}(\gamma)+\theta(x) \text { for } \gamma \in \Gamma_{d+1}(\Pi) \text { and } x \in G_{n}(M) .
$$

It will then follow formally that the isotropy subgroup of $x \in G_{n}(M)$ is independent of x; cf. [16, Section 12].

In order to construct the group at the lower left, we in turn need a Wall surgery group for $\pi_{1}=\pi \times Z$, which satisfies a splitting

$$
L_{d+1}^{s s}(\pi \times Z) \approx i_{*} L_{d+1}(\pi) \oplus L_{d}(\pi) \times S^{1}
$$

In the usual splitting of $L_{d+1}(\pi \times Z)$ [17], we encounter the group $L_{d}^{h}(\pi) \times S^{1}$ because the group $W h(\pi)$ gives rise to an obstruction to finding a simple splitting of a simple homotopy equivalence [8], [5]. We apply the methods of [18, Section 9] to construct the group $L^{s s}(\pi \times Z)$; here the superscript stands for "simply split".

Consider a Poincaré pair (Y, X), together with a codimension one Poincaré subpair (y, x) with trivial normal bundle. A simple homotopy equivalence $f:(N, M) \rightarrow(Y, X)$, where (N, M) is a manifold pair, will be called simply split along (y, x) if f and $f \mid M$ are transverse regular to y and x respectively, and if $f \mid\left(f^{-1}(y), f^{-1}(x)\right)$ is a simple homotopy equivalence of pairs. Briefly, we call f as ss-equivalence along (y, x).

If $F: W \rightarrow W_{0}$ is the complementary map of a standard (resp. fake) $M-\mathrm{knot}$, it follows from [16] that

$$
\partial F: \partial_{+} W \rightarrow \partial_{+} W_{0}=S^{n} \times M \times S^{1}
$$

is the product of a diffeomorphism (resp. simple homotopy equivalence) with $\mathrm{id}_{S_{1}}$, hence ∂F is an $s s$-equivalence along $S^{n} \times M \times \mathrm{pt}$. Furthermore, if an
M-knot is conjugate to i_{0}, its complementary map is an $s s$-equivalence along

$$
\left(D^{n+1} \times M \times \mathrm{pt}, S^{n} \times M \times \mathrm{pt}\right)
$$

These facts indicate the role of simple splitting in the study of $G_{n}^{(t)}(M)$.
Let $(f, b), f:(N, M) \rightarrow(Y, X)$ be a normal map. Assume given a subpair (y, x) of (Y, X) as above, with $y \subset Y$ inducing the natural inclusion $\pi \rightarrow \pi \times Z$ of fundamental groups, and that $f \mid M$ is an ss-equivalence along x. We now proceed to the construction of $L^{s s}(\pi \times Z)$, which contains the obstruction to finding a normal cobordism rel ∂ from (f, b) to a normal map (g, c), with g an $s s$-equivalence along (y, x).

Let K be a CW-complex with finite 2 -skeleton and

$$
w: \pi_{1}(K) \rightarrow\left\{{ }_{-} 1\right\}
$$

a homomorphism. As in [18, Section 9] we have in mind the case $K=K(\pi, 1)$ with π a finitely presented group. We now construct a group based on unrestricted objects over $K \times S^{1}$, with additional data provided by a codimension one surgery problem. Specifically, let an object consist of data

$$
\theta=(Y, X, v, N, M, \phi, F, \omega, y, x, n, m)
$$

Here, the first eight entries define an unrestricted object over $K \times S^{1}$, as in [18, p. 86]. In particular, recall that $\phi:(N, M) \rightarrow(Y, X)$ is a degree one map from a manifold pair in dimension n to a Poincaré pair, and that ω is a map from Y to $K \times S^{1}$. To this we add the following structure: (y, x) is a codimension one subpair of (Y, X) with trivial normal bundle. The map $\omega: K \times S^{1}$ is transverse regular to $K \times 0 \subset K \times S^{1}$, with

$$
(\omega, \omega \mid X)^{-1}(K \times 0)=(y, x)
$$

Here $0 \in S^{1}$ is a base point, and in the future we will think of S^{1} as $[0,2 \pi] / 0 \sim 2 \pi$. In addition, ϕ is transverse regular to $(y, x) \subset(Y, X)$, and $(n, m)=\phi^{-1}(y, x)$. Let $\phi \mid M_{m}: M_{m} \rightarrow X_{x}$ be the map obtained by splitting $\phi \mid M$ along m, as in [4], [17]. We require finally that $\phi \mid m$ and $\phi \mid M_{m}$ be homotopy equivalences. As usual, the fundamental classes $[N]$ and $[n]$ are part of the structure of θ; we obtain the object $-\theta$ by reversing their signs.

Next, define an object θ as above to be null equivalent (write $\theta \sim 0$) if there exist data

$$
\left(\left(Z, Y, Y_{+}\right), \mu,\left(P, N, N_{+}\right), \psi, G, \Omega,\left(z, y, y_{+}\right),\left(p, n, n_{+}\right)\right)
$$

which extend the object θ, as in [18]. Here, $\left(Z, Y, Y_{+}\right)$is a Poincaré triad of dimension $n+1$, with $Y \cap Y_{+}=X$, and $\left(z, y, y_{+}\right)$is a codimension one Poincaré subtriad with trivial normal bundle. The map Ω : $Z \rightarrow K \times S^{1}$ is a transverse regular (to K) extension of $\omega: Y \rightarrow K \times S^{1}$, with

$$
\left(\Omega, \Omega|Y, \Omega| Y_{+}\right)^{-1}(K)=\left(z, y, y_{+}\right)
$$

Similarly, $\psi:\left(P, N, N_{+}\right) \rightarrow\left(Z, Y, Y_{+}\right)$extends ϕ, is transverse regular to $\left(z, y, y_{+}\right)$, and $\psi^{-1}\left(z, y, y_{+}\right)=\left(p, n, n_{+}\right)$. Finally, $\psi \mid n_{+}$and $\psi \mid N_{+}$must be simple homotopy equivalences. Now write $\theta_{1} \sim \theta_{2}$ if the object $\theta_{1}+\theta_{2}$, obtained by taking disjoint unions, is null equivalent. As in [18], we obtain an abelian group of equivalence classes under \sim, which we denote $L_{n}^{s s}\left(K \times S^{1}\right)$. Let $L_{n}^{1}(K)$ denote the Wall group based on unrestricted objects over K; recall that

$$
L_{n}^{1}(K(\pi, 1)) \approx L_{n}(\pi, w)
$$

provided $n \geq 5[18,9.4 .1] .{ }^{2}$
Proposition 2. There is a natural split short exact sequence

$$
0 \longrightarrow L_{n}^{1}(K) \xrightarrow{i_{*}} L_{n}^{s s}\left(K \times S^{1}\right) \xrightarrow{s_{*}} L_{n-1}^{1}(K) \longrightarrow 0 .
$$

Proof. Let $\varepsilon=1$, say, and define $i: K \rightarrow K \times S^{1}$ by $i(k)=(k, \varepsilon)$. Let $p: K \times S^{1} \rightarrow K$ denote the projection. Given

$$
\alpha=(Y, X, v, N, M, \phi, F, w) \in L_{n}^{1}(K)
$$

define an object $i_{\#}(\alpha) \in L_{n}^{s s}\left(K \times S^{1}\right)$ by including null subobject data:

$$
i_{\#}(\alpha)=(Y, X, v, N, M, \phi, F, i \circ w, \theta, 0,0,0) .
$$

Similarly, given θ representing a class in $L_{n}^{s s}\left(K \times S^{1}\right)$, define an object $p_{\#}(\theta)$ over K by omitting the subobject data and replacing ω by $p \circ \omega: Y \rightarrow K$. It is easy to check that $i_{\#}$ and $p_{\#}$ induce well-defined homomorphisms

$$
i_{*}: L_{n}^{1}(K) \rightarrow L_{n}^{s s}\left(K \times S^{1}\right) \quad \text { and } \quad p_{*}: L_{n}^{s s}(K) \rightarrow L_{n}^{1}(K)
$$

with $p_{*} i_{*}$ the identity. Hence, i_{*} is injective.
The splitting map s_{*} sends an n-dimensional object over $K \times S^{1}$ to the ($n-1$)-dimensional object over K obtained by restricting maps and bundles to the subobject data. We may write

$$
s_{\#}(\theta)=(y, x, v|y, n, m, v| n, F|N, \omega| y)
$$

for θ as specified above. This induces a homomorphism

$$
s_{*}: L_{n}^{s s}\left(K \times S^{1}\right) \rightarrow L_{n-1}^{1}(K)
$$

Finally, crossing with a circle defines in an obvious way a homomorphism

$$
\times S^{1}: L_{n-1}^{1}(K) \rightarrow L_{n}^{s s}\left(K \times S^{1}\right)
$$

such that $s_{*}\left(\alpha \times S^{1}\right)=\alpha$ for $a \in L_{n-1}^{1}(K)$. Hence s_{*} is onto.
To prove exactness, let $[\theta]$ be a class in $L_{n}^{s s}\left(K \times S^{1}\right)$ such that $s_{*}([\theta])=0$. By cobordism extension [3], θ is equivalent to an object, still denoted θ, in which $\phi \mid n:(n, m) \rightarrow(y, x)$ is a simple homotopy equivalence of pairs. Split

$$
\phi:(N, M) \rightarrow(Y, X) \quad \text { and } \quad \omega: Y \rightarrow K \times S^{1}
$$

[^1]along y and $K \times 0$ respectively, thereby obtaining maps
$$
\phi_{s}:\left(N_{n}, 2 n \cup M_{m}\right) \rightarrow\left(Y_{y}, 2 y \cup X_{x}\right) \quad \text { and } \quad \omega_{s}: Y_{y} \rightarrow K \times[\varepsilon, 2 \pi-\varepsilon] .
$$

Note that the boundary of Y_{y}, for instance, consists of two disjoint copies of y, each glued to X_{x} along a copy of x. By Mayer Vietoris sequences for homotopy equivalences and Whitehead Torsion [18], ϕ_{s} is a simple homotopy equivalence on the boundary; recall that $\phi_{s} \mid M_{m}$ is required to be a simple homotopy equivalence in our definition of objects. Let $\omega: Y_{y} \rightarrow K$ be the composite of ω_{s} followed by projection. Then the data obtained by restricting attention to the split maps ϕ_{s} and ω define an object β representing a class in $L_{n}^{1}(K)$.

We claim that $i_{*}([\beta])=[\theta]$. Recall the 12 -tuple which defines θ, and set

$$
\begin{gathered}
\psi=\phi \times I: N \times I=P \rightarrow Z=Y \times I \quad(I=[0,1]), \\
\Omega=(\text { projection }) \circ(\omega \times I): Y \times I \rightarrow K \times S^{1} \times I \rightarrow K \times S^{1} .
\end{gathered}
$$

From Ω and ψ, extract the information for defining an equivalence $i_{\#}(\beta) \sim \theta$ as follows. Let

$$
\begin{aligned}
z & =y \times I \\
y_{+} & =y \times 1 \cup \partial y \times I \\
p & =n \times I \\
n_{+} & =n \times 1 \cup \partial n \times I \\
Y_{0} & =Y \times 0 \\
Y_{1} & =(\omega \times 1)^{-1}(K \times[\varepsilon, 2 \pi-\varepsilon]) \\
Y_{+} & =\partial(Y \times I)-\overline{\left(Y_{0} \cup Y_{1}\right)} .
\end{aligned}
$$

It is easy to check that these data, together with obvious unmentioned bundle data, define an equivalence between the objects over $K \times S^{1}$ defined by data along Y_{0} and Y_{1} respectively. But the data along Y_{0} define the object θ, while the data along Y_{1} define an object which is clearly equivalent to $i_{\#}(\beta)$. Hence $i_{*}([\beta])=[\theta]$ as desired.

We now write $L_{n}^{s s}(\pi \times Z)=L_{n}^{s s}\left(K(\pi, 1) \times S^{1}\right)$. It follows from [18, 9.4.1] and the last result that there is a canonical splitting for $n \geq 6$:

$$
L_{n}^{s s}(\pi \times Z) \approx i_{*} L_{n}(\pi) \oplus L_{n-1}(\pi) \times S^{1}
$$

To apply this result, consider an n-dimensional Poincaré pair (Y, X) and an $(n-1)$-dimensional subpair (y, x) with trivial normal bundle. Assume that the inclusion $y \subset Y$ induces the inclusion $\pi \rightarrow \pi \times Z$ of fundamental groups. Construct a map $\omega: Y \rightarrow K \times S^{1}$, transverse regular to $K \times 0$, such that

$$
(\omega, \omega \mid X)^{-1}(K \times 0)=(y, x)
$$

Let $(f, b), f:(N, M) \rightarrow(Y, X)$ be a normal map, transverse regular to (y, x), and as usual set $(n, m)=(f, f \mid M)^{-1}(y, x)$. Assume that $f|M, f| m$, and $f \mid M_{m}$ are all simple homotopy equivalences. It is clear that these data define an object $\theta(f, b)$ over $K \times S^{1}$, representing a class $\sigma(f, b) \in L_{n}^{s s}(\pi \times Z)$.

Proposition 3. Assume that $n \geq 6, Y_{y}$ and y are connected, and (f, b) is a normal map as above. Then $\sigma(f, b)=0$ if and only if (f, b) is normally cobordant rel ∂ to an ss-equivalence along (y, x).

Proof. If (f, b) is normally cobordant rel ∂ to an ss-equivalence, it follows immediately from the definitions that $\theta(f, b) \sim 0$. Conversely, assume $\theta=\theta(f, b) \sim 0$ and $n \geq 6$. By Proposition 2, $s(\theta) \sim 0$ in $L_{n-1}^{1}(K) \simeq L_{n-1}(\pi)$ [18, 9.4.1]. Since y is connected, the restriction of (f, b) to (n, m) is normally cobordant rel ∂ to a simple homotopy equivalence of pairs. By a cobordism extension argument, we may perform a normal cobordism of (f, b), thereby obtaining an equivalent object, still denoted $\theta(f, b)$, such that $(f, b) \mid(n, m)$ is a simple homotopy equivalence of pairs. Split (f, b) along (n, m); it follows similarly that a further normal cobordism will yield an equivalent object $\theta(f, b)$ whose restriction to $\left(N_{n}, \partial\left(N_{n}\right)\right.$) is also a simple homotopy equivalence of pairs. That (f, b) is a simple homotopy equivalence, and hence an ss equivalence along (y, x), follows as usual from Mayer-Vietoris sequences.

Section 4

We are now ready to define the relative homology surgery group which realizes $G_{n}(M)$. Let $\pi=\pi_{1}(M)$, let

$$
\Pi: Z[\pi \times Z] \rightarrow Z[\pi]
$$

be the group ring homomorphism induced by projection, and $\Psi: \mathrm{id}_{Z[\pi \times Z]} \rightarrow \Pi$ the commutative square

Now recall that the construction of relative surgery groups in [18, Section 9] and [7, Section 3] is based on the definition of surgery groups in terms of unrestricted objects. Hence we may use our definition of $L_{n}^{s s}(\pi \times Z)$ and that of [7] for $\Gamma_{n}(\Pi)$, to produce a relative group, denoted $\Gamma_{n}^{s s}(\Psi)$, which fits into a sequence

$$
\Gamma_{n+1}^{s s}(\Psi) \rightarrow L_{n}^{s s}(\pi \times Z) \rightarrow \Gamma_{n}(\Pi) \rightarrow \Gamma_{n}^{s s}(\Psi)
$$

which is exact for $n \geq 6$; cf. [7, Section 3].

The group $\Gamma_{n}^{s s}(\Psi)$ solves the following surgery problem. Fix an $n-$ dimensional Poincaré triad $\left(Y, X_{-}, X_{+}\right)$together with a Poincare subpair ($x, \partial x$) of $\left(X_{+}, \partial X_{+}\right)$with trivial normal bundle. Assume that the inclusions $x \subset X_{+} \subset Y$ induce the homomorphisms $\pi \rightarrow \pi \times Z=\pi \times Z$ on fundamental groups (and that these three Poincare complexes are connected). Then the following is proved precisely as in [18, Section 9] and [7, Section 3] by using Proposition 3 above:

Proposition 4. Given data as above, let

$$
(F, B), F:\left(N, M_{-}, M_{+}\right) \rightarrow\left(Y, X_{-}, X_{+}\right)
$$

be a normal map which is transverse regular to $(x, \partial x)$, with preimage $(m, \partial m)$. Assume that $F \mid M_{-}$is a simple homology equivalence over $Z[\pi]$ and that $F \mid \partial M_{-}=\partial M_{+}$is an ss-equivalence along ∂x. Then there is a relative surgery obstruction $\sigma(F, B) \in \Gamma_{n}^{s s}(\Psi)$ which vanishes (for $\left.n \geq 7\right)$ if and only if (F, B) is normally cobordant rel M_{-}to a normal map

$$
(G, C), G:\left(Q, P_{-}, P_{+}\right) \rightarrow\left(Y, X_{-}, X_{+}\right)
$$

such that G is a simple homology equivalence over $Z[\pi]$ and $G \mid P_{+}$is an ssequivalence along ($x, \partial x$).

We are now prepared to define the relative surgery obstruction map

$$
\theta: G_{n}(M) \rightarrow \Gamma_{d+1}(\Psi), \quad \text { where } d=n+k+2
$$

and k is the dimension of M. Let $F: W \rightarrow W_{0}=D^{n+1} \times M \times S^{1}$ be the complementary map of an M-knot. As observed in [7, Section 13], F is the restriction of the homotopy equivalence \hat{F}, hence is covered by a canonical bundle map (which we will henceforth not mention). In the notation of Proposition 4, and following the argument of [16, Section 11], set

$$
\begin{aligned}
Y & =W_{0} \times I \\
X_{-} & =W_{0} \times 0 \\
X_{+} & =W_{0} \times 1 \cup \partial W_{0} \times I \\
x & =D^{n+1} \times M \times \mathrm{pt} \times 1 \cup \partial\left(D^{n+1} \times M\right) \times \mathrm{pt} \times I
\end{aligned}
$$

where pt denotes a base point of S^{1}. Decompose $W \times I$ similarly; it is easy to see that the normal map $F: W \times I \rightarrow W_{0} \times I$ satisfies the hypotheses of Proposition 4. Hence the surgery obstruction $\sigma(F \times I) \in \Gamma_{d+1}(\Psi)$ is defined and solves the surgery problem described provided $d \geq 6$. It follows as in [16, Section 11] that σ takes the same value on cobordant knots, hence defines a $\operatorname{map} \theta: G_{n}(M) \rightarrow \Gamma_{d+1}^{s s}(\Psi)$. Furthermore, the diagram

commutes [16, p. 69]. The bottom row is exact provided $d \geq 5$. Then Proposition 1 and [16, 6.2 and 10.6.2], applied to the above diagram, yield the fundamental technical result which we have been seeking:

Proposition 5. Assume $d \geq 6, x \in G_{n}^{(t)}(M)$, and $\gamma \in \tilde{\Gamma}_{d+1}(\Pi)$. Then $\gamma \cdot x=x$ if and only if $\gamma=k_{*}\left(\alpha \times S^{1}\right)$ for some $\alpha \in L_{d}(\pi)$.

Let $\rho: G_{n}(M) \rightarrow L_{d-1}(\pi)$ be the composite

$$
G_{n}(M) \xrightarrow{\sigma} L_{d}^{s s}(\pi \times Z) \xrightarrow{s_{*}} L_{d-1}(\pi)
$$

where σ measures the surgery obstruction of the complementary map. In the case that M is a point, ρ measures the index or Arf invariant of the Seifert surface. Combining [16, 10.5.1 and 10.7.1] and Proposition 1, we obtain:

Proposition 6. Let $d \geq 6, n \geq 2$. Then the sequence

$$
L_{d}(\pi) \xrightarrow{\left.k_{*} \cdot \times S^{1}\right)} \tilde{\Gamma}_{d+1}(\Pi) \stackrel{\dot{\rightarrow}}{ } G_{n}(M) \xrightarrow{\rho} L_{d-1}(\pi) \xrightarrow{k_{*}\left(\cdot \times S^{1}\right)} \tilde{\Gamma}_{d}(\Pi)
$$

is exact. If $d \geq 6, n=0$ or 1 , the sequence is exact at $\tilde{\Gamma}_{d+1}(\Pi)$ and $L_{d-1}(\pi)$, and $\rho(\gamma \cdot x)=\rho(x)$ for $\gamma \in \tilde{\Gamma}_{d+1}(\Pi), x \in G_{n}(M)$.

Of course, we mean that the sequence is exact in the strong sense that $\gamma \cdot x=x$ iff $\gamma=k_{*}\left(\alpha \times S^{1}\right)$ for some $\alpha \in L_{d}(\pi)$ and $\rho(x)=\rho(y)$ iff $x=\gamma \cdot y$.

The path to our final results is clear. It is easy to see that the natural splittings

$$
L_{d+1}^{s s}(\pi \times Z) \approx L_{d+1}(\pi) \oplus L_{d}(\pi) \times S^{1} \quad \text { and } \quad \Gamma_{d+1}(\Pi) \approx L_{d+1}(\pi) \oplus \tilde{\Gamma}_{d+1}(\Pi)
$$

are compatible with the natural map

$$
k_{*}: L_{d+1}^{s s}(\pi \times Z) \rightarrow \Gamma_{d+1}(\Pi)
$$

It follows that there is an exact sequence

$$
L_{d+1}^{s s}(\pi \times Z) \xrightarrow{k_{*}} \Gamma_{d+1}(\Pi) \xrightarrow{(\cdot, 0)} G_{n}(M) \xrightarrow{\sigma} L_{d}^{s s}(\pi \times Z) \xrightarrow{k_{*}} \Gamma_{d}(\Pi)
$$

given the hypotheses of Proposition 6. Then the surgery obstruction map $\theta: G_{n}(M) \rightarrow \Gamma_{d+1}^{s s}(\Psi)$ defined above induces a map from this sequence to the exact relative surgery sequence for $\Gamma_{d+1}^{s s}(\Psi)$. See [16, Section 11] for the (nontrivial) proof that the appropriate diagrams commute; the crucial result [16, 11.2] is based on the definition of surgery groups in [18, Section 9] and carries over to our case. The Five Lemma immediately yields:

Theorem 3. Assume $n+k \geq 4$. Then $\theta: G_{n}\left(M^{k}\right) \rightarrow \Gamma_{n+k+3}^{s s}(\Psi)$ is a bijection for $n \geq 2$ and a surjection for $n \geq 0$.

Section 5

The theorems of the introduction follow immediately from Theorem 3 and the definition of $j_{M}: G_{n-1}^{(t)}(M \times I) \rightarrow G_{n}^{(t)}(M)$. Recall that an $(M \times I)$-knot $f: S^{n-1} \times M \times I \rightarrow S^{n+1} \times M \times I$ coincides with the standard inclusion i_{0} on
the boundary. Embed $S^{n-1} \times M \times I$ as a tubular neighborhood of $S^{n-1} \times M \subset S^{n} \times M$; similarly for $S^{n+1} \times M \times I$. It follows that f extends to an M-knot

$$
j_{M}(f): S^{n} \times M \rightarrow S^{n+2} \times M
$$

which coincides with i_{0} outside $S^{n-1} \times M \times I$. It is easy to check that this induces a well-defined map

$$
j_{M}: G_{n-1}^{(t)}(M \times I) \rightarrow G_{n}^{(t)}(M) \quad[16, \text { Section } 13]
$$

Then, naturality of surgery obstructions and Theorem 3 imply that $j_{M}: G_{n-1}(M \times I) \rightarrow G_{n}(M)$ is a surjection for $n+k \geq 4$ and a bijection if, in addition, $n \geq 2$. This proves the fake M-knot assertion of Theorem 1 of the introduction.

As noted in the introduction, $G_{n-1}^{(t)}(M \times I)$ admits a natural group structure, defined by "stacking" of embeddings. Here the essential fact is that an $M \times I$-knot is required to coincide with the standard inclusion on $M \times \partial I$; see [16, Section 13] for a precise definition. Furthermore, naturality of surgery obstructions implies that the composite

$$
G_{n-1}^{(t)}(M \times I) \rightarrow G_{n}^{(t)}(M) \xrightarrow{\theta} \Gamma_{n+k+3}(\Psi)
$$

is a homomorphism for $n \geq 1$. For $n \geq 2$, this provides a geometric interpretation for the group structure induced on $G_{n}(M)$ by the bijection θ.

We now turn to the computation of $G_{n}^{t}(M)$. Define $L_{n+k+1}^{t}(\pi, M)$ to be the subgroup of $L_{n+k+1}(\pi)$ which acts trivially on the class of $\mathrm{id}_{D^{n \times M}}$ in $\mathscr{S}\left(D^{n} \times M\right)$, the set of simple homotopy triangulations of $D^{n} \times M$ rel ∂. The next result follows from Proposition 1 and [16, 5.1 and 7.1].

Proposition 6'. Let $d=n+k+2 \geq 6$. If $n \geq 2$, the sequence

$$
L_{d}(\pi) \xrightarrow{k_{*}\left(\cdot \times S^{1}\right)} \tilde{\Gamma}_{d+1}(\Pi) \stackrel{\dot{\rightarrow}}{ } G_{n}^{t}(M) \xrightarrow{\rho} L_{d-1}^{t}(\pi, M) \xrightarrow{k_{*}\left(\times S^{1}\right)} \tilde{\Gamma}_{d}(\Pi)
$$

is exact. If $n=0$ or 1 , the sequence is exact at $\widetilde{\Gamma}_{d+1}(\Pi)$ and $L_{d-1}^{t}(\pi, M)$, and $\rho(\gamma \cdot x)=x$ for $\gamma \in \tilde{\Gamma}_{d+1}(\Pi), x \in G_{n}(M)$.

Now consider the natural map $j_{M}: G_{n-1}^{t}(M \times I) \rightarrow G_{n}^{t}(M)$. To prove the assertion of Theorem 1 that this is a bijection for $n \geq 2$ and a surjection for $n \geq 0$, note that

$$
L_{n+k+1}^{t}(\pi, M)=L_{(n-1)+(k+1)+1}^{t}(\pi, M \times I)
$$

The map j_{M} therefore induces a map of the sequences for $G_{n-1}^{t}(M \times I)$ and $G_{n}^{t}(M)$ given by Proposition 6'. The Five Lemma yields the desired result. As before, stacking of embeddings defines a group structure on $G_{n-1}^{t}(M \times I)$; the $\operatorname{map} j_{M}$ induces a group structure on $G_{n}^{t}(M)$ for $n \geq 2$. Note that iteration of j_{M} induces a surjection

$$
G_{0}^{t}\left(M \times I^{n}\right) \rightarrow G_{n}^{t}(M)
$$

together with the definition of cobordism, this proves Theorem 2 of the introduction.

Let $\hat{L}_{i}(\pi, M)=L_{i}(\pi) / L_{i}(\pi, M)$. Then a comparison of the exact sequences of Propositions 6 and 6^{\prime} yields:

Theorem 4. Assume $n \geq 2, n+k \geq 4$. There is an exact sequence of abelian groups

$$
0 \rightarrow G_{n}^{t}(M) \rightarrow G_{n}(M) \rightarrow \hat{L}_{n+k+1}(\pi, M) \rightarrow 0 .
$$

By the argument of [7, 3.6], the groups $\Gamma_{d+1}^{s s}(\Psi)$ satisfy fourfold periodicity for $d \geq 6$. By Theorem 3, there is a group isomorphism $G_{n}(M) \approx G_{n+4}(M)$ for $n \geq 2$. As shown in [16, 16.2], this isomorphism may be realized geometrically by combining the following three isomorphisms:
(i) $\quad G_{n}(M) \rightarrow G_{n}\left(M \times C P^{2}\right)$, obtained by crossing an M-knot with $\mathrm{id}_{C P 2}$,
(ii) $G_{n}\left(M \times I^{4}\right) \rightarrow G_{n}\left(M \times C P^{2}\right)$, induced by the inclusion of a 4-disc in $C P^{2}$, and
(iii) $G_{n}\left(M \times I^{4}\right) \rightarrow G_{n+4}(M)$, the fourfold iteration of the map j_{M}.

This yields Theorem 5 of the introduction. A similar argument in [7] in the special case that M is a point provided the first geometric proof of the periodicity of knot cobordism. For other explanations of knot periodicity, see [12], [2].

Our next result states necessary and sufficient criteria for unknotting M-knots up to cobordism. First we need a definition. A map of manifolds $f:(M, \partial M) \rightarrow(N, \partial N)$ is a collared diffeomorphism if it is obtained by gluing a level preserving homotopy $\partial M \times I \rightarrow \partial N \times I$ to a diffeomorphism $\bar{M} \rightarrow \bar{N}$; here as previously \bar{M} is the closure in M of the complement of the collar neighborhood $\partial M \times I$ of ∂M. Assume as usual that $n \geq 2, n+k \geq 4$.

Theorem 6. Let $F: W \rightarrow W_{0}$ be the complementary map of a standard (resp. fake) M-knot f. Then f is cobordant to the standard embedding i_{0} if and only if F is $Z\left[\pi_{1}(M)\right]$-homology s-cobordant, rel boundary, to a collared diffeomorphism (resp. to a map) which is an ss-equivalence along

$$
\left(D^{n+1} \times M \times \mathrm{pt}, S^{n} \times M \times \mathrm{pt}\right)
$$

Proof. It follows easily from [16, 3.1] that the complementary map of a standard M-knot conjugate to i_{0} is both a collared diffeomorphism and an ss-equivalence of the desired type. A similar but easier argument shows that the complementary map of a fake M-knot conjugate to i_{0} is an $s s$-equivalence. By the argument of [16, 3.1], concordant (fake or standard) M-knots have $Z\left[\pi_{1}(M)\right]$-homology s-cobordant complementary maps. This proves the "only if" part.

Conversely, assume that the complementary map of a knot in the cobordism class x has the desired property. By Proposition 4, the relative surgery obstruction $\theta(x)$ (resp. $\theta i(x)$) of the fake (resp. standard) cobordism class x vanishes. Here, $i: G_{n}^{t}(M) \rightarrow G_{n}(M)$ is the natural map. Since θ and i are both injective (Theorems 3 and 4) it follows that $x=x_{0}$, the trivial cobordism class.

Finally, we state an easy corollary of Propositions 6 and 6^{\prime}, and the vanishing of $\tilde{\Gamma}_{*}(\Pi)$ in odd dimensions.

Theorem 7. Assume that $n \geq 2$ and $n+k \geq 4$ is even. Then $G_{n}(M)$ and $G_{n}^{t}(M)$ are subgroups of $L_{n+k+1}(\pi)$.

This generalizes the vanishing of the even-dimensional knot cobordism groups C_{n}. It follows that even-dimensional M-knot cobordism groups are finitely generated if M is compact and $\pi_{1}(M)$ is finite [18], [1]. In contrast, C_{n} is not finitely generated for n odd [11], [15]. In fact, Levine has shown that (for $n \geq 3) C_{n}$ is an infinite direct sum of infinitely many copies of Z, Z_{2}, and Z_{4} [13]. Since the natural map $\# i_{0}: C_{n+k} \rightarrow G_{n}^{(t)}(M)$ is a monomorphism [16, 16.3], it follows that $G_{n}^{(t)}(M)$ is never finitely generated when $n+k$ is odd.

References

1. H. Bass, L_{3} of finite abelian groups, Ann. of Math., vol. 99 (1974), pp. 118-153.
2. G. E. Bredon, Regular $O(n)$-manifolds, suspension of knots, and knot periodicity, Bull. Amer. Math. Soc., vol. 79 (1973), pp. 87-91.
3. W. Browder, Surgery on simply-connected manifolds, Springer-Verlag, New York, 1972.
4. W. Browder and J. Levine, Fibering manifolds over a circle, Comm. Math. Helv., vol. 40 (1966), pp. 152-160.
5. S. Cappell, A splitting theorem for manifolds, Invent. Math., vol. 33 (1976), pp. 69-170.
6. -_, Algebraic K-theory III, Lecture Notes in Mathematics, vol. 343, p. 45, Springer-Verlag, New York, 1973.
7. S. E. Cappell and J. L. Shaneson, The codimension two placement problem and homology equivalent manifolds, Ann. of Math., vol. 99 (1974), pp. 277-348.
8. F. T. Farrell and W. C. Hsiang, Manifolds with $\pi_{1}=G \times{ }_{\alpha} T$, Amer. J. Math., vol. 95 (1973), pp. 813-848.
9. R. H. Fox and J. W. Milnor, Singularities of 2 -spheres in 4-space and cobordism of knots, Osaka J. Math., vol. 3 (1966), pp. 257-267.
10. C. H. Giffen, Hasse-Witt invariants for (α, u)-reflexive forms and automorphisms I. Algebraic K_{2}-valued Hasse-Witt invariants, J. Algebra, vol. 44 (1977), pp. 434-456.
11. M. Kervaire, Les noeuds de dimension superieures, Bull. Soc. Math. France, vol. 93 (1965), pp. 225-271.
12. L. H. Kauffman, Products of knots, Bull. Amer. Math. Soc., vol. 80 (1974), pp. 1104-1107.
13. J. Levine, Knot cobordism groups in codimension two, Comm. Math. Helv., vol. 44 (1968), pp. 229-244.
14. —_, Invariants of knot cobordism, Invent. Math., vol. 8 (1969), pp. 98-110.
15. J. W. Milnor, "Infinite cyclic coverings" in Conference on Topology of Manifolds, J. G. Hocking ed., Prindle, Weber \& Schmidt, Boston, 1968.
16. S. Ocken, Parametrized knot theory, Mem. Amer. Math. Soc., vol. 170, 1976.
17. J. L. Shaneson, Wall's surgery obstruction groups for $G \times Z$, Ann. of Math., vol. 90 (1969), pp. 296-334.
18. C. T. C. Wall, Surgery on compact manifolds, Academic Press, London, 1970.

The City College of the City University of New York New York

[^0]: Received May 5, 1980.
 ${ }^{1}$ Research partially supported by a CUNY-FRAP grant.

[^1]: ${ }^{2}$ Henceforth we omit reference to the orientation character and write $L_{n}(\pi)$ for $L_{n}(\pi, w)$.

