
ILLINOIS JOURNAL OF MATHEMATICS
Volume 26, Number 2, Summer 1982

EMBEDDINGS OF S" x M IN Sn+
FORM A GROUP

xM

BY

STANLEY OCKEN

Introduction

This paper describes group structures for a large class of codimension two
embedding problems. The classic example of algebraic structure in an embed-
ding problem is furnished by the knot cobordism groups of [9], [11], [13]. Our
general study uses homology surgery theory, first developed and applied to the
codimension two placement problem in [7].

Let M be an arbitrary k-dimensional compact manifold. This paper classifies
standard M-knots, i.e., embeddingsf: S x M S+ 2 x M which are homoto-
pic, tel boundary, to the standard inclusion. Using a definition of cobordism
based on concordance of embeddings, we prove that the set G(M) of cobor-
dism classes of such M-knots forms an abelian group in a natural way,
provided n >_ 2 and n + k > 4. This was known previously for M simply con-
nected [7] and for a certain class of non simply connected M [16]. Herein we
treat the general case by devising a variant of surgery theory which studies the
normal cobordism problem for simply split simple homotopy equivalences [5],
[8]. The desired group structure is obtained by exhibiting G(M) as a subgroup
of a relative homology surgery group in this theory. For all M, we interpret this
group structure geometrically. When M is a point, G(M)coincides with the
knot cobordism groups of [11], [13], wherein the group operation is defined by
taking connected sum of knots.
Two embeddings f, g" S x M --. Sn+ 2 x M are called cobordant iff is con-

cordant to bf, where b and are certain allowable automorphisms of
S,+ 2 x M and S" x M respectively. The set of cobordism equivalence classes is
denoted G(M); see Section 1 for a precise definition, as well as the reason for
including the superscript "t" in the notation. Our results are valid for M a
smooth (resp. piecewise linear, topological)manifold, provided we restrict
attention to smooth (resp. piecewise linear locally fiat, topological locally fiat)
embeddings and concordances, and require b and k to be diffeomorphisms
(resp. piecewise linear homeomorphisms, homeomorphisms). For simplicity,
discussions and results are stated for the smooth case.
The groups G(M) do not, in general, satisfy the fourfold periodicity proved
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in [13] for the knot cobordism groups C, which correspond to G (point) in the
piecewise linear or topological cases. To remedy this, we defined in [16] a larger
cobordism set G,,(M), based on embeddings in S"+ 2 x M of manifolds simple
homotopy equivalent to S" x M. In this paper, we construct a family of (abel-
ian) relative surgery obstruction groups F2(W), where W is a commutative
square functorial in nt(M). Our main technical result is:

THEOREM 3. For n > 2, n + k _> 4, there is a bijective surgery obstruction
map O" G,(M) F+k+ 3(V).

Since the groups F2(W) satisfy fourfold periodicity, we obtain G,,(M)
G,+ 4(M). The isomorphism is constructed geometrically as follows"

THEOREM 5. For n >_ 2 and n + k >_ 4, there are geometrically defined
isomorphisms

G(M) .c,2, G(M x CP2) G.(M x i4) G+4(M)
(I= [0, 1]).

For related constructions in the simply connected case, see [7]. In particular,
this result provides a geometric interpretation of the periodocity of knot cobor-
dism groups; cf. [7], [2], [12].
The relative homology surgery groups F’(W) in turn depend on absolute

surgery groups L2(n), with n n t(M). These groups contain the obstruction to
finding a normal cobordism from a given normal map with target M x S to a
simple homotopy equivalence which is simply split along M x pt, where pt is a
basepoint of S [8], [5]. We exhibit a splitting

L,(n x Z)
_

i, L,,(n) @ L,,_t (n),

for n > 6. Note that both Wall groups which appear on the right are the groups
/2(r0, which study simple homotopy equivalences; cf. [17]. The groups L are
related to the groups L of [10], which study the "super-simple" homotopy
equivalences defined in [6].

In order to interpret geometrically the group structure in G(M), we
consider, as in [16], the case that M has non-empty boundary. (Here, and
throughout this paper, the superscript "(t)" indicates that we are discussing
either the fake or standard cobordism groups.) In this situation, an M-knot is
required by definition to coincide on the boundary with the standard inclusion.
As a result, Gt x(M x I) admits a groups operation, defined by "stacking"
embeddings along part of the boundary. For n > 2, this group structure coin-
cides with the algebraically defined one of Theorem 3 above. Furthermore,
there is a natural map

]M" Gt-(M x I)- G(M),
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obtained by viewing S x M x I as a neighborhood of the equator in
S x M. For Mk any compact manifold, we prove"

THEOREM 1. Ifn + k > 4, the map Gt)_ I(M x I) G)(M) is an isomorphism
for n > 3, and an epimorphism for n 2.

The commutativity of the stacking operation may be explained, as in [16,
Section 13], by studying the two stacking operations in Gt)_ 2(M x ! x I).
We obtain as a result the following "partial unkotting theorem" for M-knots.

THEOREM 2. Let f: S x M S+ 2 )< M be a standard M-knot, with n >_ 2
and n + k >_ 4. Let N be any (arbitrarily small)neighborhood of Sx M in
sn+ 2 X M. Then there exist diffeomorphisms el," S+ 2 x M S+2 x M and

" S x M - S x M, and an M-knot g" S x M S+ 2 >( M such that"
(i) coincides with the standard inclusion outside N.
(ii)
Thus every standard cobordism class contains a representative which coin-

cides, away from two copies ofM, with the standard inclusion. Theorems I and
2 generalize the result of [7] that the natural map # io" C+ k -* G(M), defined
by taking the connected sum of a classical knot with the standard inclususion,
is a bijection for M a closed, simply connected, piecewise linear or topological
manifold.

Section 1

We recall the definition of G(M), where M is a compact manifold with
possibly nonempty boundary. A parametrized knot in M, or more briefly a
standard M-knot, is an embedding f" S x M - S+ 2 x M which is homotopic,
rel t3, to the standard inclusion io. Two M-knots f and g are conjugate provided
there exist diffeomorphisms

)" Sn+2 x M--Sn+2 x M and @" S" x M-S x M

such that"
(i) b and are the identity on the boundary.
(ii) There exist homotopies rel t3, zrb zr and zru@ , where rrt de-

notes projection to M.
The M-knots fo andf are concordant provided there exists a smooth embed-
ding F" S x M x I - S+ 2 x M x I, such that"

(i) F(x, i)= (f/(x), i), i= 0, 1; x S x M.
(ii) F coincides with io on the boundary.

Finally, f and # are cobordant provided they are conjugate to concordant
M-knots. The set of cobordism equivalence classes so obtained is denoted
G(M). Technically speaking, an M-knot comes equipped with a framing
f: S x M x D2 -- Sn/ 2 X M; we sometimes omit reference to the framing in
order to simplify the exposition. See [16, Section 1] for complete information.
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In order to realize the entire surgery obstruction group which we propose to
define, we must study fake M-knots. Such a knot is defined by a triple (f, X, ),
where:

(i) " S" M X is a simple homotopy equivalence of manifolds which
has zero normal invariant and restricts to a diffeomorphism on the boundary.

(ii) f: X --, S"+ 2 M is an embedding such thatf is homotopic rel 0 to
the standard inclusion.
The definition of the cobordism relation is given in 16, Section 8]; the resulting
set of equivalence classes is denoted G(M). Let To S M D2 and
Wo D"+ M S denote the corresponding tube and complement of the
standard embedding io. Then there is an associated characteristic map
p S,+ 2 x M--, S+ 2 x M such that"

(C1) r 1e t rel O.
(C2)
(C3) The complementary map F =/elW: W Wo is a simple homology

equivalence with coefficients Z[n(M)].
See [16, Section 2] for details.
The last condition motivated [7] to construct a surgery theory for studying

homology equivalent manifolds. We now indicate briefly the results of [7]
which we need.

Let n(M), and let II" Z[n x Z]--. Z[n] A be induced by projection.
Set d n + k + 2, the dimension of Wo.

First, there exists a surgery group Fa(1-l) for d > 5 which contains the
obstruction a(G, B) to finding a normal cobordism rel O from a given normal
map (G, B), G" W Wo to a simple A homology equivalence. Of course we
assume that GlOW is a simple A-homology equivalence to begin with [7, 1.7
and 2.1].
Next suppose given a normal map (F, B), F: W W0 with F a simple A-

homology equivalence of pairs, together with a surgery group element
y e Fa+ (1-I). If d > 5, there is a normal cobordism (H, C), H" Z Wo from
(F, B) to a normal map which we shall denote

(,. F, ,. B), . F" y" W---, Wo,
also a simple homology equivalence of pairs, such that t(H, C) [7, 1.8 and
2.2].

This last result permits the construction of new M-knots by surgery, starting
from a given M-knotfwith complementary map F: W --, W0, as follows. Since F
is the restriction of the simple homotopy equivalence e, F is covered by a
canonical bundle map which we shall henceforth not mention. Given
e Fn+,(II), construct . F: . W + Wo as .above. The manifold y. W will

be the complement of the new knot. Define

y’ff= (y)-’ w)," W: Tw’’W--,TowWo=S"+ZxM;
note that the domain of this map is obtained by pasting the original tube to the
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new complement. Then 7" P is homotopic rel O to a diffeomorphism g,
provided is in Fa+ .(rI), the kernel of the natural map Fa+ x(I-I) La+ a(n).
Define

7 f (ol T) f: To S"+2 x M.

This yields a new M-knot, whose cobordism class depends only on that off
Hence there is an induced action of l"n+ (rI) on G,(M). Similar remarks apply
to G.(M); see [16, Sections 4, 9] for details.
An important invariant of a cobordism class x e G])(M) is its "Seifert surface

obstruction" p(x) L.+,+ x(n). This is defined to be the Wall surgery obstruc-
tion of the restriction of the map F" W Wo D"+ x M x S to the trans-
verse inverse image of D"+ x M x pt. We shall show later that the natural
map i: G.(M)--, G.(M) is injective, and that x G.(M) is in the image of/if
and only if p(x) acts trivially on the simple homotopy triangulations ofD" x M.
This is the reason for the "t" in the notation "a

--’n,"-"

Section 2

This section determines the isotropy subgroup of the trivial cobordism class
under the action of l"d+ I(FI). Let

k,: Ld+( x Z) Fd+ (H)
be the natural map, and let

SX:Ln(r)Ln+(r x Z)
be induced by crossing normal maps with a circle [17]. The composite
k,(. x Sx) is easily seen to take values in ’n+ 1(I-I), which vanishes if d is even
[16, p. 18].

PROPOSITION 1. Let e e L,(n), d > 6. Then k,(e x S)" x= x for all

Remark. The lack of this result in [16] forced the author to assume that
k,(. x S) is the zero homomorphism. For reasons that will become clear later,
it was in fact necessary to assume that the composite

L".(n)
s k,L( x Z) r(n)

is zero. This is the circle perfect condition on rr nx(M) [16, Section 17].

Proof For convenience, we consider only the case x G,(M). Minor varia-
tions of the proof yield the result in the fake case; see [16, Sections 8-10] for
necessary information.

Let F: W Wo be the complementary map of a knot in the cobordism class
x. By [7, 13.7], we may assume that F induces an isomorphism on n x. We shall
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use the diffeomorphism To T to identify To and T. Set ct + W OW OT;
note that this is identified with S" x M S c1+ Wo.

Let y k,(0 $1). We construct y F by doing surgery on idw to obtain a
simple homotopy equivalence (0 SX). idw; then

7. F F (( x SX) idw).
Since L,(n(O+ W)) L,(n(W))is an epimorphism for all n, the surgery may
be performed on a collar neighborhood OW x I of 0W in W. Write
W=O+ W x I o+wo

If 6, let h" X S" x M x I be the simple homotopy equivalence ob-
tained by using to do surgery rel on ids. , as in [18, 5.8 and 6.5]. If
d 7, the s-cobordism theorem yields a diffeomorphism " S" x M x I X
such that

h . S" x M x IS" x M x I

is a homotopy from ids o to a diffeomorphism

O’SxM x ISxM x 1.

Write 0 h x S and 7 k,(e x S). We have realized our desired surgery
obstruction by the map of collars

O’X x S O+ Wo x I.

Pasting back the tubes and complements, we see that 7. ff is the composite

SnxMxl Snx M O

Tw (0+WxI) w W S"+2

This follows from naturality of surgery obstructions. Then 7 "fis, by definition,
(01 T) f where To T is the given framed knot and 9 is a diffeomorphism
homotopic rel
To see that .f is cobordant to f construct the diffeomorphism, (-’ x O) (-1 X S1) id"

T (X x S’) W T (O+ W x I) W Sn+2 x M

Then 7"fmay be rewritten as the composite

To
(eIT)0] S.+ 2 o 0@-1 Sn+ 2xM xM.

Now observe that (@[ T) f=f (- x b2) as a result of our identification of
To and T. Hence .f is cobordant to f as desired.
The s-cobordism theorem used in the above argument fails when d 6. The

proposition may be proved in this case by using a modified definition ofG)(M)
in the case n + k 4; see [16, pp. 43, 59]. We leave the details to the
reader.
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Conversely, [16, 6.2 and 10.6.2] show that if d > 5 and y la+ l(rI) acts
trivially on Xo G(M), then y k,( x S) for some La(n). It follows
that k,(La(rr)xS)’a+(rI) is the isotropy subgroup of Xo for
d=n+k+2>6.

Section 3

The next part of this paper is devoted to showing that k,(LdOr) x S) is the
isotropy subgroup for all classes x G,M). To accomplish this goal, we follow
the idea of [16, Section 11] and try to map G,,(M) to an appropriate relative
surgery group. Specifically, we wish for a diagram with exact bottom row

La(r)
,(.

r’,+,(n) , Gn(M)

Ld(r) @ Ld+ x(r) (k,.e s,,, ,,;) Fa+ ,(H) m,r r+1(2

in which the right-hand square commutes, i.e.,

0(. x)= m,() + O(x) for y P+ x(H) and x G,(M).

It will then follow formally that the isotropy subgroup of x G,(M) is indepen-
dent of x; cf. [16, Section 12].

In order to construct the group at the lower left, we in turn need a Wall
surgery group for n x Z, which satisfies a splitting

L( Z) ,L,+ ,(). L,()

In the usual splitting of Ln+ x( x Z) [17], we encounter the group Ln) x S
because the group Wh(n) gives rise to an obstruction to finding a simple
splitting of a simple homotopy equivalence [8], [5]. We apply the methods of
[18, Section 9] to construct the group L*’(n x Z); here the superscript stands for
"simply split".
Consider a PoincarO pair (Y, X), together with a codimension one PoincarO

subpair (y, x) with trivial normal bundle. A simple homotopy equivalence
f: (N, M) (Y, X), where (N, M)is a manifold pair, will be called simply split
along (y, x) iff and f ]M are transverse regular to y and x respectively, and if
f(f- X(y),f-x(x))is a simple homotopy equivalence of pairs. Briefly, we callf
as ss-equivalence along (y, x).

If F: W W0 is the complementary map of a standard (resp. fake) M-knot, it
follows from [16] that

t3F:c+Wt3+Wo=SnxM xS

is the product of a diffeomorphism (resp. simple homotopy equivalence)with
idst, hence OF is an ss-equivalence along S"x M x pt. Furthermore, if an
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M-knot is conjugate to io, its complementary map is an ss-equivalence along

(D+l xMxpt, S"xMxpt).

These facts indicate the role of simple splitting in the study of Gt,,(M).
Let (f, b),f: (N, M) ---, (Y, X) be a normal map. Assume given a subpair (y, x)

of (Y, X) as above, with y Y inducing the natural inclusion n---, n x Z of
fundamental groups, and that f lM is an ss-equivalence along x. We now
proceed to the construction of L"(n x Z), which contains the obstruction to
finding a normal cobordism rel d from (f, b) to a normal map (g, c), with an
ss-equivalence along (y, x).

Let K be a CW-complex with finite 2-skeleton and

w: (+_1}

a homomorphism. As in [18, Section 9] we have in mind the case K K0t, 1)
with a finitely presented group. We now construct a group based on unres-
tricted objects over K x St, with additional data provided by a codimension
one surgery problem. Specifically, let an object consist of data

O Y, X, v, N, M, dp, F, og, y, x, n, m).
Here, the first eight entries define an unrestricted object over K x S, as in [18,
p. 86]. In particular, recall that b: (N, M) --, (Y, X) is a degree one map from a
manifold pair in dimension n to a Poincar6 pair, and that 09 is a map from Y to
K x S. To this we add the following structure: (y, x) is a codimension one
subpair of (Y, X) with trivial normal bundle. The map to: K x S is transverse
regular to K x 0 K x S, with

(o, o IX) ’(K 0)= (y, ).
Here 0S is a base point, and in the future we will think of S as
[0, 2rt]/0 2ft. In addition, k is transverse regular to (y, x)= (Y, X), and
(n, m) b- X(y, x). Let blMm: Mm X,, be the map obtained by splitting
#[M along m, as in [4], [17]. We require finally that b m and k M,, be
homotopy equivalences. As usual, the fundamental classes [N] and [n] are part
of the structure of 0; we obtain the object -0 by reversing their signs.

Next, define an object 0 as above to be null equivalent (write 0 0) if there
exist data

((Z, Y, Y+), t, (P, N, N+), ,, G, fl, (z, y, y+), (p, n, n+))
which extend the object 0, as in [18]. Here, (Z, Y, Y+) is a Poincar6 triad of
dimension n + 1, with Y Y+ X, and (z, y, y+) is a eodimension one
Poinear6 subtriad with trivial normal bundle. The map fl: Z--, K x S’ is a
transverse regular (to K) extension of o: Y --, K x S’, with

(f, fl Y, fl Y+)-’(K)= (z, y, y+).
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Similarly, if" (P, N, N+) (Z, Y, Y+) extends qb, is transverse regular to
(z, y, y+ ), and- (z, y, y+ (p, n, n+). Finally, /In+ and IN+ must be simple
homotopy equivalences. Now write 0 02 if the object 0 + 0 2, obtained by
taking disjoint unions, is null equivalent. As in [18], we obtain an abelian group
of equivalence classes under ~, which we denote L(K x S). Let L(K)
denote the Wall group based on unrestricted objects over K; recall that

LX.(K(rr, 1)) L,(rr, w)

provided n > 5 [18, 9.4.1].-

PROPOSITION 2. There is a natural split short exact sequence

0 L(K) ’* S *L(K x L._x(K) O.

Proof Let e= 1, say, and define i:K-K x S’ by i(k)= (k,e). Let
p" K x S K denote the projection. Given

a (Y, X, v, N, M, q, F, w) L.(K),
define an object i(0) L,(K x S) by including null subobjeet data"

io(a) (Y, X, v, N, M, tO, F, w, 0, 0, 0, 0).
Similarly, given 0 representing a class in L.(K x Sx), define an object p
over K by omitting the subobject data and replacing co by p oo" Y K. It is
easy to check that o and p induce well-defined homomorphisms

i," Lx,,(K)-oL(K x S’) and p," L.(K)-oLX,,(K)
with p, i, the identity. Hence, i, is injective.
The splitting map s, sends an n-dimensional object over K x S to the

(n 1)-dimensional object over K obtained by restricting maps and bundles to
the subobject data. We may write

so(O) (y, x, vly, n, m, via, FIN, only
for 0 as specified above. This induces a homomorphism

s," L’(K x S’) LX._ ,(K).
Finally, crossing with a circle defines in an obvious way a homomorphism

x S" La,_a(K) L’(K x Sx)
such that s,(a x Sx) a for a L,x_ x(K). Hence s, is onto.
To prove exactness, let [0] be a class in L(K x S) such that s,([0]) 0. By

cobordism extension [3], 0 is equivalent to an object, still denoted 0, in which
b]n" (n, m) (y, x) is a simple homotopy equivalence of pairs. Split

dp" (N, M)(Y, X) and o" Y K x S

Henceforth we omit reference to the orientation character and write L.(n) for L.(n, w).
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along y and K 0 respectively, thereby obtaining maps

bs" (N,, 2n w Mm)- (Yr, 2y w X,) and co" Yr K x [e, 2n ].

Note that the boundary of Y, for instance, consists of two disjoint copies of y,
each glued to X along a copy of x. By Mayer Vietoris sequences for homotopy
equivalences and Whitehead Torsion [18], bs is a simple homotopy equivalence
on the boundary; recall that dpslMm is required to be a simple homotopy
equivalence in our definition of objects. Let co: Yr K be the composite of cos
followed by projection. Then the data obtained by restricting attention to the
split maps bs and co define an object fl representing a class in Lx,,(K).
We claim that i.([/])= [0]. Recall the 12-tuple which defines 0, and set

=dpxI’NxI=P--.Z=YxI (I [0, 1]),
f=(projection) o(oxI)" YxIKS xIKxS1.

From f and , extract the information for defining an equivalence ,(/) 0 as
follows. Let

z=yxI

y+=yxl wt3yxI

p=nxI

n+=nxlwOnxI

Y0=Yx0
Y (co x 1)-(K x [e, 2n e])

r+ i)- r,).

It is easy to check that these data, together with obvious unmentioned bundle
data, define an equivalence between the objects over K x S defined by data
along Yo and Y1 respectively. But the data along Yo define the object 0, while the
data along Yx define an object which is clearly equivalent to i#(fl). Hence
i.([/]) [0] as desired.

We now write L,’(n x Z) L(K(n, 1) x S). It follows from [18, 9.4.1] and
the last result that there is a canonical splitting for n > 6"

L,S(r x Z), i.L,,(r) L._ x(n)x Sx.
To apply this result, consider an n-dimensional Poincar6 pair (Y, X) and an

(n 1)-dimensional subpair (y, x) with trivial normal bundle. Assume that the
inclusion y c Y induces the inclusion n n x Z of fundamental groups. Con-
struct a map co: Y K x S, transverse regular to K x 0, such that

x)-’(K 0)= (y,
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Let (f, b), f: (N, M)---, (Y, X) be a normal map, transverse regular to (y, x), and
as usual set (n, m) (f, f lM)- (y, x). Assume that f lM, fire, andf lMm are
all simple homotopy equivalences. It is clear that these data define an object
0(f, b) over K x S, representing a class a(f, b)s L(n x Z).

PROPOSITION 3. Assume that n > 6, Yr and y are connected, and (f, b) is a
normal map as above. Then a(f, b) 0 ifand only if (f, b)is normally cobordant
rel to an ss-equivalence alon# (y, x).

Proof. If (f, b) is normally cobordant rel t3 to an ss-equivalence, it follows
immediately from the definitions that 0(f, b)0. Conversely, assume
0 0(f, b) 0 and n > 6. By Proposition 2, s(O) 0 in L_ (K) - Ln-()
[18, 9.4.1]. Since y is connected, the restriction of (f, b)to (n, m)is normally
cobordant rel to a simple homotopy equivalence of pairs. By a cobordism
extension argument, we may perform a normal cobordism of (f, b), thereby
obtaining an equivalent object, still denoted 0(f, b), such that (f, b) (n, m)is a
simple homotopy equivalence of pairs. Split (f, b) along (n, m); it follows si-
milarly that a further normal cobordism will yield an equivalent object 0(f, b)
whose restriction to (N,, t(N,)) is also a simple homotopy equivalence of pairs.
That (f, b) is a simple homotopy equivalence, and hence an ss equivalence
along (y, x), follows as usual from Mayer-Vietoris sequences. 1

Section 4

We are now ready to define the relative homology surgery group which
realizes Gn(M). Let n n l(M), let

n: z]-,
be the group ring homomorphism induced by projection, and q" idzt z] H
the commutative square

id
z] z]

z]
Now recall that the construction of relative surgery groups in [18, Section 9]
and [7, Section 3] is based on the definition of surgery groups in terms of
unrestricted objects. Hence we may use our definition of L,S(n x Z)and that of
[7] for Fn(1-I), to produce a relative group, denoted l",s(), which fits into a
sequence

F. I(V)- L’( x Z)-
which is exact for n > 6; cf. [7, Section 3].
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The group F](W) solves the following surgery problem. Fix an n-
dimensional Poincar6 triad (Y, X_, X +) together with a Poincar6 subpair
(x, t3x) of (X /, X /) with trivial normal bundle. Assume that the inclusions
x X / Y induce the homomorphisms rt --* n x Z t x Z on fundamental
groups (and that these three Poincar6 complexes are connected). Then the
following is proved precisely as in [18, Section 9] and [7, Section 3] by using
Proposition 3 above"

PROPOSITION 4. Given data as above, let

(F, B), F: (N, M_, M+) (Y, X_, X/)
be a normal map which is transverse regular to (x, tx), with preima#e (m, c3m).
Assume that F IM_ is a simple homology equivalence over Z[n] and that
F dM_ tgM+ is an ss-equivalence along t3x. Then there is a relative surgery
obstruction a(F, B) F(W) which vanishes (for n > 7)/f and only if (F, B) is
normally cobordant rel M_ to a normal map

(G, C), G: (Q, P_, P+)-(Y, X_, X+)
such that G is a simple homology equivalence over Z[n] and G IP+ is an ss-
equivalence along (x, t3x).
We are now prepared to define the relative surgery obstruction map

O: G,(M) Fa+ (W), where d n + k + 2,

and k is the dimension of M. Let F: W---, Wo D/ M x S be the com-
plementary map of an M-knot. As observed in [7, Section 13], F is the restric-
tion of the homotopy equivalence/, hence is covered by a canonical bundle
map (which we will henceforth not mention). In the notation of Proposition 4,
and following the argument of [16, Section 11], set

Y=WoI
X_=Wox0

X+,= Wo x 1 wtgWoxI
x=D+ xMxptx 1 wc(D+t xM) xptxI

where pt denotes a base point of St. Decompose W x I similarly; it is easy to
see that the normal map F: W I Wo x I satisfies the hypotheses of Propo-
sition 4. Hence the surgery obstruction a(F x I) Fa+ t(W) is defined and
solves the surgery problem described provided d > 6. It follows as in [16,
Section 11] that tr takes the same value on cobordant knots, hence defines a
map 0: G(M) F+t (W). Furthermore, the diagram

L, (n) k.l:. s’l, r,.l(H) k.(. s’t, G,, (M)

z) r./,(n)
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commutes [16, p. 69]. The bottom row is exact provided d > 5. Then Proposi-
tion 1 and [16, 6.2 and 10.6.2], applied to the above diagram, yield the fun-
damental technical result which we have been seeking"

PROPOSITION 5. Assume d >_ 6, x G(M), and ? ra+ 1(17). Then x x
if and only if k,(a x S1) for some

Let p" G.(M) La-100 be the composite

Gn(M LSaS( x Z)
where a measures the surgery obstruction of the complementary map. In the
case that M is a point, p measures the index or Arf invariant of the Seifert
surface. Combining [16, 10.5.1 and 10.7.1] and Proposition 1, we obtain"

PROPOSITION 6. Let d >_ 6, n >_ 2. Then the sequence

La()
*(" s’) ’n+ (I-I) - G,(M)

is exact. Ifd 6, n 0 or 1, the sequence is exact at Pn+ x(H) and Ln- a(), and

Of course, we mean that the sequence is exact in the strong sense that
7"x x iff 7 k,( x Sx) for some L,() and p(x)= p(y)iff x 7"Y.
The path to our final results is clear. It is easy to see that the natural

splittings

L%,(n x Z) m Ln+a(n) Ln(n) x S and r,+,(n) La+a(n) rn+a(H)
are compatible with the natural map

k," L(n x Z) Fn+a(H).
It follows that there is an exact sequence

L x(n x Z) k. t.,o)

given the hypotheses of Proposition 6. Then the surgery obstruction map
O: G,(M) F+ t(W)defined above induces a map from this sequence to the
exact relative surgery sequence for F]% a(W). See [16, Section 11] for the (nontri-
vial) proof that the appropriate diagrams commute; the crucial result [16, 11.2]
is based on the definition of surgery groups in [18, Section 9] and carries over to
our case. The Five Lemma immediately yields"

THEOREM 3. Assume n + k 4. Then O" G,(Mk) F%k+ 3(W) is a bijection
for n 2 and a surjection for n O.

Section 5

The theorems of the introduction follow immediately from Theorem 3 and
the definition of jt" Gt.t)-l(M x I) Gt.(M). Recall that an (M x/)-knot
f: S"- x M x I S"+ x M x I coincides with the standard inclusion io on
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the boundary. Embed sn-lx M x I
S x M c S x M; similarly for Sn+
an M-knot

as a tubular neighborhood of
x M x I. It follows that fextends to

j(f)’S x M-*S+2 x M

which coincides with io outside S"-
induces a well-defined map

x M I. It is easy to check that this

Jl" Gt/ (M x I)- Gt(M) [16, Section 131.
Then, naturality of surgery obstructions and Theorem 3 imply that
JM" G,,_ I(M x I) G,,(M) is a surjection for n + k > 4 and a bijection if, in
addition, n > 2. This proves the fake M-knot assertion of Theorem 1 of the
introduction.
As noted in the introduction, Gt)__ (M x I) admits a natural group structure,

defined by "stacking" of embeddings. Here the essential fact is that an
M x/-knot is required to coincide with the standard inclusion on M x t3I; see
[16, Section 13] for a precise definition. Furthermore, naturality of surgery
obstructions implies that the composite

G(.t)__,(M x I) G(.(M) Fn+. (q)
is a homomorphism for n > 1. For n > 2, this provides a geometric interpreta-
tion for the group structure induced on G,,(M) by the bijection 0.
We now turn to the computation of G(M). Define L+k+ (, M) to be the

subgroup of L,+k/0r) which acts trivially on the class of ido.u in
6(D" x M), the set of simple homotopy triangulations of D" x M rel . The
next result follows from Proposition 1 and [16, 5.1 and 7.1].

PROPOSITION 6’. Let d n + k + 2 > 6. If n > 2, the sequence

is exact, g n 0 or 1, the sequence is exact at d+ (H) and L_ (, M), and
p(7 x)= x for ra+ ,(n), x G,(M).

Now consider the natural map j" GL_(M x I) GL(M). To prove the
assertion of Theorem 1 that this is a bijection for n 2 and a surjection for
n 0, note that

L+k+ (n, M) L._ ,)+(+ ,)+ l(n, M x I).
The map j therefore induces a map of the sequences for G_ t(M x I) and
G(M) given by Proposition 6’. The Five Lemma yields the desired result. As
before, stacking of embeddings defines a group structure on G_ t(M x I); the
mapj induces a group structure on G(M) for n 2. Note that iteration ofj
induces a surjection

G(M x I") G(M);
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together with the definition of cobordism, this proves Theorem 2 of the
introduction.

Let/z(n, M) L(rc)/L(r, M). Then a comparison of the exact sequences of
Propositions 6 and 6’ yields"

THEOREM 4. Assume n > 2, n + k > 4. There is an exact sequence ofabelian
groups

0 - G(M) G(M) f++(, M) 0.

By the argument of [7, 3.6], the grolps F+ (P) satisfy fourfold periodicity
for d

_
6. By Theorem 3, there is a group isomorphism G(M) , G+(M) for

n

_
2. As shown in [16, 16.2], this isomorphism may be realized geometrically

by combining the following three isomorphisms"
(i) G,(M) G,(M x Cp2), obtained by crossing an M-knot with idce,,
(ii) G,(M x 14) G,(M x Cp2), induced by the inclusion of a 4-disc in

CP2, and
(iii) G,(M x 14) G,+4(M), the fourfold iteration of the map ju.

This yields Theorem 5 of the introduction. A similar argument in [7] in the
special case that M is a point provided the first geometric proof of the periodi-
city of knot eobordism. For other explanations ofknot periodicity, see [12], [2].
Our next result states necessary and sufficient criteria for unknotting

M-knots up to cobordism. First we need a definition. A map of manifolds
f: (M, OM) (N, ON) is a collared diffeomorphism if it is obtained by gluing a
level preserving homotopy OM x I ON x I to a diffeomorphism M N;
here as previously r is the closure in M of the complement of the collar
neighborhood OM x I of OM. Assume as usual that n > 2, n + k > 4.

THEORE 6. Let F" W Wo be the complementary map ofa standard (resp.
fake) M-knotf Thenfis cobordant to the standard embeddin9 io ifand only ifF is
Z[t,(M)]-homology s-cobordant, rel boundary, to a collared diffeomorphism
(resp. to a map) which is an ss-equivalence along

(D+ xMxpt, SxMxpt).

_Proof It follows easily from [16, 3.1] that the complementary map of a
standard M-knot conjugate to io is both a collared diffeomorphism and an
ss-equivalence of the desired type. A similar but easier argument shows that the
complementary map of a fake M-knot conjugate to i0 is an ss-equivalence. By
the argument of [16, 3.1], concordant (fake or standard) M-knots have
Z[n(M)]-homology s-cobordant complementary maps. This proves the "only
if" part.

Conversely, assume that the complementary map ofa knot in the cobordism
class x has the desired property. By Proposition 4, the relative surgery obstruc-
tion O(x) (resp. Oi(x)) of the fake (resp. standard) cobordism class x vanishes.
Here, i" G(M)--. G(M) is the natural map. Since 0 and are both injective
(Theorems 3 and 4) it follows that x Xo, the trivial cobordism class.
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Finally, we state an easy corollary of Propositions 6 and 6’, and the vanishing
of l,(1-I) in odd dimensions.

THEOREM 7. Assume that n >_ 2 and n + k >_ 4 is even. Then Gn(M) and
G(M) are subgroups of Ln+R+ I(n).

This generalizes the vanishing of the even-dimensional knot cobordism
groups C. It follows that even-dimensional M-knot cobordism groups are
finitely generated if M is compact and nl(M) is finite [18], [1]. In contrast, Cis
not finitely generated for n odd [11], [15]. In fact, Levine has shown that (for
n _> 3) C is an infinite direct sum of infinitely many copies of Z, Z2, and Z4
[13]. Since the natural map #io" C+k-- Gt)(M) is a monomorphism [16,
16.3], it follows that G)(M) is never finitely generated when n + k is odd.
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