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O. Introduction

0.0 The Laplace-Beltrami operator on a compact Riemannian manifold
(M, ) can be viewed as a natural generalization Ofthe ordinary Laplacian on a
bounded domain in R. In particular, most properties ofeigenvalues and eigen-
functions of the latter with either Dirichlet or Neuman boundary values carry
out to the spectral data of the former.
As an example, the famous Faber-Krahn inequality (see [10], page 188)

which bounds from below the product of the area of a domain in R2 by its first
eigenvalue finds its counterpart in J. Hersch’s theorem (cf. [14]) which gives an
upper bound of the product of the first nonzero eigenvalue of any Riemannian
metric on the 2-sphere S2 by the Riemannian area. The Faber-Krahn inequality
generalizes to domains in R. In [2], M. Berger shows that such an extension
does not exist for the n-sphere S, if one insists on the upper bound being sharp
for the standard metric. This still leaves some.hope for the existence of an upper
bound.

Analogously, Courant’s nodal line theorem (see [10], page 452) according to
which the ith eigenfunction has at most nodal domains (i.e., connected com-
ponents of the complement of its zero set) is valid for a general Riemannian
manifold. Such a result suggests that eigenfunctions corresponding to high
eigenvalues should be complicated. In particular they were expected to have
more than two nodal domains.

In the same vein, it is reasonable to believe that the more symmetries a
Riemannian metric has, the more multiple its eigenvalues are. In particular, the
standard metric on the sphere was expected to be the metric with the largest
multiplicity of its first nonzero eigenvalue.

All these guesses turn out to be wrong for appropriate choices of (M, g). The
right choices all belong to the class ofmanifolds to which this article is devoted,
namely, Riemannian Submersions with totally geodesic fibres. These metrics are
the next simple metrics after Riemannian products. This probably indicates
that, in a sense, Riemannian metrics on compact manifolds form a wider family
than domains in R.
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Before giving the details, let us mention how we came to this study.

0.1 In [24], H. Urakawa studies the spectrum of left-invariant metrics on
the 3-sphere S3. He shows in particular that the first eigenvalue of the Laplace
operator of some U2-invariant metric on Sa has multiplicity 7, whereas for the
standard metric this multiplicity is only 4. This surprising result of H. Urakawa
was our starting point.
Namely we noticed that the U2-invariant metrics on S are precisely the

so-called Berger metrics obtained by varying the lengths of the circles of the
Hopf fibration from S3 to S2. Since this fibration is the prototype of a Rieman-
nian submersion with totally geodesics fibres, we tried to understand H. Ura-
kawa’s result from this point ofview. (Another generalization is due to S. Tanno;
see [23].)

0.2 In this article we study the Laplace operator acting on functions defined
on the total space of a Riemannian submersion. We concentrate on the sub-
family of submersions with totally geodesic fibres. This includes most of the
classical examples (Hopf fibrations, natural bundles on a Riemannian mani-
fold ). For thisfamily an interesting phenomenon takes place: the Laplace opera-
tor commutes with the operator deduced from it by restricting the functions to
the fibres, the so-called vertical Laplacian (this is our Theorem 1.5).

This property explains H. Urakawa’s result and has many applications of
which we now sketch a few.

0.3 For example we can decompose the eigenvalues of the Laplace operator
on the total space in such a way that we can compute them very easily in the
canonical variation ofthe metric on the total space (this variation is obtained by
changing the relative sizes of the base and of the fibres). This extends the results
on S3 (see our Proposition 7.2). In this way we get many situations where there
is no upper bound ofthe first eigenvalue in terms ofthe volume (cf. Proposition
7.7). We also obtain non product manifolds (like spheres) on which eigenfunc-
tions corresponding to eigenvalues far away in the spectrum have only two
nodal domains (cf. Proposition 7.2) or else whose spectrum can coincide as far
as we like with the spectrum of a manifold of lower dimension.

0.4 Surprisingly enough the general setting that we come up with seems to
be of some interest in quantum physics.3 The connection is the following.
Configuration spaces of physical systems are sometimes set into correspon-
dence by non-bijective maps. The problem is then to give the "selection rules"
which tell you which part of the spectrum of one system persists in the spec-
trum of the other. This is detailed in Section 4.

0.5 The paper is organized as follows: we prove our main observation in
Section 1 where we present our notations and definitions. In Section 2 we

We are indebted to M. Boiteux for pointing out the relevance of our study to this question.
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discuss examples of Riemannian submersions. We specify the consequences for
eigenvalues and eigenfunctions in Section 3. In Section 4, we show how our
observation is related to some physical problems. We introduce the canonical
variation of a Riemannian submersion in Section 5. We take up H. Urakawa’s
example in the Section 6 and generalize some of his considerations on universal
inequalities between first eigenvalue and volume or between first eigenvalue
and diameter in Section 7. We refine the analysis of the horizontal Laplace
operator in Section 8" this leads us to introduce the notion of an infinitesimally
transitive holonomy group.

0.6 We are indebted to Marcel Berger for insisting on the importance of
eigenvalue properties to Riemannian geometry. We also thank Jerry L. Kaz-
dan for constructive criticism of an earlier version of this paper.

1. The commutation theorem

1.1 Let (M, #) and (B, j) be two complete Riemannian manifolds of respec-
tive dimensions n and p. Let n: M B be a submersion. The map r is said to be
a Riemannian submersion from (M, #) to (B, j) if at each point m of M the
restriction of Tm to the horizontal space HmM (i.e., the space orthogonal for gm
to the kernel VmM of Tmzr; one usually calls VmM the vertical space)is an
isometry from (nmM, #m nmM)to (Tm)B,jm)). Since the metrics # andj are
part of our data, later we shall refer to the Riemannian manifolds M and B.
We denote by AM the Laplacian of M acting on functions.

1.2 DEFINITION. The vertical Laplacian Av is the second-order differential
operator defined on a C2 function fon M by

(Av f)(m)= (Aes(f Fm))(m
where Fm zr-l(zr(m))is the fibre of n through m and Ae" the Laplace operator
of the metric induced by M on Fm.

1.3 DEFINITION. The difference operator An AM Aois called the horizon-
tal Laplacian.

1.4 Notice that both Ah and Ao are in general non-elliptic (unless B is a
point or rr a covering) since they take into account the behaviour of a function
only in certain directions. In that respect one may find the term Laplacian
misleading.
The main observation on which this paper is based is the following:

1.5 THEOREM. If the fibres of the Riemannian submersion : M B are
totally geodesic, the operators AM, A and A commute with each other.

Proof. The proof is based on an appropriate local expression for the opera-
tors Ao, At and Ah and on a lemma of R. Hermann characterizing Riemannian
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submersions with totally geodesic fibres by the action of basic vector fields on
the total space.
(We recall that a vector field X on M is, called basic if X is the horizontal lift

of a vector field X on B. In particular X is -projeetable.)

1.6 LEMMA. A Riemannian submersion has totally geodesicfibres ifand only if
the vertical Laplacian commutes with any basic vectorfield (viewed as an operator
on the space offunctions on the total space).

Proof. Let X be a basic vector field and ()a its flow. In [13], it is shown
that, if the fibres are totally geodesic, maps the fibre Fm isometrically into the
fibre Ftm). Therefore

Since Av coincides with Arm along Fro, we get *(Av) Av, so that by differen-
tiating at 0, [X, Ao] 0.

Conversely, if IX, Ao] 0, then X leaves the symbol of Ao invariant, i.e., the
metric of Fro. So t is an isometry from Fm into F,(m) and the proof in [13] is in
fact an equivalence, as shown by J. Vilms in [25]. |

1.7 Proof of Theorem 1.5. Let (X,),=I p be a (local) orthonormal moving
frame on B. We denote by Xthe basic vector field associated with X. Then
(X)= is an orthonormal basis of HM for each point m in M. Let
(Uj)j_ ,_p be vertical vector fields in M which form an orthonormal basis of
VM around m. Then {X, U} is an orthonormal moving frame on M, so that

p n-p

AM= Z (Xi Xi- Dx,Xi)- , (Ujo Uj- DuUj)
i-1 j-1

(where D is the Levi-Civita connection ofM). B. O’Neill’s calculations in [22]
show that Duj Uj is vertical if the fibres are totally geodesic. Also the Levi-
Civita connection of a fibre Fm coincides with D restricted to vertical vector
fields. Since Dx, Xi is a horizontal vector field, we obtain

n-p

(1.8) Av- Z (Ujo Uj- DujUj)
j=l

and
p

(1.9) Ah ’. (X,o Xi- Dx,X,).
i=1

Moreover Dx, Xi is the basic vector field associated with De,Xi where D is
the Levi-Civita connection of B (see [22]). It follows then from Lemma 2.6 that
X and Dx,X commute with Ao. Therefore Ah and Ao commute with each
other. |
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1.10 Remarks. (i) Another geometric condition on the fibres which is of
interest is to suppose that the fibres of n: M B are minimal submanifolds ofM.
This ensures for example that n intertwines Au and As (see [26], where it is also
shown that n is then a harmonic map). From a topological point of view, this
means that the structure group of the bundle (which is a priori the group of
diffeomorphisms of the fibre F) reduces to the group of volume preserving
diffeomorphisms of F. Such a reduction is always possible since the volume
elements on a manifold form a convex, hence contractible, set.

However, this condition is not sufficient to ensure the identity [A, A] 0
as one easily checks on local examples.

(ii) In order that the fibration n: M B be a Riemannian submersion with
totally geodesic fibres, the structure group of the bundle must reduce to a finite
dimensional Lie group G. This follows directly from R. Hermann’s result used
in the proof of Lemma 1.6 since G appears as a group of isometries of F. In
particular if F is compact, G must be compact.

This is a strong restriction on the bundle n: M B, but many of the inter-
esting geometric bundles have this property (the Hopf fibrations, the natural
bundles deduced from the tangent bundle of a Riemannian manifold with the
Sasaki metric; for more examples, see the next section).
The group G appears also as the holonomy #roup of the horizontal distri-

bution given by the Riemannian metric on the total space. It is usually under
this name that we shall later refer to G.

(iii) It is important to notice that when F is one-dimensional, the fibres are
minimal if and only if they are totally geodesic. Hence the special role played by
real line bundles or circle bundles.

1.11 When the fibres are totally geodesic, because of R. Hermann’s result,
one can say that the fibre F is a Riemannian manifold. We insist here that the
metric k on F is given up to a diffeomorphism since there is no preferred way
to map a fibre to another one.

1.12 Theorem 1.5 does not generalize for the Hodge-de Rham Laplacians
defined on/-forms (0 < < n- p). Already, to require that intertwines the
Hodge-de Rham Laplacians of M and B forces t: M B to have integrable
horizontal distribution as is shown in [11].

2. Some examples

2.1 We saw in 1.10 that the total space M and the base B of a fibration

" M B can be given Riemannian metrics so that n is a Riemannian submer-
sion with totally geodesic fibres only if the structure group of the bundle
reduces to a finite-dimensional Lie group.

Conversely, if n: M B is a G-bundle (where G is a Lie group) with fibre F,
there exist adapted metrics on M. More precisely, given a Riemannian metric j
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on B, a G-invariant Riemannian metric k on F and a G-connection Ofor z, there
exists a unique Riemannian metric 0 on M such that n is a Riemannian submer-
sion with totally geodesic fibres isometric to (F, k) and such that the horizontal
distribution associated with 0 is the orthogonal complement of the vertical
distribution (see [25], page 78, for a proof).

2.2 The following describes an interesting family of Riemannian submer-
sions with totally geodesic fibres with compact total space.

Let G be a compact Lie group, H and K two closed subgroups of G with
K c H. The natural coset map n: G/K G/H is a fibration with fibre H/K and
structure group H. We now construct G-invariant metrics on these spaces as
follows. Let 15 be the Lie algebra of G, . and a the Lie subalgebras of (
corresponding to the subgroups H and K of G. We choose an H-invariant
complement 3 to in ff, a K-invariant complement to a in . Then
3 is a K-invariant complement to a in b.
A G-invariant metric j on G/H is given by an H-invariant scalar product on. An H-invariant metric k on H/K is given by a K-invariant scalar product x

on 9Jl. Then zxx is a K-invariant scalar product on )9Jl which
corresponds to a G-invariant metric on G/K. Then r: (G/K, #) (G/H, j)is a
Riemannian submersion with totally geodesic fibres (H/K,k) (see [1]).
Moreover, the O’Neill tensor A of this submersion is given, after suitable
identifications, by a map from x to 9Jl which is

Ax Y 1/2[X, Y].

The holonomy group of the fibration here is the subgroup N ofH generated
by the intersection of . with the ideal 91 of b spanned by iterated brackets of
elements of .

If 91 does not contain all of 9J/, then N is not transitive on H/K and there
exists a non constant function on G/K such that Ah f= 0.

2.3 The preceding family includes the Hopf fibrations S2q+ 1_.. Cpq by
taking G SU(q + 1), H SU(q) and K S(U(1) x U(q)) or S4’+ HP"
(where H is the field of quaternions) by taking G Sp(r + 1), H Sp(r) and
K Sp(r)" Sp(1). The spaces can be endowed with their canonical metrics but
we will see in Section 5 that some other metrics belonging to the family turn out
to be of interest. For the algebra Caa of Cayley numbers, S5 CaaP S is
again of the preceding type (the fibres are 7-spheres), but CaaP2 is not the base
space of a fibration of S23 by 7-spheres. (It must be written as F4/Spin9 where
F4 is one of the exceptional Lie groups, see [7]).

2.4 Among the preceding family one also finds fibrations of flat tori over
fiat tori. Consider for example the flat torus T2,a R2/oZ + Z where

(0, 1) and /3 (1, a), 0 < a < 1. Then the map (x, y)-- x from T2,a to
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S R/Z is a Riemannian submersion with totally geodesic fibres. Using the
obvious coordinates (x, y)on T2, one has

t2 2 2 2
A Ah AM

dy2’ dx2’ tx2 cOy2"

This very simple example suggested to the authors by Y. Colin de Verdiere
will show to be useful in the next section.

2.5 Other examples ofRiemannian submersions with totally geodesic fibres
include the fibrations associated with the tangent bundles when they are
endowed with their Sasaki metrics. (This metric is obtained as described in
2.1 with G 0, and the G-connection 0 being the Levi-Civita connection. For a
proof, see [5], page 46.)

3. On eigenvalues and eigenfunctions

3.1 Now suppose M to be compact and connected. Consider a Reimannian
submersion n: M -* B with totally geodesic fibres. We recall that n is then a
G-bundle where G is a compact Lie group acting by isometries on the fibre F.

3.2 We denote by L2(M) the Hilbert space of (real-valued) L2-functions on
M (with respect to the canonical measure vo associated with the metric #). Then
AM, Av and Ah may be considered as self-adjoint unbounded operators on
L2(M). One knows (see for example [3], page 142) that the spectrum of the
elliptic operator AM is discrete. We denote by (#)ir the eigenvalues of AM and
by (m)r their (always finite) multiplicities. Then #o 0, mo 1, # > 0 for
i> 1 and #i + when i +.

Also, L2(M) has a Hilbert basis consisting of eigenfunctions of AM. The
eigenfunctions associated with #o are of course the constant functions.

3.3 Since, for any C2 function f on M, the restriction of Av f to F, is by
definition AF’(f F,) and since all fibres are isometric, the spectrum of Ao is
also discrete. Let (dPi)ir be the eigenvalues of A (and also of AF). Of course
b0 0, b > 0 if > 1 and b - / c when - + c. However, multiplicities are
not necessarily finite: for examples functions f such that Aof= 0 are only
constant along the fibres and hence are functions of the formf n wherefis a
function defined on B.

3.4 Warning. The spectrum of Ah need not be discrete. This appears already
in the simple example that we introduced in 2.4 as we now explain. In this case
the eigenvalues of Ao are the numbers 4/1:2q2 (q N), those of AM are
4/t2((p aq)2 + q2) (p, q Z). Therefore one sees that the eigenvalues ofAh are
all numbers 4nE(p- aq)2 (p, q Z).

If a is irrational, 0 is obtained only for p q 0, the corresponding eigen-
functions being constant. But the spectrum of Ah does accumulate at 0.
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3.5 When Au and Ao commute, there exists a decomposition of L(M) into
joint eienspaces for these two operators. More precisely, we have the following
result.

3.6 THEOREM. The Hilbert space L2(M) admits Hilbert basis consisting of
simultaneous eiffenfunctions for A and Ao.

3.7 We set

Ha(b, (k) {flfe L2(M), Ah f= bf, Ao f= bf}.

We emphasize that we use letters of different alphabets to mean the follow-
ing. Greek letters are reserved for ei#envalues of Laplace-Beltrami operators
for A, fl for Ae, for A and therefore for Ao). We use Latin letters to denote the
eigenvalues of An, since this operator is of a different nature.

Iff is a function in H(b, tp), then Af= (b + tk)fi Hence H(b, b) must be
finite dimensional. If H(b, b) =/= 0, then (resp. b) belongs to the spectrum of
Ao (resp. of A). Since Ao and A are non-negative operators, we must have
b > 0 and b > 0.

3.8 Notice that the eigenvalues of AM are not all possible sums of one
eigenvalue of Ah and one of Ao, if the bundle is not trivial. How to select the
permitted combinations is one of the main problems and depends on the global
geometry of the situation.

3.9 We emphasize that the spectrum of Ah contains but does not coincide in
general with the spectrum of the Laplace operator An of the base manifold B.
Indeed, if f is a function on B, then

(3.10)

Notice that (3.10) already holds when the fibres are minimal as follows from
[26].

3.11 From now on, we suppose that the fibres of n" M --} B are connected.

3.12 It follows from (3.10)that

HO(b, 0) {fo n A= b).
In particular, H(b, 0) =/: 0 only if b fl where fl is an eigenvalue of Ae. The
map y -) f n is an embedding of L(B) into L2(M) as a direct factor. It is also
easy to describe the orthoffonal projectionfrom L(M) onto the image ofLa(B). It
is related to "integration along the fibres" in the following way" let us denote by
( f%)(q) the integral off F (where q is a point in B) for the canonical
measure vo, associated with
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3.13 PROPOSITION. The following identities hold"

Proof The second equality follows from the identity

For the first equality, one uses the expression (1.9) of A. The proposition
then follows from the following lemma.

3.14 LEMMA.
X on B, then

IfX is a basic vectorfield which projects down to the vectorfield

Proof Since the flow of X maps a fibre isometrically to another fibre, X
preserves % (this would also hold if the fibres were only minimal). I

3.15 It follows from Proposition 3.13 that if we set

then the map f-fr is the orthogonal projection of L2(M) onto the image of
(n).

4. Applications to quantum physics

4.1 Recently there has been a renewed interest in classical physics for non-
bijective canonical transformations (see [19], [6]). This very general expression
should not be taken literally, but more in the sense that certain interesting
maps between configuration spaces turn out to be non-linear and non-bijective.
From a mathematician’s point of view these maps are in fact extremely nice
(namely, coverings or Hopf fibrations in the examples that we detail later).
When going to the quantum level, one has to describe how the spectrum of

the quantum operators are related. Once more the quantum operators are not
the most general operators but very natural ones related to the Riemannian
geometry of the situation (for example the Laplace operator of a Riemannian
metric plus a potential for the energy).

4.2 As we recalled in 1.10(i), to ensure that the spectrum of the base
Riemannian manifold B is contained in the spectrum ofthe total space M ofthe
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fibration it is enough that the fibres be minimal. Moreover, the inclusion of
eigenfunctions is given (as explained at the end of Section 3) by composing
functions on B with the projection map. The function on M obtained in this
way are constant along the fibres, hence annihilated by the vertical Laplacian
A. This condition is in turn sufficient if the fibres are compact and connected.
But to give a nice description of this condition in a basis of pure states (i.e.,
eigenfunctions of A" plus a potential depending only on the base), one needs
that A and A" commute. This is precisely the case that we came up with in
Theorem 1.5. The holonomy group of the bundle is usually referred to in the
physics literature as the #roup ofambi#uity. We now come to some examples to
see more concretely how the notions really appear.

4.3 The first instance which should be cited of non-bijective canonical
transformation is the use of Euler angles to parametrize a rigid body in R.
Mathematically speaking, this amounts to considering Sa as a two-fold cover of
RP3, since Sa identifies itself with the group SU2 and RPa with SO a. Later, Sa

was recognized as having itself a physical meaning with the discovery of the
spin of particles.
Another instance where a two-fold cover occurs is known as Levi-Civita’s

re#ularization of the plane motion. Let z x + iy be a complex parameter
describing a body moving in a plane. In 17], Levi-Civita proposed to introduce
a mathematical complex parameter (= / it/ mapped onto the physical
z-plane by

Z (()= (2 (in other words x 2 _//2, y 2r/).

This map n is a two-sheeted ramified coverin# of C R2 over C 112. The
origin is a singular point of n. Under n, the distance to the origin is squared.
The interest of the transformation lies in what it does to the equation ofmotion
of a body governed by Kepler law. Indeed, under n, a conical section centered
at the origin of the (-plane is transformed into a conical section of the z-plane
having one focus at the origin, hence the regularization. By going to polar
coordinates, one can separate the radial from the angular movement.

4.4 A very nice generalization of this to higher dimensions is due to P.
Kustaanheimo and E. Stiefe! (cf. [16]). They noticed that Levi-Civita’s con-
struction could be considered as an orthogonal multiplication, the existence of
which is known to be strongly related to the existence of an underlying field.
The next case they considered is some kind of quaternionic ramified map of
H
_
R over R3.

The fact that no map from R’ to R* analogous to Levi-Civita’s regulariz-
ation exists is related to the non-commutativity ofthe field H of quaternions (the
tensor product of two copies ofthe fundamental representation ofSp (= SU2)
is a real representation which decomposes into two representations: a 3-
dimensional one and a trivial 1-dimensional one). Their generalization can .be
described as follows: a point ( in H ( (xt + ix2) "+" J(Y + iy2) where x t, x2,
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y and Y2 are real numbers) is mapped by n to the point z (u, v, w) in R3

given by

u

v 2(xl X2 YlY2)
W 2(xly + x2Y2).

In this case again, the origin is the only singular point, the map n squares
distances to the origin and, on spheres of radii 1, rr reduces to the ordinary
Hopf fibration. As before, by transfering the equations of a Kepler motion to
the (-space one regularizes the motion. (Notice, however, that in order to do so
one has to lift the dynamical vector field horizontally for the natural distri-
bution of the Hopf fibration).

4.5 In [4], a connection between the radial Schrbdinger equations of the
hydrogen atom and isotropic harmonic oscillators of various dimensions is
pointed out. As a consequence, the energy levels of the nonrelativistic hydrogen
atom can be deduced from one-dimensional harmonic oscillators. This is ob-
tained by taking a one-dimensional quadratic map, i.e., by considering a real
two-sheeted ramified covering. This can be viewed merely as a change of var-
iables and does not require any geometric understanding of the situation,
unlike the preceding example.

4.6 A generalization of this to the Coulomb problem in 2 and 3 dimensions
is due to M. Boiteux (cf. [6]) and requires the use of the quadratic maps
introduced by Levi-Civita and P. Kustaanheimo and E. Steifel together with
our Theorem 2.5. As a consequence, the bound state Coulomb problem is shown
to be equivalent to an harmonic oscillator inverse problem (with potential 1/r
where r is the distance to the origin).

5. The canonical variation of a Riemannian submersion

5.1 Keeping the same assumptions as before (i.e., r" M-o B is a Rieman-
nian submersion with totally geodesic fibres), the metric # on M has a canonical
variation associated with the submersion, namely"

DEFINITION. For each positive real number t, let 0t be the unique Rieman-
nian metric on M such that

(i) g, VmMXH,M=0;
(ii) gt VmM’-t2g VmM;
(iii) gt HmM=O HIM.
We immediately get the following result.

5.2 PROPOSITION. The map n is a Riemannian submersion from (M, t) to
(B, j) with totally #eodesic fibres isometric to (t, t2k).
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Later we denote by Mt the Riemannian manifold (M, gt) and its Laplacian by
A. We now compute A in terms of the operators A, Ao, An corresponding
to /.

5.3 PROPOSITION. The following formulas hold"

Ay t-2Av - Ah t-2Au - (1 t-2)A.

Proof. It suffices to show that between the vertical Laplacian A[ and the
horizontal Laplacian A of gt and Av and Ah the following relations hold"
A t-2Av and A[, Ah. Let (Xi)i=l p and (Uj)j=I n-, be thesame moving
frames that we used in the proof of Theorem 2.5. For #, (X) is still an ortho-
normal basis of HmM and (t-Uj) is an orthonormal basis of VmM. Therefore

n-p

Atv t -2 (Uj Uj- DuUj)= t-2Av
j=l

and

I
5.4 A common eigenfunction ofA and Ah is an eigenfunction ofAfor each

t. More precisely, since, as topological spaces, L2(M) L2(M,), one has the next
result.

5.5 COROLLARY. H(b, b) H’(b, t- 2k).

Proof. IfAhf= bland Aof= bf, then Af= t-2Aof t-2bfand in parti-
cular AUf (b + t-2dp)f I

5.6 Remark. There exists a Hilbert basis of L2(M) which consists of eigen-
functions for each A, but corresponding to varying eigenvalues. In particular
the ordering of the eigenvalues may change as varies (see 6.6 for an example).

6. H. Urakawa’s example revisited

6.1 We now describe the particular situation of H. Urakawa’s example.
The Hopf fibration n" Sa S2 is a Riemannian submersion from a metric

with constant curvature 1 on Sa to a metric with constant curvature 4 on S2 (in
fact S2 stands there for the complex projective line CP). This fibration is the
fibration between homogeneous spaces

U2/U -- U2/U x U S03/S02

corresponding to the inclusion of U as first summand of U x U . Moreover,
any U2-invariant metric on Sa U2/U coincides with one of the metrics of
the canonical variation introduced in Section 5. These metrics, sometimes
called the Berger metrics, have provided counter-examples to various geometric
conjectures (cf. [12], page 230, and [27]).
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6.2 H. Urakawa was interested in the first nonzero eigenvalue of As. For
the canonical metric c, # 3 with multiplicity m 4 and/2 8 with multi-
plicity m2 9 (see [3], page 162). Now, one easily sees that, in the decomposi-
tion of the Hilbert space L2(S3) into the He(b, b)’s,/ b + b with b 2,
b 1 (the restriction to any great circle of a first spherical harmonic is a first
spherical harmonic of the circle). Now/2 has two decompositions as sum ofa b
and a b, say

2 b + with b 8, 0
and

2=b+b withb=6,=2.

The eigenfunctions in H(8, 0) come from the base (they are the polynomials of
degree 2 in z and , where z is a complex coordinate in C2, which are invariant
under conjugation and orthogonal to the hermitian norm z. ).

All the corresponding eigenfunctions remain eigenfunctions for the operators
As but associated with the eigenvalues 2 / t-2 for the elements of I-F(2, 1), 8
for the elements of H(8, 0) and 6 + 2t-2 for the elements of H(6, 2).

Therefore, as t decreases to 0 the eigenvalues of the type b + t-2q (with
qb 4: 0) increase. Hence, for 6-/2 < t, 2 + -2 is still the first nonzero
eigenvalue of (M, ) with multiplicity 4. For 6- :/2 the first eigenvalue is 8
with multiplicity 4 + 3 7. For < 6-/2, 8 stays the first eigenvalue but only
with multiplicity 3.

6.3 COROLLARY (cf. [24]). There exists a Riemannian metric on S3 whosefirst
nonzero eioenvalue has multiplicity 7 (the latter for the canonical metric is 4).

6.4 As we saw, if #(t) denotes the first nonzero eigenvalue of A, we have

/gl(t)-" 8 for < 6-1/2

#(t)=2+t-2 fort>6-/2.

H. Urakawa used this fact to study the expression #(vol (Sa, 0))2/a which is
invariant under homothetieal changes of the metric on 3-dimensional mani-
folds. For the canonical variation of the Hopf fibration, one finds

vol (Sa, 0,)-’- vol (S3, 0)
(by integration along the fibres), so that

t8t2/3(Zlt2)2/3 for _< 6-/2
q(t) #(t)(vol (S3, Or))2/3 [(2 + t-2)t/s(2rt2)/ for t > 6-

In particular, one sees that q/(t) goes to + oo as goes to + oo and q/(t) goes
to 0 as t goes to 0.

6.5 COROLLARY (cf. [24]). The function :t](vol (S3, 0))2/3 has no universal
bound when 9 varies amono metrics on S3.
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6.6 Remarks. (i) The only new information is really that the function is not
bounded from above, since it is known (see [3], page 188, for a proof) that on
any manifold this function can be made arbitrarily small (this was J. Cheeger,s
starting point in introducing an isoperimetric constant in [9]). Corollary 6.5
contrasts sharply with what happens on the sphere S2. There, by J. Hersch’s
theorem (cf. [14]), the function/ vol (S2, g) is bounded from above by 8n, i.e.,
the value it achieves for the standard metric. (For a more detailed discussion of
this point, see the expos6 nIX of the Sminaire Goulaouic-Schwartz
1979-1980 by the second author.)

(ii) The canonical variation of the Hopf fibration allows us also to exhibit
an example of the following phenomenon. The first eigenspace for the stan-
dard metric on S3 consists of functions with only two nodal domains. These
functions remain eigenfunctions for all the metrics #, but associated with the
eigenvalue 2 + t- 2. As goes to 0, 2 + t- 2 goes to +. However, the spectrum
of (S3, g,) contains that of (S2, c) which is fixed as we noticed earlier. Therefore
2 + t-2 appears arbitrarily far away in the spectrum as goes to 0.

6.7 COROLLARY. For any integer l, there exists a Riemannian metric on S3

such that there are eigenfunctions of an order larger than with only two nodal
domains.

6.8 Recall that, by the extension of Courant’s nodal line theorem to com-
pact Riemannian manifolds, the number of nodal domains of an eigenfunction
is bounded from above by the order of the associated eigenvalue plus one (0 is
considered as the 0th eigenvalue). We just showed that for certain manifolds
such as S3 no nontrivial lower bound exists (for a different point of view, see
[18]).

6.9 So far, we have been interested in the metrics g only in connection with
the Hopf fibration n" S S2. We can also use them in connection with the
covering t: S3 RP3 (which can also be thought of as a Hopf fibration). The
metrics # are indeed invariant under the antipodal map: we denote by #
the metrics induced on RP3. The previous discussion shows that, for < 6- /2,
the first nonzero eigenvalues of the Laplacians As3 and A’3 coincide. Indeed
the elements of H(8, 0) which come from functions on S2 are of course invar-
iant under the antipodal map and give rise to functions on RP3.

This again contrasts sharply with the two-dimensional situation, where one
can prove that the first nonzero eigenvalue of a metric on RP2 cannot be the
first nonzero eigenvalue of the lifted metric on S2.

7. On the first eigenvalue of the canonical variation

7.1 In this section we consider the general case, i.e., where n" M --. B is a
Riemannian submersion with totally geodesic fibres with M compact and con-
nected. We analyze how H. Urakawa’s observation can be generalized.
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Using direct calculations, such an extension has been given independently by
S. Tanno (cf. [23]) for the Hopffibration n" $2+. ._, Cp and by H. Urakawa and
H. Muto (cf. [21]) for certain homogeneous spaces. Here we state a generaliz-
ation which covers these cases without detailing explicit examples.

7.2 PROPOSITION. Suppose that the first eigenvalue laa of AM satisfies the
followin9 "unique decomposition" property: there exists a unique pair (b 1, ck 1)
such that lal b + 1 with ckl 0 where b is an eioenvalue ofthe horizontal
Laplacian and dp an eioenvalue of the vertical Laplacian.

Then there exists a positive number such that the Laplacian A ofthe metric

Ot ofthe canonical variation has afirst nonzero eigenvalue with multiplicity laroer
than that ofAM. Moreoverfor any inteoer l, there exists a Riernannian metric on
M with eioenfunctions of an order laroer than which have only two nodal
domains.

Proof The proof is the same as in H. Urakawa’s example. |

7.3 Some remarks on the case of the Hopf fibration S2/+ Cpq are in
order. One can realize the canonical variation of the submersion
r: S2q+ Cp for < 1 (resp. 1 < t) as the induced metrics on the distance
spheres in CP/ (resp. (CP/ 1),, the dual symmetric space with negative
curvature). This is detailed in [8], page 85. The exceptional multiplicity appears
for (2(q + 2))- a/2, i.e., for the sphere of radius r in CP+ (with ,diameter
normalized to be n/2) determined by tan2 r 2q + 3. This value of the radius
does not seem to correspond to any other geometric property of the metric (for
example, the distance sphere is minimally embedded for tan2 r 2q + 1).

7.4 Let us mention one case where Proposition 7.2 does not apply" the
Hopf fibration CP2’+ I-IU for which one easily checks that the standard
metric has the largest multiplicity in the canonical variation.

7.5 We now come back to the function qJ(g)=/(vol (M, g))Z/n.
By Fubini’s theorem, ones has

vol (M, 9t)= vol (B, j)vol (F, t2k)
vol (B, j)t"-p vol (F, k)
t"-p vol (M, O).

It is therefore sufficient in the ease of the canonical variation to study the
function t--, lal(t)t2- 2t’/n.
We know that any eigenvalue ofA may be written as b + t-2b.
When goes to 0, b + t- 2b goes to + oo if b 4:0 and is constant and equal to

b itch= O.
When goes to +, b + t-2() goes to b.
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Since there are only a finite number of eigenvalues of the Laplacian on a
compact Riemannian manifold smaller than a given number, one sees that, for
small enough, #l(t) is equal to the first eigenvalue of B (appearing as b with
b 0). So #(t) is a positive constant for small enough. Hence, we have the
following result.

7.6 PROPOSITION. For the canonical variation gt ofa Riemannian submersion
with totally geodesic fibres, @(t)= #’(vol (M, #t))2/n goes to 0 with t.

When t goes to + o, the result depends on the nature ofthe spectrum ofthe
horizontal Laplacian An. We have the following, for example

7.7 PROPOSITION. (i) Ifthere exists a non-constantfunctionfso that Ahf= 0,
then for the canonical variation O of a Riemannian submersion p(t)=
#’(vol (M, el))2In goes to 0 as t goes to + .

(ii) If Anf 0 implies f constant and if the spectrum of An does not
accumulate at O, then (t) goes to + with t.

Proof. (i) By assumption, there exists a non-constant function f such that
Anf 0. Since [Ao, An] 0, we can suppose that f has been chosen so that
ao f= bf.
Then Atus Ato f= t-2bf.
In particular/zl(t) _< t-2b and ,l(t)= la(t)t2-2pIn < t-2p/nck. Therefore (t)

goes to 0 when goes to + 00.

(iii) Letfbe a common eigenfunction to Atu and Aassociated with the first
nonzero eigenvalue of Atu. Since f is not constant, then A,f= b lf with
0 < c _< b for some c. Therefore c < b + t- 2) (t). In particular
ct2-2p/n <__ lll(t)t2-21/n and @(t) goes to +oo with t. |

7.8 As we mentioned in 6.6, Proposition 7.6 and Part (i) of Proposition 7.7
do not exhibit new behaviour of the function . (An instance where the
assumption in (i) is fulfilled is developed at the end of 2.2.) On the contrary,
Part (ii) of Proposition 7.7 shows that J. Hersch’s theorem (of. [14]) does not
generalize under these assumptions for example to the spheres S2+ . Recently
H. Muto proved (cf. [20]) that it does not generalize to S2 (2 < q) either.

7.9 Another function of interest when studying the first eigenvalue is

di(g) =/(diam (M, g))2.
Estimating the diameter in the case of a Riemannian submersion (even with

totally geodesic fibres) is not such an obvious matter. For that purpose we
introduce two new quantities: firstly we denote by diam (F/G) the diameter of
the metric space FIG obtained from the Riemannian manifold (F, k) by divid-
ing by the action of the holonomy group G (which is known to act by iso-
metries in our situation); secondly we denote by diamn M the horizontal diameter
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of M, i.e., the supremum over all pairs of points p and q of M which can be
joined by a horizontal curve of the infimum of the lengths of such curves. We
then have the following result.

7.10 PROPOSITION. The following inequalities hold:
(i) diam2 B + diam2 (F/G) < diam2 M,
(ii) diam2 M < diam2 B + diam2 F,
(iii) diam2 M < diam,, M + diam2 (F/G).
Before giving the proof of Proposition 7.10, we review the consequences that

these estimates have for the function tS(t)= i(#t) (where gt is the canonical
variation of a Riemannian submersion).

7:11 For the metric g, we obtain

diam2 B + 2 diam2 (F/G)<_ diam2 (M,)
diam2 (Mr)< diam2 B + 2 diam2 F

diam2 (Mr)< diamh2 M + diam2 (F/G).
Hence when t #oes to O, diam (M,) goes to diam B as expected geometrically.

When #oes to + c, the situation is more complicated.
If diam (F/G) :/: O, then diam (M,)is asymptotic to diam (F/G) by (ii).
If diam (F/G)= 0 and diamh M finite (which is ensured for example by G

compact or n(B) finite), then diam (M,) remains bounded. (Notice that
diam (F/G)= 0 and diamh (M) infinite can occur as shown by the example
developed in 2.4 with a irrational.)

7.12 PROPOSITION. Ifdiam (F/G) 4= O, then 6(t) goes to + with t.

7.13 Remark. In the case of the Hopf fibrations r: S2q+ 1.., Cpq, G S
acts transively on the fibres (so that diam (F/G, k)=0). One even has
diam (Mr)= diamh M diam M for all t! In this case the function t--
remains bounded in the canonical variation. One can easily see that, as for the
function , the function di is never bounded from below on the space of
Riemannian metrics on a compact manifold.

7.14 Proof of Proposition 7.10. (i) Let p and q be points realizing the
diameter of B. Let y and z be points in the fibre at q so that their classes in the
metric space FIG realize the diameter of FIG.
We take the shortest geodesic V from y to the fibre at p. This geodesic is

necessarily horizontal ( is horizontal when it reaches F say at x and this is
enough to ensure that it is horizontal all the way). Then, denoting the distance
by d, we have

diam2 B + diam2 (F/G) < d(x, z)2.
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Indeed, let tr be a minimizing geodesic in M from x to z and let s be its
projection in B. Let (b) be the horizontal transport along the collection of all
horizontal liftings of s. It is clear that b is an isometry from F,) onto the fibre

F (q is the endpoint of s). Then one can prove that ((t) b,(y(t))is a geodesic
of F, that tr makes a constant angle with the fibres (so that s and ( are
parametrized proportionally to arc length) and that L(tr)2 L(s)2 + L(()2
(where L denotes the length of a curve). Since s joins p to q, diam B < L(s).
The geodesic ( ends at z and originates at a point y which can be joined to y

by a horizontal curve. Therefore y lies in the same G-orbit as y so that

diam (F/G)= dr/o(-, )= de/o(-}, ) < d(y, z).
Since the proofs of (ii) and (iii) are not directly used in the article, they are left

to the reader (they involve the same ideas as the proof of (i)). |

8. More on the horizontal Laplacian

8.1 Proportion 7.7 underlines the importance of the nature of the spectrum
of Ah.

In this section we look for geometric conditions which ensure the assump-
tions on Ah made in Proposition 7.7. We shall see that the question is intimately
related with the transitivity of the holonomy group on the fibre.
We recall that the holonomy oroup of a fibre is the group of all isometrics of

the fibre induced by horizontal transport along the horizontal lifts of a loop in
B based at the projection of the fibre.

8.2 THEOREM. The holonomy roup has no dense orbit if and only if there
exists a non-constant function f on M such that Ah f O.

Proof. Let dh f be the horizontal part of the 1-form df. Clearly dhf-" 0
implies that f is invariant under horizontal transport.

Suppose that Af 0.
We integrate Ah f against f on M. We get

hence the vanishing of dh f.
If the holonomy group has no dense orbit in the fibre, there exists a non-

constant G-invariant smooth function on one fibre. One can then construct a
functionfwhich is invariant under horizontal transport and coincides with the
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given function on the fibre. Then dh f= 0 and Ah f= 0. Conversely, if the
holonomy group has a dense orbit, if some CX-functionfsatisfies dhf= O, then
f is constant on the dense orbit, hence constant everywhere. Since we already
proved before that Ah f= 0 implies that dh f= O, we are done. 1

8.3 COROLLARY. Ifthe holonomy group has no dense orbit, thenfor the canon-
ical variation gt of a Riemannian submersion (t)=/tt(vol (M, gt))2/, goes to 0
as t goes to + .

8.4 There are cases where none of the assumptions in Proposition 7.7 is

satisfied. Indeed it may happen that Af= 0 implies f constant, while the
eigenvalues ofA accumulate at 0. This happens in the example introduced in
2.4 whose eigenvalues are computed in 3.4. in this example one can see that the
holonomy group is discrete but when a is irrational has a dense orbit in the
fibre.

8.5 Coming back to the general case, we now introduce a condition which
ensures that 0 is isolated in the spectrum of Ah.

8.6 DEFINITION. We say that the holonomy group is infinitesimally transi-
tive if the basic vector fields together with their iterated brackets generate all
the tangent space to M at any point.

8.7 Notice that the vertical part ofthe bracket oftwo basic vector fields lies
in each fibre in the Lie algebra of the holonomy group.

8.8 THEOREM. If the holonomy group is infinitesimally transitive at every
point, then the spectrum of Ah is discrete, and hence 0 is an isolated point of the
spectrum.

Proof It is a consequence of a deep result of L. H6rmander (cf. [15], page
149) that under these assumptions Ah is hypoelliptic. |
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