NORMAL N.E.C. SIGNATURES

BY
E. Bujalance

1. Introduction

By a non-Euclidean crystallographic (N.E.C.) group, we shall mean a discrete subgroup Γ of isometries of the non-Euclidean plane with compact quotient space, including those reverse orientation, reflections and glide-reflections.

Let G denote the group of isometries of the upper-half plane D and let G^{+} denote the subgroup of index 2 in G consisting of the conformal homeomorphisms. If Γ is an N.E.C. group we let $R(\Gamma, G)$ denote the set of isomorphisms $r: \Gamma \rightarrow G$ with the property that $r(\Gamma)$ is discrete and $D / r(\Gamma)$ is compact. $r_{1}, r_{2} \in R(\Gamma, G)$ are called equivalent if for all $\gamma \in \Gamma, r_{1}(\gamma)=g r_{2}(\gamma) g^{-1}$ for some $g \in G$. The quotient space is denoted by $T(\Gamma, G)$, the Teichmüller space of Γ. It is homeomorphic to a cell of dimension $d(\Gamma)$. If Γ is a Fuchsian group with signature $\left(g ;+;\left[m_{1} \cdots m_{\imath}\right]\right)$ then $d(\Gamma)=6 g-6+2 \imath$. Singerman [3] states that if Γ is a proper N.E.C. group, then $d(\Gamma)=\frac{1}{2} d\left(\Gamma^{+}\right)$.

Macbeath and Singerman [2] have proved that $\operatorname{Mod}(\Gamma)$ fails to be effective in its action on $T(\Gamma, G)$ if and only if there is an N.E.C. group Γ_{1} with $\operatorname{dim} \Gamma_{1}=\operatorname{dim} \Gamma$ and an embedding $\alpha: \Gamma \triangleleft \Gamma_{1}$.

We shall find here the signatures of all N.E.C. groups Γ such that $\operatorname{Mod}(\Gamma)$ fails to be effective in its action on $T(\Gamma, G)$. For this to be done we shall define in (Section 3) the concept of normal signature. The computation of these normal signatures on N.E.C. groups allows us to solve the problem (Section 4).

The corresponding problem for Fuchsian groups, was essentially solved in the work of Singerman [4].

2. N.E.C. signatures

N.E.C. groups are classified according to their signature. The signature of an N.E.C. group Γ is either of the form

$$
\begin{equation*}
\left(g ;+;\left[m_{1} \cdots m_{\imath}\right] ;\left\{\left(n_{11} \cdots n_{1 s_{1}}\right) \cdots\left(n_{k 1} \cdots n_{k s_{k}}\right)\right\}\right) \tag{*}
\end{equation*}
$$

or

$$
\begin{equation*}
\left(g ;-;\left[m_{1} \cdots m_{\imath}\right] ;\left\{\left(n_{11} \cdots n_{1 s_{1}}\right) \cdots\left(n_{k 1} \cdots n_{k s_{k}}\right)\right\}\right) \tag{**}
\end{equation*}
$$

The numbers m_{i} are the periods and the brackets $\left(n_{i 1} \cdots n_{i s}\right)$ the period cycles.

[^0]The group Γ with signature (*) now has the presentation given by generators

$$
\begin{aligned}
& x_{i} \quad i=1, \ldots, l \\
& e_{i} \quad i=1, \ldots, k \\
& c_{i j} \quad i=1, \ldots, k, j=0, \ldots, s_{i} \\
& a_{j}, b_{j} \quad j=1, \ldots, g,
\end{aligned}
$$

and relations

$$
\begin{aligned}
& x_{i}^{m_{i}}=1, \quad i=1, \ldots, l \\
& c_{i s_{i}}=e_{i}^{-1} c_{i 0} e_{i}, \quad i=1, \ldots, k, \\
& c_{i j-1}^{2}=c_{i j}^{2}=\left(c_{i j-1} \cdot c_{i j}\right)^{n_{i j}}=1, \quad i=1, \ldots, k, \quad j=1, \ldots, s_{i} \\
& x_{1} \cdots x_{i} e_{1} \cdots e_{k} a_{1} b_{1} a_{1}^{-1} b_{1}^{-1} \cdots a_{g} b_{g} a_{g}^{-1} b_{g}^{-1}=1
\end{aligned}
$$

A group Γ with signature (**) now has the presentation given by generators

$$
\begin{array}{rl}
x_{i} & i=1, \ldots, l \\
e_{i} & i=1, \ldots, k \\
c_{i j} & i=1, \ldots, k, j=0, \ldots, s_{i} \\
d_{j} & j=1, \ldots, g
\end{array}
$$

and relations

$$
\begin{aligned}
& x_{i}^{m_{i}}=1, \quad i=1, \ldots, l, \\
& c_{i s_{i}}=e_{i}^{-1} c_{i 0} e_{i}, \quad i=1, \ldots, k, \\
& c_{i j-1}^{2}=c_{i j}^{2}=\left(c_{i j-1} \cdot c_{i j}\right)^{n_{i j}}=1, \quad i=1, \ldots, k, \quad j=1, \ldots, s_{i}, \\
& x_{1} \cdots x_{i} e_{1} \cdots e_{k} d_{1}^{2} d_{2}^{2} \cdots d_{g}^{2}=1 .
\end{aligned}
$$

(2.1) Definition. Let Γ be an N.E.C. group; we say that Γ is a proper N.E.C. group if it is not a Fuchsian group. We shall denote by Γ^{+}the Fuchsian group $\Gamma \cap G^{+}$.
Γ^{+}is a normal subgroup of Γ with index two. Moreover if Γ and Γ^{\prime} are N.E.C. groups and Γ is a subgroup of Γ^{\prime} with index N, then Γ^{+}is a subgroup of $\Gamma^{\prime+}$ with index N.

Singerman [5] proves the following theorem, which determines the signature of Γ^{+}in terms of the signature of Γ.
(2.2) Theorem. (a) If Γ has signature (*) then Γ^{+}has signature

$$
\left(2 g+k-1 ;+;\left[\left(m_{1}\right)^{2} \cdots\left(m_{\imath}\right)^{2} n_{11} \cdots n_{k k_{k}}\right]\right) .
$$

(b) If Γ has signature (**) then Γ^{+}has signature

$$
\left(g+k-1 ;+;\left[\left(m_{1}\right)^{2} \cdots\left(m_{1}\right)^{2} n_{11} \cdots n_{k k_{k}}\right]\right)
$$

where $(\cdots)^{2}$ means that this proper period is repeated 2 times.

3. Normal N.E.C. signature

(3.1) Definition. Let σ, σ^{\prime} be the signatures of two N.E.C. group. We say that σ is normal in σ^{\prime}, and denote this $\sigma \triangleleft \sigma^{\prime}$, if there is an N.E.C. group Γ of signature σ, and an N.E.C. subgroup Γ^{\prime} with signature σ^{\prime} such that $\Gamma \triangleleft \Gamma^{\prime}$ and $d(\Gamma)=d\left(\Gamma^{\prime}\right) ; \Gamma, \Gamma^{\prime}$ are called N.E.C. groups associated to σ, σ^{\prime}, respectively.
(3.2) Proposition. Let σ, σ^{\prime} be the signatures of two N.E.C. groups such that $\sigma \triangleleft \sigma^{\prime}$, and assume that Γ and Γ^{\prime} are proper N.E.C. groups of signatures σ, σ^{\prime}, with $\Gamma \triangleleft \Gamma^{\prime}$. Then, if σ^{+}and σ^{++}are the signatures of Γ^{+}and $\Gamma^{\prime+}$, we have $\sigma^{+} \triangleleft \sigma^{+}$.

Proof. First we prove that $\Gamma^{+} \triangleleft \Gamma^{\prime+}$; since $\Gamma \triangleleft \Gamma^{\prime}$, for $t \in \Gamma^{+}$and $q \in \Gamma^{\prime+}$, then $q t q^{-1}$ preserves orientation, whence it belongs to Γ^{+}; thus $\Gamma^{+} \triangleleft \Gamma^{++}$. Now

$$
\begin{aligned}
d(\Gamma) & =\frac{1}{2}\left(d\left(\Gamma^{+}\right)\right) \\
d\left(\Gamma^{\prime}\right) & =\frac{1}{2}\left(d\left(\Gamma^{\prime+}\right)\right)
\end{aligned}
$$

hence $d\left(\Gamma^{+}\right)=d\left(\Gamma^{\prime+}\right)$, and $\sigma^{+} \triangleleft \sigma^{\prime+}$.
(3.3) Proposition. Let σ and σ^{\prime} be two N.E.C. signatures; then $\sigma \triangleleft \sigma^{\prime}$ if and only if there are groups Γ, Γ^{\prime} with signatures σ and σ^{\prime} such that $\Gamma \triangleleft \Gamma^{\prime}$ and $\sigma^{+} \triangleleft \sigma^{\prime+}$.

Proof. If $\sigma \triangleleft \sigma^{\prime}$, there are Γ and Γ^{\prime} with $\Gamma \triangleleft \Gamma^{\prime}$; thus (3.2) implies $\sigma^{+} \triangleleft \sigma^{\prime+}$.
If there are groups Γ, Γ^{\prime} of signatures σ, σ^{\prime}, satisfying $\Gamma \triangleleft \Gamma^{\prime}$ and $\sigma^{+} \triangleleft \sigma^{\prime+}$, then $d(\Gamma)=d\left(\Gamma^{\prime}\right)$ because $\sigma^{+} \triangleleft \sigma^{\prime+}$; thus, $\sigma \triangleleft \sigma^{\prime}$.

Let σ, σ^{\prime} be N.E.C. signatures, and $\sigma \triangleleft \sigma^{\prime}$, since every normal subgroup of a Fuchsian group is Fuchsian one, some of the following properties must be true:
(1) σ, σ^{\prime} are the signatures of Fuchsian groups;
(2) σ, σ^{\prime} are the signatures of proper N.E.C. groups;
(3) σ is the signature of Fuchsian group Γ and σ^{\prime} that of a proper N.E.C. group Γ^{\prime}, with $d(\Gamma)=d\left(\Gamma^{\prime}\right)=0$.

4. Computation of normal N.E.C. signatures

Now we shall give all pairs of signatures σ, σ^{\prime} such that $\sigma \triangleleft \sigma^{\prime}$.
First we consider the pairs corresponding to Fuchsian groups, thus were given by Singerman [4], and are the following.

Γ^{\prime}		Γ
$(0 ;+;[2,2,2,2,2,2])$	$(2 ;+;[-])$	$\left[\Gamma^{\prime}: \Gamma\right]$
$(0 ;+;[2,2,2,2, t])$	$(1 ;+;[t, t])$	2
$(0 ;+;[2,2,2,2 t])$	$(1 ;+;[t])$	2
$(0 ;+;[2,2,2, t])$	$(0 ;+;[t, t, t, t])$	$(t \geq 3)$
$(0 ;+;[2,2, t, u])$	$(0 ;+;[t, t, u, u])$	$(\max (t, u) \geq 3)$
$(0 ;+;[3,3, t])$	$(0 ;+;[t, t, t])$	$(t \geq 4)$
$(0 ;+;[2,3,2 t])$	$(0 ;+;[t, t, t])$	$(t \geq 4)$
$(0 ;+;[2, t, 2 u])$	$(0 ;+;[t, t, u])$	$(t \geq 3, t+u \geq 7)$

We shall use Proposition (3.3) to compute the remaining pairs of normal signatures, which correspond to the cases (2) and (3) of Section 3.

Let $\sigma^{+}=(2 ;+;[-])$ and assume that in σ the plus sign appears. Then, accordingly to (2.2), we have $2 g+k-1=2$; hence $g=0, k=3$, or $g=1$, $k=1$; therefore, the possible signatures are

$$
\begin{aligned}
& \sigma_{1}=(0 ;+;[-] ;\{(-)(-)(-)\}) \\
& \sigma_{2}=(1 ;+;[-] ;\{(-)\}) .
\end{aligned}
$$

If in σ appears the minus sign, we have $g+k-1=2$; hence

$$
\begin{array}{ll}
g=1 & k=2 \\
g=2 & k=1 \\
g=3 & k=0
\end{array}
$$

therefore we respectively have

$$
\begin{aligned}
\sigma_{3} & =(1 ;-;[-] ;\{(-)(-)\}) \\
\sigma_{4} & =(2 ;-;[-] ;\{(-)\}) \\
\sigma_{5} & =(3 ;-;[-])
\end{aligned}
$$

Proposition (2.2) now gives us the N.E.C. signatures σ^{\prime} when $\sigma^{+}=(0 ;+$; $[2,2,2,2,2,2]$). If the plus sign appears in σ, we have $2 g+k-1=0$; hence $g=0, k=1$, and therefore we respectively have

$$
\begin{aligned}
& \sigma_{1}^{\prime}=(0 ;+;[-] ;\{(2,2,2,2,2,2)\}) \\
& \sigma_{2}^{\prime}=(0 ;+;[2] ;\{(2,2,2,2)\}) \\
& \sigma_{3}^{\prime}=(0 ;+;[2,2] ;\{(2,2)\}) \\
& \sigma_{4}^{\prime}=(0 ;+;[2,2,2] ;\{(-)\})
\end{aligned}
$$

If the minus sign appears in σ, then $g+k-1=0$; hence $g=1, k=0$, and therefore we respectively have

$$
\sigma_{5}^{\prime}=(1 ;-;[2,2,2])
$$

Now, assume that Γ_{i} and Γ_{j}^{\prime} are proper N.E.C. groups associated to σ_{i} and σ_{j}^{\prime}, when

$$
\sigma_{i}^{+}=(2 ;+;[-]) \text { and } \sigma_{j}^{\prime+}=(0 ;+;[2,2,2,2,2,2])
$$

such that $\Gamma_{i} \triangleleft \Gamma_{j}^{\prime}$. Not all the preceding computed pairs $\sigma_{i}, \sigma_{j}^{\prime}$ are admissible; the results of (1) make it possible to restrict our study to the pairs

$$
\begin{array}{lll}
\sigma_{1}^{\prime} \sigma_{1} & \sigma_{3}^{\prime} \sigma_{4} & \sigma_{4}^{\prime} \sigma_{4} \\
\sigma_{2}^{\prime} \sigma_{3} & \sigma_{4}^{\prime} \sigma_{2} & \sigma_{4}^{\prime} \sigma_{5} \\
\sigma_{3}^{\prime} \sigma_{2} & \sigma_{4}^{\prime} \sigma_{3} & \sigma_{5}^{\prime} \sigma_{5}
\end{array}
$$

The following propositions will tell us what are the possible ones among them.
(4.1) Proposition. Given σ_{1}^{\prime} and σ_{1}, there is an N.E.C. group Γ_{1}^{\prime} of signature σ_{1}^{\prime}, and an N.E.C. group Γ_{1} of signature σ_{1}, such that $\Gamma_{1} \triangleleft \Gamma_{1}^{\prime}$.

Proof. Let Γ_{1}^{\prime} be an N.E.C. group with signature σ_{1}^{\prime}. By (Section 2) we already know that a set of generators and relations of Γ_{1}^{\prime} is given by generators

$$
c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}, c_{7}
$$

and relations

$$
\begin{gathered}
\left(c_{1} c_{2}\right)^{2}=\left(c_{2} c_{3}\right)^{2}=\left(c_{3} c_{4}\right)^{2}=\left(c_{4} c_{5}\right)^{2}=1 \\
\left(c_{5} c_{6}\right)^{2}=\left(c_{6} c_{7}\right)^{2}=1 \\
c_{1}^{2}=c_{2}^{2}=c_{3}^{2}=c_{4}^{2}=c_{5}^{2}=c_{6}^{2}=c_{7}^{2}=1 \\
c_{1} \cdot c_{7}=1
\end{gathered}
$$

We define an epimorphism

$$
\theta: \Gamma_{1}^{\prime} \rightarrow \frac{Z}{(2)}=\{\overline{0}, \overline{1}\}
$$

in the following way:

$$
\begin{gathered}
\theta\left(c_{1}\right)=\overline{1}, \quad \theta\left(c_{2}\right)=\overline{0}, \quad \theta\left(c_{3}\right)=\overline{1}, \quad \theta\left(c_{4}\right)=\overline{0} \\
\theta\left(c_{5}\right)=\overline{1}, \quad \theta\left(c_{6}\right)=\overline{0}, \quad \theta\left(c_{7}\right)=\overline{1}
\end{gathered}
$$

Since θ is onto,

$$
\frac{\Gamma_{1}^{\prime}}{\operatorname{ker} \theta} \approx \frac{Z}{(2)}
$$

hence ker θ is a normal N.E.C. subgroup of Γ_{1}^{\prime}. From a fundamental region of Γ_{1}^{\prime}, we get one for $\operatorname{ker} \theta$, and from the last one we have, for ker θ, generators

$$
e_{2}^{\prime}=c_{3} c_{5}, \quad e_{1}^{\prime}=c_{1} c_{3}, \quad e_{3}^{\prime}=c_{5} c_{7}, \quad c_{2}, \quad c_{4}, \quad c_{6}
$$

and relations

$$
e_{1}^{\prime} e_{2}^{\prime} e_{3}^{\prime}=1, \quad e_{1}^{\prime-1} c_{2} e_{1}^{\prime} c_{2}=1, \quad e_{2}^{\prime-1} c_{4} e_{2}^{\prime} c_{4}=1, \quad e_{3}^{\prime-1} c_{6} e_{3}^{\prime} c_{6}=1
$$

Therefore the signature of $\operatorname{ker} \theta$ is

$$
\sigma_{1}=(0 ;+;[-] ;\{(-)(-)(-)\}) ;
$$

thus, $\operatorname{ker} \theta$ is the group Γ_{1} we wanted.
(4.2) Proposition. Given σ_{2}^{\prime} and σ_{3}, there is an N.E.C. group Γ_{2}^{\prime} of signature σ_{2}^{\prime}, and an N.E.C. group Γ_{3} of signature σ_{3}, such that $\Gamma_{3} \triangleleft \Gamma_{2}^{\prime}$.

Proof. Let Γ_{2}^{\prime} be an N.E.C. group with signature σ_{2}^{\prime}. By Section 2 we already know that Γ_{2}^{\prime} has generators

$$
x_{1}, e_{1}, c_{1}, c_{2}, c_{3}, c_{4}, c_{5}
$$

and relations

$$
\begin{gathered}
x_{1} \cdot e_{1}=1, \quad x_{1}^{2}=1, \quad e_{1}^{-1} c_{1} e_{1} c_{5}=1 \\
\left(c_{1} c_{2}\right)^{2}=\left(c_{2} c_{3}\right)^{2}=\left(c_{3} c_{4}\right)^{2}=\left(c_{4} c_{5}\right)^{2}=c_{1}^{2}=c_{2}^{2}=c_{3}^{2}=c_{4}^{2}=c_{5}^{2}
\end{gathered}
$$

We define an epimorphism $\theta: \Gamma_{2}^{\prime} \rightarrow Z /(2)$ in the following way:

$$
\begin{gathered}
\theta\left(x_{1}\right)=\overline{1}, \quad \theta\left(c_{1}\right)=\overline{0}, \quad \theta\left(c_{2}\right)=\overline{1}, \quad \theta\left(c_{3}\right)=\overline{0} \\
\theta\left(c_{4}\right)=\overline{1}, \quad \theta\left(c_{5}\right)=\overline{0}, \quad \theta\left(e_{1}\right)=\overline{1}
\end{gathered}
$$

Since θ is onto,

$$
\frac{\Gamma_{2}^{\prime}}{\operatorname{ker} \theta} \approx \frac{Z}{(2)}
$$

hence ker θ is a normal N.E.C. subgroup of Γ_{2}^{\prime}. From a fundamental region of Γ_{2}^{\prime}, we get one for ker θ, and from the last one we have, for ker θ, generators

$$
e_{1}^{\prime}=c_{2} c_{4}, \quad d_{1}=x_{1} c_{2}, \quad e_{2}^{\prime}=c_{4} x_{1} c_{2} x_{1}, \quad c_{3}, \quad c_{5}
$$

and relations

$$
e_{1}^{\prime-1} c_{3} e_{1}^{\prime} c_{3}=1, \quad e_{2}^{\prime-1} c_{5} e_{2}^{\prime} c_{5}=1, \quad e_{1}^{\prime} e_{2}^{\prime} d_{1}^{2}=1
$$

Therefore the signature of ker θ is

$$
\sigma_{3}=(1 ;-;[-] ;\{(-)(-)\}) ;
$$

thus, $\operatorname{ker} \theta$ is the group Γ_{3} we wanted.
(4.3) Proposition. Given σ_{3}^{\prime} and σ_{2}, there are no N.E.C. groups Γ_{3}^{\prime} and Γ_{2} with signatures σ_{3}^{\prime} and σ_{2} respectively, such that $\Gamma_{2} \triangleleft \Gamma_{3}^{\prime}$.

Proof. Assume there is such a pair of N.E.C. groups $\Gamma_{2}, \Gamma_{3}^{\prime}$. Then

$$
\frac{\Gamma_{3}^{\prime}}{\Gamma_{2}} \approx \frac{Z}{(2)}
$$

because $\left[\Gamma_{3}^{\prime}: \Gamma_{2}\right]=2$. Therefore, there is an epimorphism

$$
\theta: \Gamma_{3}^{\prime} \rightarrow Z /(2)
$$

satisfying ker $\theta=\Gamma_{2}$.
We shall show the impossibility of this. Since Γ_{3}^{\prime} has generators

$$
x_{1}, x_{2}, c_{1}, c_{2}, c_{3}, e_{1}
$$

and relations

$$
\begin{gathered}
e_{1}^{-1} c_{1} e_{1} c_{3}=1, \quad x_{1} x_{2} e_{1}=1, \\
\left(c_{1} c_{2}\right)^{2}=\left(c_{2} c_{3}\right)^{2}=c_{1}^{2}=c_{2}^{2}=c_{3}^{2}=1, \quad x_{1}^{2}=x_{2}^{2}=1
\end{gathered}
$$

and Γ_{2} has the signature $(1 ;+;[-] ;\{(-)\}), \theta\left(x_{1}\right)=\overline{1}$ and $\theta\left(x_{2}\right)=\overline{1}$. Since $e_{1} x_{1} x_{2}=1, \theta\left(e_{1}\right)=\overline{0}$. Thus Γ_{2} has an empty period cycle, and no period; and for the remaining generators we must have

$$
\begin{equation*}
\theta\left(c_{1}\right)=\overline{0}, \quad \theta\left(c_{2}\right)=\overline{0}, \quad \theta\left(c_{3}\right)=\overline{0} \tag{1}
\end{equation*}
$$

or

$$
\begin{equation*}
\theta\left(c_{1}\right)=\overline{1}, \quad \theta\left(c_{2}\right)=\overline{0}, \quad \theta\left(c_{3}\right)=\overline{1} \tag{2}
\end{equation*}
$$

For case (1), we shall see in (4.4) that $\operatorname{ker} \theta$ has σ_{4} as signature. In case (2), ker θ has generators

$$
d_{1}=c_{3} x_{2}, \quad d_{2}=x_{1} c_{1}, \quad e_{1}^{\prime}=c_{1} c_{3}, \quad c_{2}
$$

and relations

$$
e_{1}^{\prime-1} c_{2} e_{1}^{\prime} c_{2}=1, \quad e_{1}^{\prime} d_{1}^{2} d_{2}^{2}=1, \quad c_{2}^{2}=1
$$

Therefore, the signature of ker θ also is σ_{4}, whence it cannot be Γ_{2}.
(4.4) Proposition. Given σ_{3}^{\prime} and σ_{4}, there is an N.E.C. group Γ_{3}^{\prime} of signature σ_{3}^{\prime}, and an N.E.C. group Γ_{4} of signature σ_{4}, such that $\Gamma_{4} \triangleleft \Gamma_{3}^{\prime}$.

Proof. Let Γ_{3}^{\prime} be an N.E.C. group with signature σ_{3}^{\prime}. By Section 2 we already know that Γ_{3}^{\prime} has generators

$$
x_{1}, x_{2}, c_{1}, c_{2}, c_{3}, e_{1}
$$

and relations

$$
\begin{gathered}
e_{1}^{-1} c_{1} e_{1} c_{3}=1, \quad x_{1} x_{2} e_{1}=1 \\
\left(c_{1} c_{2}\right)^{2}=\left(c_{2} c_{3}\right)^{2}=c_{1}^{2}=c_{2}^{2}=c_{3}^{2}=1 \\
x_{1}^{2}=1, \quad x_{2}^{2}=1
\end{gathered}
$$

We define an epimorphism $\theta: \Gamma_{3}^{\prime} \rightarrow Z /(2)$ in the following way:

$$
\begin{array}{lll}
\theta\left(x_{1}\right)=\overline{1}, & \theta\left(x_{2}\right)=\overline{1}, & \theta\left(c_{1}\right)=\overline{0} \\
\theta\left(c_{2}\right)=\overline{1}, & \theta\left(c_{3}\right)=\overline{0}, & \theta\left(e_{1}\right)=\overline{0}
\end{array}
$$

Since θ is onto,

$$
\frac{\Gamma_{3}^{\prime}}{\operatorname{ker} \theta} \approx \frac{Z}{(2)}
$$

hence ker θ is a normal N.E.C. subgroup of Γ_{3}^{\prime}. From a fundamental region of Γ_{3}^{\prime}, we get one for $\operatorname{ker} \theta$, and from the last one we have, for $\operatorname{ker} \theta$, generators

$$
d_{1}=x_{1} c_{2}, \quad d_{2}=c_{2} x_{2}, \quad e_{1}^{\prime}=x_{2} c_{2} x_{2} x_{1} c_{2} x_{1}, \quad c_{1}^{\prime}=x_{1} c_{3} x_{1}
$$

and relations

$$
e_{1}^{\prime} d_{1}^{2} d_{2}^{2}=1, \quad e_{1}^{\prime-1} c_{1}^{\prime} e_{1}^{\prime} c_{1}^{\prime}=1, \quad c_{1}^{\prime 2}=1
$$

Therefore the signature of $\operatorname{ker} \theta$ is

$$
\sigma_{4}=(2 ;-;[-] ;\{(-)\}) ;
$$

thus, $\operatorname{ker} \theta$ is the group Γ_{4} we wanted.
(4.5) Proposition. Given σ_{4}^{\prime} and σ_{2}, there is an N.E.C. group Γ_{4}^{\prime} of signature σ_{4}^{\prime}, and an N.E.C. group Γ_{2} of signature σ_{2}, such that $\Gamma_{2} \triangleleft \Gamma_{4}^{\prime}$.

Proof. Let Γ_{4}^{\prime} be an N.E.C. group with signature σ_{4}^{\prime}. By Section 2 we already know that Γ_{4}^{\prime} has generators

$$
x_{1}, x_{2}, x_{3}, e_{1}, c_{1}
$$

and relations

$$
x_{1} x_{2} x_{3} e_{1}=1, \quad e_{1}^{-1} c_{1} e_{1} c_{1}=1, \quad x_{1}^{2}=x_{2}^{2}=x_{3}^{2}=1, \quad c_{1}^{2}=1
$$

We define an epimorphism $\theta: \Gamma_{4}^{\prime} \rightarrow Z /(2)$ in the following way:

$$
\theta\left(x_{1}\right)=\overline{1}, \quad \theta\left(x_{2}\right)=\overline{1}, \quad \theta\left(x_{3}\right)=\overline{1}, \quad \theta\left(e_{1}\right)=\overline{1}, \quad \theta\left(c_{1}\right)=\overline{0}
$$

Since θ is onto,

$$
\frac{\Gamma_{4}^{\prime}}{\operatorname{ker} \theta} \approx \frac{Z}{(2)}
$$

hence ker θ is a normal N.E.C. subgroup of Γ_{4}^{\prime}. From a fundamental region of Γ_{4}^{\prime}, we get one for $\operatorname{ker} \theta$, and from the last one we have, for $\operatorname{ker} \theta$, generators

$$
a_{1}=x_{1} x_{2}, \quad b_{1}=x_{2} x_{3}, \quad e_{1}^{\prime}=x_{1} e_{1}^{-2} x_{1}, \quad c_{1}^{\prime}=x_{1} c_{1} x_{1}
$$

and relations

$$
e_{1}^{\prime} a_{1} b_{1} a_{1}^{-1} b_{1}^{-1}=1, \quad e_{1}^{\prime-1} c_{1}^{\prime} e_{1}^{\prime} c_{1}^{\prime}=1, \quad c_{1}^{\prime 2}=1
$$

Therefore, the signature of ker θ is

$$
\sigma_{2}=(1 ;+;[-] ;\{(-)\})
$$

thus, $\operatorname{ker} \theta$ is the group Γ_{2} we wanted.
(4.6) Proposition. Given σ_{4}^{\prime} and σ_{3}, there are no N.E.C. groups Γ_{4}^{\prime} and Γ_{3} with signatures σ_{4}^{\prime} and σ_{3} respectively, such that $\Gamma_{3} \triangleleft \Gamma_{4}$.

Proof. Assume there is such a pair of N.E.C. groups $\Gamma_{3}, \Gamma_{4}^{\prime}$. Then

$$
\frac{\Gamma_{4}^{\prime}}{\Gamma_{3}} \approx \frac{Z}{(2)}
$$

because $\left[\Gamma_{4}^{\prime}: \Gamma_{3}\right]=2$; thus, there is an epimorphism

$$
\theta: \Gamma_{4}^{\prime} \rightarrow Z /(2)
$$

satisfying ker $\theta=\Gamma_{3}$.
We shall show the impossibility of this. Since Γ_{4}^{\prime} has generators

$$
x_{1}, x_{2}, x_{3}, e_{1}, c_{1}
$$

and relations

$$
x_{1} x_{2} x_{3} e_{1}=1, \quad e_{1}^{-1} c_{1} e_{1} c_{1}=1, \quad x_{1}^{2}=x_{2}^{2}=x_{3}^{2}=1, \quad c_{1}^{2}=1
$$

and Γ_{3} has the signature (1; ; [-]; $\left.\{(-)(-)\}\right), \theta\left(x_{1}\right)=\overline{1}, \theta\left(x_{2}\right)=\overline{1}$ and $\theta\left(x_{3}\right)=\overline{1}$. Since $x_{1} x_{2} x_{3} e_{1}=1, \theta\left(e_{1}\right)=\overline{1}$. Now, Γ_{3} has two empty period cycles, and no period; thus $\theta\left(c_{1}\right)=\overline{0}$. But for this case we have already shown that ker θ has signature σ_{2}, whence ker θ cannot be Γ_{3}.
(4.7) Proposition. Given σ_{4}^{\prime} and σ_{4}, there are no N.E.C. groups Γ_{4}^{\prime} and Γ_{4} with signatures σ_{4}^{\prime} and σ_{4} respectively, such that $\Gamma_{4} \triangleleft \Gamma_{4}^{\prime}$.

Proof. Assume there is such a pair of N.E.C. groups $\Gamma_{4}, \Gamma_{4}^{\prime}$. Then

$$
\frac{\Gamma_{4}^{\prime}}{\Gamma_{4}} \approx \frac{Z}{(2)}
$$

because $\left[\Gamma_{4}^{\prime}: \Gamma_{4}\right]=2$; thus, there is an epimorphism

$$
\theta: \Gamma_{4}^{\prime} \rightarrow Z /(2)
$$

satisfying ker $\theta=\Gamma_{4}$.
We shall show impossibility of this. Since Γ_{4}^{\prime} has generators

$$
x_{1}, x_{2}, x_{3}, e_{1}, c_{1}
$$

and relations

$$
x_{1} x_{2} x_{3} e_{1}=1, \quad e_{1}^{-1} c_{1} e_{1} c_{1}=1, \quad x_{1}^{2}=x_{2}^{2}=x_{3}^{2}=1, \quad c_{1}^{2}=1,
$$

and Γ_{4} has the signature ($\left.2 ;-;[-] ;\{(-)\}\right), \theta\left(x_{1}\right)=\overline{1}, \theta\left(x_{2}\right)=\overline{1}$ and $\theta\left(x_{3}\right)=$ $\overline{1}$. Since $x_{1} x_{2} x_{3} e_{1}=1, \theta\left(e_{1}\right)=\overline{1}$. Now Γ_{4} has an empty period cycle, and no period; thus $\theta\left(c_{1}\right)=\overline{0}$. But for this case we have already shown that ker θ has signature σ_{2}, whence ker θ cannot be Γ_{4}.
(4.8) Proposition. Given σ_{4}^{\prime} and σ_{5}, there is an N.E.C. group Γ_{4}^{\prime} of signature σ_{4}^{\prime}, and an N.E.C. group Γ_{5} of signature σ_{5}, such that $\Gamma_{5} \triangleleft \Gamma_{4}^{\prime}$.

Proof. Let Γ_{4}^{\prime} be an N.E.C. group with signature σ_{4}^{\prime}. By Section 2, we already know that Γ_{4}^{\prime} has generators

$$
x_{1}, x_{2}, x_{3}, e_{1}, c_{1}
$$

and relations

$$
x_{1} x_{2} x_{3} e_{1}=1, \quad e_{1}^{-1} c_{1} e_{1} c_{1}=1, \quad x_{1}^{2}=x_{2}^{2}=x_{3}^{2}=1, \quad c_{1}^{2}=1
$$

We define an epimorphism $\theta: \Gamma_{4}^{\prime} \rightarrow Z /(2)$ in the following way:

$$
\theta\left(x_{1}\right)=\overline{1}, \quad \theta\left(x_{2}\right)=\overline{1}, \quad \theta\left(x_{3}\right)=\overline{1}, \quad \theta\left(c_{1}\right)=\overline{1}, \quad \theta\left(e_{1}\right)=\overline{1}
$$

Since θ is onto,

$$
\frac{\Gamma_{4}^{\prime}}{\operatorname{ker} \theta} \approx \frac{Z}{(2)}
$$

hence $\operatorname{ker} \theta$ is a normal N.E.C. subgroup of Γ_{4}^{\prime}, and it has generators

$$
d_{1}=c_{1} x_{1}, \quad d_{2}=x_{1} c_{1} x_{1} x_{2}, \quad d_{3}=x_{2} x_{1} c_{1} x_{1} x_{2} x_{3}
$$

and relations

$$
d_{1}^{2} d_{2}^{2} d_{3}^{2}=1
$$

Therefore, the signature of ker θ is

$$
\sigma_{5}=(3 ;-;[-])
$$

thus, $\operatorname{ker} \theta$ is the group Γ_{5} we wanted.
(4.9) Proposition. Given σ_{5}^{\prime} and σ_{5}, there are no N.E.C. group Γ_{5}^{\prime} and Γ_{5} with signatures σ_{5}^{\prime} and σ_{5} respectively, such that $\Gamma_{5} \triangleleft \Gamma_{5}^{\prime}$.

Proof. Assume there is such a pair of N.E.C. groups $\Gamma_{5}, \Gamma_{5}^{\prime}$. Then

$$
\frac{\Gamma_{5}^{\prime}}{\Gamma_{5}} \approx \frac{Z}{(2)}
$$

because $\left[\Gamma_{5}^{\prime}: \Gamma_{5}\right]=2$; thus, there would be an epimorphism

$$
\theta: \Gamma_{5}^{\prime} \rightarrow Z /(2)
$$

satisfying ker $\theta=\Gamma_{5}$.

We shall show the impossibility of this. Since Γ_{5}^{\prime} has generators

$$
x_{1}, x_{2}, x_{3}, d_{1}
$$

and relations

$$
x_{1}^{2}=x_{2}^{2}=x_{3}^{2}=1, \quad x_{1} x_{2} x_{3} d_{1}^{2}=1,
$$

and Γ_{5} has the signature ($1 ;-;[-]$), $\theta\left(x_{1}\right)=\overline{1}, \theta\left(x_{2}\right)=\overline{1}$ and $\theta\left(x_{3}\right)=\overline{1}$. Since $x_{1} x_{2} x_{3} d_{1}^{2}=1, \theta\left(d_{1}\right) \neq \overline{1}, \overline{0}$, whence it cannot be an epimorphism θ with ker $\theta=\Gamma_{5}$.

Similar reasoning upon the remaining pairs of signatures that appear in (2) and (3) of Section 3, leads to the following list of pairs of normal signatures:

Γ^{\prime}	Γ	$\left[\Gamma^{\prime}: \Gamma\right]$
$(0 ;+;[2,2] ;\{(t)\})$	$(0 ;+;[-] ;\{(t)(t)\})$	2
$(0 ;+;[2,2] ;\{(t)\})$	(2; - ; t])	2
$(0 ;+;[2] ;\{(2,2, t)\})$	$(1 ;-;[t] ;\{(-)\})$	2
$(0 ;+;[2] ;\{(2,2, t)\})$	$(1 ;-;[-] ;\{(t, t)\})$	2
$(0 ;+;[-] ;\{(2,2,2,2, t)\})$	$(0 ;+;[t] ;\{(-)(-)\})$	2
$(0 ;+;[-] ;\{(2,2,2,2, t)\})$	$(0 ;+;[-] ;\{(t, t)(-)\})$	2
$(0 ;+;[-] ;\{(2,2,2,2,2,2)\})$	$(0 ;+;[-] ;\{(-)(-)(-)\})$	2
$(0 ;+;[2] ;\{(2,2,2,2)\})$	$(1 ;-$ [-]; $\{(-)(-)\}$)	2
$(0 ;+;[2,2] ;\{(2,2)\})$	($2 ;-$; -$] ;\{(-)\}$)	2
$(0 ;+;[2,2,2] ;\{(-)\})$	$(1 ;+;[-] ;\{(-)\})$	2
$(0 ;+;[2,2,2] ;\{(-)\})$	(3; - [-])	2
$(0 ;+;[2] ;\{(2,2 t)\})$	$(1 ;-;[-] ;\{(t)\})$	2
$(0 ;+;[-] ;\{(2,2,2,2 t)\})$	$(0 ;+;[-] ;\{(t)(-)\})$	2
$(0 ;+;[-] ;\{(2,2,2, t)\})$	$(0 ;+;[t, t] ;\{(-)\})(t \geq 3)$	4
$(0 ;+;[-] ;\{(2,2,2, t)\})$	$(0 ;+;[-] ;\{(t, t, t, t)\})(t \geq 3)$	4
$(0 ;+;[-] ;\{(2,2,2, t)\})$	$(1 ;-;[t, t])(t \geq 3)$	4
$(0 ;+;[2] ;\{(t, u)\})$	$\begin{aligned} & (0 ;+;[-] ;\{(t, u, t, u)\}) \\ & \quad(\max (t, u) \geq 3) \end{aligned}$	2
(0; + ; [2]; $\{(t, u)\}$)	$(1 ;-;[t, u])(\max (t, u) \geq 3)$	2
$(0 ;+;[-] ;\{(2,2, t, u)\})$	$\begin{gathered} (0 ;+;[t, u] ;\{(-)\}) \\ (\max (t, u) \geq 3) \end{gathered}$	2
$(0 ;+;[-] ;\{(2,2, t, u)\})$	$\begin{aligned} & (0 ;+;[-] ;\{(t, t, u, u)\}) \\ & \quad(\max (t, u) \geq 3) \end{aligned}$	2
$(0 ;+;[-] ;\{(2, t, 2, u)\})$	$\begin{aligned} & (0 ;+;[t] ;\{(u, u)\}) \\ & (\max (t, u) \geq 3) \end{aligned}$	2
$(0 ;+;[t] ;\{(2,2)\})$	$(0 ;+;[t, t] ;\{(-)\})(t \geq 3)$	2
$(0 ;+;[t, 2] ;\{(-)\})$	$(0 ;+;[t, t] ;\{(-)\})(t \geq 3)$	2
$(0 ;+;[t, 2] ;\{(-)\})$	$(1 ;-;[t, t])(t \geq 3)$	2
(0; + ; [3]; $\{(t)\}$)	$(0 ;+;[-] ;\{(t, t, t)\})(t \geq 4)$	3
$(0 ;+;[-] ;\{(2,3,2 t)\})$	$(0 ;+;[-] ;\{(t, t, t)\})(t \geq 4)$	6

Γ^{\prime}	Γ	$\left[\Gamma^{\prime}: \Gamma\right]$
$(0 ;+;[-] ;\{(2, t, 2 u)\})$	$(0 ;+;[t] ;\{(u)\})(t \geq 3)$	2
	$(t+u \geq 7)$	
$(0 ;+;[-] ;\{(2, t, 2 u)\})$	$(0 ;+;[-] ;\{(t, t, u)\})(t \geq 3)$	2
	$(t+u \geq 7)$	2
$(0 ;+;[-] ;\{(t, t, u)\})$	$(0 ;+;[t, t, u])(t \geq 3)$	
	$(t+u \geq 7)$	2
$(0 ;+;[t] ;\{(u)\})$	$(0 ;+;[t, t, u])(t \geq 3)$	
	$(t+u \geq 7)$	6
$(0 ;+;[3] ;\{(t)\})$	$(0 ;+;[t, t, t])(t \geq 4)$	6
$(0 ;+;[-] ;\{(3,3, t)\})$	$(0 ;+;[t, t, t])(t \geq 4)$	2
$(0 ;+;[-] ;\{(m, t, u)\})$	$(0 ;+;[m, t, u])(m \neq t \neq u \neq m)$	2
	$(t, u \geq 4$ or $t \geq 7)$	
$(0 ;+;[-] ;\{(2, t, 2 u)\})$	$(0 ;+;[t, t, u])(t \geq 3)$	4
	$(t+u \geq 7)$	12

The author wishes to thank the referee for several helpful comments and suggestions.

References

1. E. Bujalance, Sobre los subgrupos normales N.E.C., Tesis Doctoral, U. Complutense, 1980.
2. A. M. Macbeath and D. Singerman, Space of subgroups and Teichmüller space, Proc. London Math. Soc., vol. XXI (1975), pp. 211-256.
3. D. Singerman, Symetries of Riemann surfaces with large automorphism group, Math. Ann., vol. 210 (1974), pp. 17-32.
4. - Finitely maximal Fuchsian groups, J. London Math. Soc. (2), vol. 6 (1972), pp. 29-38.
5. - On the structure of non-Euclidean crystallographic groups, Proc. Cambridge Philos. Soc., vol. 76 (1974), pp. 223-240.

Universidad Complutense
Madrid, Spain

[^0]: Received November 14, 1980.

