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CRITERIA FOR ALGEBRAIC DEPENDENCE
OF MEROMORPHIC MAPPINGS INTO

ALGEBRAIC VARIETIES

BY

S. J. DROUILHET

In this paper we study the following problem: given nondegenerate
meromorphic maps f and # from an affine algebraic variety M to projective
algebraic varieties V’, V" of the same or lower dimension, if there are
hypersurfaces A’, A" in V’ and V" such that f-I(A’)= -I(A"), when are f
and # algebraically related. Roughly our result says that if f and satisfy the
same algebraic relation at all points off-(A’) and A’ and A" are sufficiently
positive, thenfand must satisfy this relationship identically.
The main result of this paper is given below as Theorem 4. Before giving it,

we will present some special cases, Propositions 1 and 3. They do not possess
the same degree of sharpness and range of applicability as the general theorem,
of which they are actually corollaries, but are conceptually somewhat clearer
and easier to present at the outset. The principal applications of our main
result are contained in the corollary to Proposition 1 and in Theorem 6.

PROPOSITION 1. Let M be a smooth affine variety and V, Vk smooth
projective algebraic varieties with dim V < dim M for all i. Let S be a hyper-
surface in Vk I-Iki= Vi such that the line bundle L on Vk defined by S has the
form L (R): rc.*,Li, where rci" Vk-- Vi is projection on ith factor and L is a
holomorphic line bundle on Vii with cl(Li)>_ O. For each i, let Ai be a hyper-
surface with normal crossin#s in Vi such that the line bundle La on Vi defined by
Ai is positive. For each i, letfi: M-- Vi be a nonde#enerate meromorphic map. If
thefollowin# conditions are met, then

(1)
(2)
(3)
(4)

and either

(5)

(f x x A)(M) = S"

either M C" or at least onef is transcendental;
There is a set E c M such that f- (Ai) Efor all i"
(A x x A)() = s.
d, 1 [K,,/LA,] > 0 for all i;

>0
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foF some j, or,
(5’) for some j, di k[L/LA,] > 0 whenever :/: j, and

+ d-k >0.

ij

Here, if , ’ are holomorphic line bundles on a projective algebraic variety
V, [/’] inf (k 6 R" kc(U)- c()> 0}. It should be mentioned that in
cases where one is trying to use Theorem 1 to deriw a specific numerical
result, if both criteria (5) and (5’) are applicable, (5’) may giw a sharper result,
although it involves checking an extra condition. Neither of these criteria is
conceptually simple. Later in the paper, a conceptually simpler wrsion will be
presented as Theorem 3, but it has the drawback of not leading to the sharpest
possible results in specific cases.
The method of proof of Proposition 1 stems from an argument in [1], in

which we gave one generalization of a one variable unicity theorem of R.
Nevanlinna stated below as Theorem 2. The notation we use will be the same
as that of [1]. With one exception it is the same as the sewral variables
Nevanlinna theory notation employed by Shiffman in [6]; the exception is
that our y(D, r) is defined to be N(supp f’D, r) in the notation of his paper.
We will freely use results from [1] and [6].

Proof of Proposition 1. In this proof, as is usual in Nevanlinna theory, all
inequalities involving the variable r which ultimately stem from the Second
Main Theorem should be understood as holding for all positive r outside a set
of finite measure.

In the case M C", by relabeling indices, we will assume on the basis of (1)
that fx is transcendental. Shortly we will show that it follows that all thef are
transcendental.
As in the reasoning leading to (3.3) in [1],

(6) Tf,(L,, r) + Tf,(Kv,, r) <_ l"qf,(A, r) + o(T.,(La,, r))

provided that M C" orf is transcendental. For all b > [K,,/La,],

hence

so

bcx(La,) cx(K,,) > O,

bT,(L,, r)- T.,(K,,) >_ 0(1),

T,(K,,, r) <_ [K,/LA,]Tf,(LA, r) + O(1).

This sort of argument will be used to justify analogous formulas in the sequel.
On the basis of this calculation, (6) gives

(7) (1 [K,,/La,])T,,(La,, r) < Iqy,(La,, r)+ o(Ty,(LA,, r)).
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Proof
(8)

By (7),

(9)

LEMMA A. For all i,

(i) O(Tf,(LA,, r))= O(Ty,(LA,, r))
(ii) d, Ty,(L,, r) < TyI(La 1, r) + o(TyI(La 1, r))

(iii) dl Ty(LA1, r) <_ Ty,(L,, r) + o(Tfl(LAI, r)).

By assumption (2) and the First Main Theorem from [6], for all i,

Nyl(At, r)= Nf,(ai, r) <_ Ty,(LA,, r) + O(1).

d1Tfl(LA1 r) <_ Tf,(L,, r) + o(Tyt(Lal, r)).

If M 4= Cn, then since f is transcendental, log r o(Tyt(Lat, r)). Since d > 0,
by (9), log r o(Ty,(LA,, r)), implyingJ is transcendental. Thus (6) holds for all
i. Suitable modification of the reasoning yielding (9) then gives

(10)

By (9) and (10),

(11)

d, T,(L,, r) <_ T(La, r) + o(TALa,, r)).

0 < di <_ Tf,(La,, r)/Tyl(Lt, r) + o(1),

0 < di <_ Tyl(Lal, r)/Ty,(Lt, r)+ o(1).

This pair of inequalities proves the lemma.

Note that by (7) and Lemma A,
k k

(12) d, Ty,(LA,, r) <_ Iy,(A,, r) + o(Tfl(LA1, r)).
i=1 i=1

By assumption (2), for all i,

(13) fi(Ai, r) N(E, r).

Now assume that (fl x x fk)(M)q: S. We are going to obtain a
contradiction.

LEMMA B. N(E, r) <_ ki= Tf,(Li, r) + 0(1)

Proof Vk is a smooth projective algebraic variety. Define h’M--, Vk by
h=f x... Xfk. Since fl x... xfk(E) cS, E<_supp(h*S), from which it
follows that N(E, r) <_ N(h*S, r). By the First Main Theorem in [6], since we
are assuming (f x x f)(M) q: S,

X(h*S, r) <_ Th(L, r) + O(1),

giving N(E, r) <_ Th(L, r) + 0(1). Since

Th(L, r)= Tfl fk(L1 ()"’" ()n’Lk, r)- Tf,(Li, r),
i--1

the lemma is proved.
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Combining (12) and Lemma B,
k k

(14) d, Ty,(La,, r) < k Z Ty,(L,, r) + o(Ty:, LA1, r)).
i=1 i=1

By relabeling indices, we may assume that (5) holds for j 1. For all i,
TI,(L ,, r) < [L,/LA,]TI,(LA,, r) + 0(1). So

(15) (d k[L/LA,])T,(LA,, r)+ (d,- k[L/LA,])T.,(LA, r)
i=2

< o(Ty,(LA, r)).

Using Lemma A, (15) becomes

(16) {(d k[L-al) + k L
Ty,(LA,, r) <_ o(Tf,(LA, r)).

Divide (16) by Ty,(LA,, r) and let r approach infinity. Then

(17)

which contradicts (5), which, recall, we are assuming holds with j 1.
Therefore (fl x x fk)(M) c S, and the theorem is proved in this case.
Now we will prove the theorem in the case that (5’) holds. By relabeling

indices, we may assume it holds for j 1. The inequality in (15) is still valid.
However, because of the condition di- k[Li/LA,] > 0 for all 4: 1, Lemma A
may be applied to (15) to conclude that

< o(Ty,(LA,, r)).
The remainder of the proof of the theorem in this case is the same as in the

first case.

COROLLARY. Let fl, f2 be nonconstant meromorphic functionS on C. Let
P(x, y) be a polynomial of de,tree p in x, P2 in y. Let r be any inteter treater
than or equal to p + P2 + 3. Suppose there are two sets A, 2 in P(C), each
of which contains r points, such that f(A) and f’(A2) each equal to a
common set E. Suppose for all z in E, P(f(z), f2(z))= 0. Then P(f,f2) is
identically O.

Proof Apply Proposition using criterion (5’) with M C, k 2, V1
1’2 PI(C), S {(x, y) e Px x Pl" P(x, y) 0}, and A1, A2 are the two given
sets. By relabeling indices, we may assume that pl > P2. If H is the hyperplane
bundle on Px, then K,t K,,. H2, LA, H’, and L n’Lx (R) n’ L2 with
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L H’. Conditions (1) through (4) are easily seen to be met. Condition (5’)
remains to be checked. Note that here d d2 1 (2/r) (r 2)/r. Thus

Now,
d2 k[L2/La2] (r 2)/r (2p2)/r _> (p P2 + 1)/r > O.

+ dl d2 k L2 r- - 2 2 2

r r r r

This last term will be larger than 0 provided it is larger than 0 when multiplied
by r2/2, that is, provided that

r2 (P + P2 "+ 3)r + 2(P2 "+ 1) > 0.

If r _> p + P2 + 3, then this last inequality is valid, so (5’) holds. By Theorem
1, the corollary is proved.

To illustrate how the corollary is applied, we use it to derive a basic
trigonometric identity. The motivation for this illustration is to provide an
explanation for the phenomenon of Example 5.2 of our previous paper [1] in
light of our present results.

Example. Letf(z) sin (z), fE(z) cos (z). In the corollary take

P(x,y)=x2+y2-1 and A=A2={0, 4-1,___1/2,_
All conditions of the corollary are met; in particular, A and A2 contain
7 > p + P2 + 3 7 points. Thus sin2 z + cos2 z 1 0 identically.
The next two examples deal with the sharpness of the corollary. The first

shows it is sharp whenever pt P2, and the second illustrates its sharpness
when p 4: P2.

Example. Letf(z) e,f2(z) e -. In the corollary, take

P(x, y) x y and A A2 {0, o} {2nth roots of unity}.

Here all conditions of the corollary are met except that A and A2 only
contain 2n + 2 points, whereas p + P2 + 3 2n + 3. Therefore, we cannot
conclude that e e 0 identically.

Example. Let f(z) e, f2(z) e-. In the corollary, take P(x, y) x 1
and A A2 {0, 1, c}. All conditions are met except that At and A2 only
contain 3 points and here p + P2 + 3 4. Thus we cannot conclude that
e 1 is identically 0.
Next we show that Nevanlinna’s five point unicity theorem, originally

proved in [4-1, can be recovered as a special case of the corollary.

THEOREM 2 (R. Nevanlinna). Let f, f2 be nonconstant meromorphic
functions on C. Suppose for five points a, as P(C), f-(a)=f (a3.
Thenf andf2 are identically equal.
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Proof In the corollary, take

P(x,y)=x-y and Al=Az={al,...,as}.
All conditions of the corollary are met since here P + P2 + 3 5.

The proof of Theorem 2 is essentially Nevanlinna’s original proof. We use
the central idea of his proof to obtain the results of this paper.
As was remarked in the discussion following the statement of Proposition 1,

conditions (5) and (5’) can be replaced by a slightly clearer condition if one is
willing to settle for results which might be less sharp and have narrower ranges
of applicability. Here is one such result, which follows from Proposition 1.

PROPOSITION 3. Suppose in the hypotheses of Proposition 1, all the V are the
same and all the As are the same. Further suppose that (5) and (5’) are replaced
by thefollowin9 condition:

(5") for all i, LAi (R) Kvi (R) L-k > O.
Then the conclusion is still valid.

This result is not as good as Proposition 1. If one tries to prove the
corollary to Proposition 1 using Proposition 3, instead of the bound
r _> Px d- P2 -k- 3, one obtains the bound r > 2 max (p, P2) + 3, which is not as
good.

In Proposition 1, S must be a hypersurface belonging to the complete linear
system defined by an element of (R)k= Z’ Pic (V). In general,

Pic (V) 4= (R)=x ’ Pic (V).

For example, if C is a smooth curve of genus greater than zero, then the
diagonal in C x C defines a line bundle not belonging to

’ Pic (C) (R) Pic (C).

(For a discussion of these facts, see the problem sets in [3].) It vould be nice to
find an analog of Proposition 1 in which S is allowed to be a more general
hypersurface in V. Such an analog can be found, and is stated below as
Theorem 4. Theorem 4 contains Propositions 1 and 3 as special cases.

THEOREM 4. Let M be a smooth affine algebraic variety, and V1, Vk
smooth projective algebraic varieties with dim V _< dim M for all i. For each i,
let fi: M-- Vi be a nondegenerate meromorphic map. Let S be a hypersurface in
vR 1-]= Vii and L the line bundle on Vk it defines. For i= to k, let L be
any holomorphic line bundle on Vii with cl(Li)_> 0. Letting hi: Vk-- Vii be
projection on the ithfactor, set
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For each i, let A be a hypersurface in V with normal crossings such that the line
bundle on Vi is positive. If the followin9 conditions are met, then
(A A)(M) S:

(1) either M C or at least one fi is transcendental;
(2) there is a set E M such that f : (Ai) Efor all i;

(3) (f, x xfk)(E) S;
(4) d, EK]LA,] > Ofor all i"

and either
(5) for some j,

+ d d > O,

ej

or
(5’) for some j,

and

di- ka[Li/LA,] > Ofor all # j

+ di- ka > O.

Proof Follow the proof of Proposition 1, replacing Lemma B with the
following Lemma C where appropriate.

LEMMA C. N(E, r)< =, T,,(L,, r) + O(1)

Proof Follow the proof of Lemma B, noting that

(19) Th(L, r) < L rc L Tz f r’L (R)’" (R) r Lk)
i=

k

o Tf,(L,, r).

It should be noted that if Theorem 4 is applied repeatedly, it can be used to
determine when (fl x x fk)(M is contained in an intersection of
hypersurfaces in Vk. in particular, this method can be used to prove the
principal unicity theorem in our previous paper [1], which gave a criterion for
two nondegenerate meromorphic maps from an affine variety to a projective
variety to be identically equal.
As an application of Theorem 4, we will give a generalization of the

following theorem, originally due to E. M. Schmid [5]:
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THEOREM 5 (E. M. Schmid). Let V be a smooth elliptic curve, and
f, 9: C-- V nonconstant holomorphic maps. Suppose there exist r points aa,
ar V such thatf l(a3 9- a(ai). If r >_ 5, thenf 9.

Our result is"

THEOREM 6. Let V be a smooth elliptic curve, and f, 9: C-, V nonconstant
holomorphic maps. Let A {al, a,} be a set of r points in V. Let n be a
nonzero integer, nA {hal,..., na}, and m the number of distinct points in hA.
Supposef- a(A) 9- a(nA) andfor all i, for all z f- a(ai), 9(z) nat. If
(20) rm (r + m)(n2+1)>0,

then g =_ nf

Proof It suffices to prove the theorem for n > O. Let

S={(x,y) Vx V:y=nx}.

We want to show that f x 9(C) = S. Let p be any point on V, and Lp the line
bundle it defines on V. As usual, let n" V x V V be projection on the ith
factor, and L the line bundle on V x V defined by S.

LEMMA. [L/(nLp (R) rL,)] r/2 + 1.

Proof (For background information on the part of the proof involving
correspondences on curves, see [2], pages 282-290.) Write V C/A, where A
is the lattice generated by 1 and z, where Im z > 0. Let z be a coordinate on V
arising from the projection r" C-- V. Let (zx, z2) be the corresponding
coordinates on V x V. Since

we have

This gives

Cl(Lp) H’X(V, Z) and fvCx(Lp) deg (L,) 1,

c a(L,) 2 Im z
dz A d.

Cl7il
*r ( 7Lp) 2 Im z

(dz Ad + dz2 / d2)

Now we calculate ca(L). As a first step we find cx(La), where La is the line
bundle defined by A, the diagonal in V x V. Let E n-a(p), F n-l(p). Since
ca(LA) e HI’a(V x V, Z), by a symmetry argument we may write

ca(La)-2 Im "c
[6dza Ad + fldz2 A d2 + y(dza A d2 + dg2 A dx)].
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Now,

e. A { c(’tL,,)/Xc(L,,) ,1
xV

so fl 1. Similarly, 6 1. In general, if C is a curve of genus g, then the
self-intersection number of the diagonal on C x C is 2 2g. Here then,

A. A 1" [c(La)] 2 2(6fl-0
3v xV

so y2 6fl 1. In short,

c(La)-
2 Im [dzx d + dzz d2 + 7(dz d2 + dz2 dx)],

where 1 (its exact value is of no concern to us). We next use this result to
find ca(L). L is the line bundle on V x V defined by the curve of the
correspondence S {(x, y) V x V: y nx}. The valence of this
correspondence is -n. Hence S is linearly equivalent to a divisor of the form
aE + bF + nA, where a, b Z. We compute a and b using the facts that
S. E 1, S. F n2, and S. A (n- 1),obtaining

S (n2 n)E + (1 n)F + nA.
As a result,

(21) c(L) (n2 n)cx(nLv)+ (1 n)cx(nLv) + ncx(La)

[n2dl Ad + d2 A d2 + ny(dz A d2 + dz2 A dx)]2Im

where ])2 1. Now

a inf {k R" kc(rc’Lv (R) n’Lv) cx(L) > 0}

[(k nZ)dz A d=inf keR"
2Im

+ (k 1)dz2 A d2 ny(dz Ad2 + dz2 A d)] > 0}
=inf{kR’( k-n2 -n )-n k- 1

is positive definite).
For a fixed k, the eigenvalues of the matrix in question are the roots 2 of the
equation 22- (2k- n2- 1)2 + [k2- (n2+ 1)k] 0, and will be positive if
k > n2 + 1. Thus n2 + 1, and the lemma is proved.
Now we return to the proof of Theorem 6. Conditions (1) through (4) of

Theorem 4 are met. Here Kv is trivial, so d d2 1. Let k 2,

L L2 Lp, A1 {ax a,), A2 {bx, b,,} {nax, na,).
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Apply condition (5) with j 1. Then the left hand side of (20) becomes

2(n2 + 1) 2(n2 + 1)
2-

r m

which is greater than 0 since rm (r + m)(n2 -I- 1) > 0.
Note that if n 1, then Theorem 6 reduces to Theorem 5. Schmid showed

that Theorem 5 is sharp. We will comment on her proof later. The following
example does not quite demonstrate sharpness of Theorem 6 in a case where
n > 1, but does show that if condition (20) is not satisfied, then it is not
necessarily true that 9 nf

Example. Let V C/A where A is the lattice generated by 1 and z with
Im z > 0. Let zr" C V be projection. Definef, g" C V by

f(z) rr(z), g(z) 2r(z).

Let A={x6 V:4x=0}. For n=2, nA=2A={x6 V:2x=0}.
r 16, m 4. All conditions of Theorem 6 are met except (20) since here

Here

rm-(r + m)(n2 + 1) -36 < O.

So we cannot use Theorem 6 to conclude that g(z) 2f(z).

To show that Theorem 5 is sharp, Schmid gave the following example. Let
V be as in the preceding example. Let f, g: C V be f(z) n(z), g(z) -r(z).
Let r 4 and {al, a,} {0, 1/2, z/2, (1 + z)/2}. All conditions of Theorem
5 are met except that r 4 < 5. So we cannot conclude that g f
A full investigation of what happens in Theorem 5 when r < 5 has yet to be

undertaken. However, as a matter of interest, we record the fact that Schmid’s
example is basically the only one of its type for that particular choice of al,

a,. To prove this assertion, stated precisely below as Proposition 8, we will use
the following theorem of Nevanlinna from [4]:

THEOREM 7 (R. Nevanlinna). Suppose f, g: C Px(C) are non-constant holo-
morphic maps. Suppose there are four points ax, a# P(C) such that f
-(ai) g-l(ai) with multiplicities. Then either f=_ g, or by relabelin9 points,
f-a(a) =f-X(a2)= b, and g L of, where L is a fractional linear transform-
ation ofPx.

PROPOSITION 8. Let V C/A where A is the lattice generated by 1 and z
with Im z > 0. Letf 9: C V be nonconstant holomorphic maps. Let

{ax a,) {0, 1/2, z/2, (1 + z)/2}.

Suppose f-(ai)= 9-X(ai) with multiplicities for all i. Then either 9 =f or
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Proofi Let " V---, P: be the Weierstrass -function. Let f, " C--, p1 be
f= f, 0. Let ei (ai). Then for i= 1 to 4, f-l(ei) -(e) with
multiplicities. By the defect relations, f, hence f, is surjective. So no f-X(ei) b.
Thus by Theorem 7, f 0. Thus for -fi
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