MEROMORPHIC FUNCTIONS COVERING CERTAIN FINITE SETS AT THE SAME POINTS

BY
Fred Gross and Chung-chun Yang

1. Introduction

We suppose that two meromorphic functions f_{1} and f_{2} assume certain values at the same points (regardless of multiplicity). What can be said about the relationship between f_{1} and f_{2} ? In certain instances a great deal is known about the functions in question. For instance, Nevanlinna [4] showed that if the equations $f_{i}-a_{j}=0$ have the same roots (regardless of multiplicity), for $i=1,2$ for each fixed j, where $a_{1}, a_{2}, \ldots, a_{5}$ are five distinct values (possibly including ∞), then $f_{1} \equiv f_{2}$ or both f_{1} and f_{2} are constants. For rational functions only four distinct values will assure $f_{1} \equiv f_{2}$ if f_{1} and f_{2} both are non-constant. In [2], the first author of the present paper studied a pair of meromorphic functions f and g such that $f\left(z_{\alpha}\right) \in S$ iff $g\left(z_{\alpha}\right) \in S$ for certain sets S of complex numbers and derived the corresponding relationships between f and g. In particular, he proved:

Theorem A. Let $S_{i}(i=1,2,3)$ be distinct finite sets of complex numbers such that no set is equal to the union of the other two, and let $T_{i}(i=1,2,3)$ be any finite sets of complex numbers having the same number of elements as S_{i} $(i=1,2,3)$ respectively. Let $f(z)$ and $g(z)$ be two meromorphic functions satisfying the conditions

$$
E_{f}\left(S_{i}\right)=E_{g}\left(T_{i}\right), \quad i=1,2,3
$$

and $E_{1 / f}(\{0\})=E_{1 / g}(\{0\})$, where $E_{h}(S)=\bigcup_{a \in S}\{\xi \mid h(\xi)-a=0\} ;$ a zero of multiplicity m being included m times. Then $f(z)$ and $g(z)$ are algebraically dependent.

With additional information about the sets $S_{i}(i=1,2,3)$ several precise relationships between f and g were obtained in [2]. Here we also refer the reader to the book [1] for the above results and some other related topics. In this note, as a continuation of the previous studies, we characterize some of the sets S_{i} which have the property that any two meromorphic functions having the same preimage sets at those sets S_{i} must be identical. It is assumed that the reader is familiar with the definitions and basic properties of the quantities $T(r, f), N(r, f)$ etc., employed in the Nevanlinna's value-distribution theory of meromorphic functions.

II. Main results

Theorem B. For any positive integer $n>1$ (resp. $n>2$) there exists 4 (resp. 3) sets $S_{i}, i=1,2,3,4$, (resp. $i=1,2,3$) each with n distinct elements such that any two non-constant meromorphic functions f_{1} and f_{2} satisfying $f_{1}\left(z_{\alpha}\right) \in S_{i}$ iff $f_{2}\left(z_{\alpha}\right) \in S_{i}$ for $i=1,2,3,4(r e s p . i=1,2,3)$ must be identical.

Proof. We may assume without loss of generality that f_{1} and f_{2} are transcendental. For otherwise, simply replace f_{1}, f_{2} by $g(z) f_{1}(z)$ and $g(z) f_{2}(z)$ where g is some suitable transcendental entire function. For given distinct finite values $a_{1}, a_{2}, \ldots, a_{n}$, let $S=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$. Let $n_{1}\left(r, a_{1}, a_{2}, \ldots, a_{n}\right)$ be the number of elements in

$$
\left\{z:|z| \leq r, \quad f_{1}(z) \in S \quad \text { and } \quad f_{2}(z) \in S\right\}
$$

each z counted only once.
Let

$$
\begin{aligned}
N_{1}\left(r, a_{1}, a_{2}, \ldots, a_{n}\right)= & \int_{0}^{r} \frac{n_{1}\left(t, a_{1}, \ldots, a_{n}\right)-n_{1}\left(0, a_{1}, \ldots, a_{n}\right)}{t} d t \\
& +n_{1}\left(0, a_{1}, \ldots, a_{n}\right) \log r
\end{aligned}
$$

Let

$$
\begin{aligned}
N_{12}\left(r, a_{1}, \ldots, a_{n}\right)= & N_{1}\left(r, \frac{1}{f_{1}-a_{1}}\right)+N_{1}\left(r, \frac{1}{f_{2}-a_{1}}\right) \\
& +N_{1}\left(r, \frac{1}{f_{1}-a_{2}}\right)+N_{1}\left(r, \frac{1}{f_{2}-a_{2}}\right)+\cdots \\
& +N_{1}\left(r, \frac{1}{f_{1}-a_{n}}\right)+N_{1}\left(r, \frac{1}{f_{2}-a_{n}}\right) \\
N_{1}\left(r, \frac{1}{f-a}\right)= & \int_{0}^{r} \frac{n_{1}(t, a)-n_{1}(0, a)}{t} d t+n_{1}(0, a) \log r
\end{aligned}
$$

where $n_{1}(t, a)$ is the number of distinct roots of $f(z)-a=0$ in $|z| \leq t$.
Now let us consider the sets

$$
S_{i}=\left\{a_{i}, a_{i}+b, a_{i}+2 b, \ldots, a_{i}+(n-1) b\right\}
$$

where b is some fixed non-zero integer and $i=1,2,3, \ldots, l$. Furthermore b may be chosen so that $S_{j_{1}} \cap S_{j_{2}}=\phi$ for $j_{1} \neq j_{2}$.

By Nevanlinna's second fundamental theorem, for any k distinct numbers,

$$
\begin{align*}
(k-2)\left[T\left(r, f_{1}\right)+T\left(r, f_{2}\right)\right] \leq & \sum_{j=1}^{k}\left[N_{1}\left(r, \frac{1}{f_{1}-b_{j}}\right)\right. \\
& \left.+N_{1}\left(r, \frac{1}{f_{2}-b_{j}}\right)\right] \tag{1}\\
& +O\left(\log \left(r T\left(r, f_{1}\right) T\left(r, f_{2}\right)\right)\right.
\end{align*}
$$

for all r outside a set of finite measure. With the points b_{j} taken to be the elements in $S_{i}, i=1,2, \ldots, l$, we have

$$
\begin{align*}
N_{1}\left(r, a_{1},\right. & \left.a_{1}+b, a_{1}+2 b, \ldots, a_{1}+(n-1) b\right)+\cdots \\
& +N_{1}\left(r, a_{l}, a_{l}+b, \ldots, a_{l}+(n-1) b\right) \\
\leq & N\left(r, \frac{1}{f_{1}-f_{2}}\right)+N\left(r, \frac{1}{f_{1}-f_{2}-b}\right)+N\left(r, \frac{1}{f_{1}-f_{2}-2 b}\right) \tag{2}\\
& +\cdots+N\left(r, \frac{1}{f_{1}-f_{2}-(n-1) b}\right) \\
\leq & n\left(T\left(r, f_{1}\right)+T\left(r, f_{2}\right)\right)+O(1) .
\end{align*}
$$

Now, if $f_{1}\left(z_{\alpha}\right) \in S_{i}$ iff $f_{2}\left(z_{\alpha}\right) \in S_{i}$ for $i=1,2, \ldots, l$, then, with $k=\ln$,

$$
\begin{align*}
(k-2)\left[T\left(r, f_{1}\right)+T\left(r, f_{2}\right)\right] \leq & \sum_{i=1}^{l} N_{12}\left(r, a_{i}, a_{i}+b, \ldots, a_{i}+(n-1) b\right) \\
& +O\left(\log r T\left(r, f_{1}\right) T\left(r, f_{2}\right)\right) \tag{3}\\
= & 2 \sum_{i=1}^{l} N_{1}\left(r, a_{i}, a_{i}+b, \ldots, a_{i}+(n-1) b\right) \\
& +O\left(\log r T\left(r, f_{1}\right) T\left(r, f_{2}\right)\right)
\end{align*}
$$

Thus, from (2) and (3), we have

$$
\begin{equation*}
(\ln -2-2 n)\left[T\left(r, f_{1}\right)+T\left(r, f_{2}\right)\right] \leq O\left(\log r T\left(r, f_{1}\right) T\left(r, f_{2}\right)\right) \tag{4}
\end{equation*}
$$

for all r outside a set of finite measure. Hence

$$
\begin{equation*}
\ln -2-2 n \leq 0 \tag{5}
\end{equation*}
$$

Thus, for l sets with

$$
l>\frac{2(n+1)}{n}=2+\frac{2}{n},
$$

we must have $f_{1} \equiv f_{2}+c$ for some constant c. Since each S_{i} is finite, it follows that c must be zero. This also completes the proof of Theorem B.

For $n=2$, the three sets $\left(a_{1}, a_{1}+b\right),\left(a_{2}, a_{2}+b\right),\left(a_{3}, a_{3}+b\right)$ do not assure that $f_{1} \equiv f_{2}$, so that for sets of this form the number 4 in Theorem \mathbf{B} is sharp. We illustrate this with the example: let $g(z)$ be any non-constant meromorphic function and set

$$
f(z)=\frac{g(z)+3}{g(z)-1}
$$

with $\quad S_{1}=(-1-2 \sqrt{ } 2, \quad 3-2 \sqrt{ } 2), \quad S_{2}=(-1,3), \quad$ and $\quad S_{3}=(-1+2 \sqrt{ } 2$, $3+2 \sqrt{ } 2$).

It is reasonable to ask: Can one exhibit two pairs $S_{1}=\left(a_{1}, a_{2}\right), S_{2}=\left(b_{1}, b_{2}\right)$ such that $f_{1}\left(z_{\alpha}\right) \in S_{i}$ iff $f_{2}\left(z_{\alpha}\right) \in S_{i}$ implies $f_{1} \equiv f_{2}$ for any two non-constant entire functions? In this connection, we present the following result for the class of entire functions of finite order.

Theorem C. Let $S_{1}=\left(a_{1}, a_{2}\right), S_{2}=\left(b_{1}, b_{2}\right)$ be two pairs of distinct elements with $a_{1}+a_{2}=b_{1}+b_{2}$ but $a_{1} a_{2} \neq b_{1} b_{2}$. Suppose that there are two nonconstant entire functions f and g of finite order such that $E_{f}\left(S_{i}\right)=E_{g}\left(S_{i}\right)$ for $i=1$, 2. Then either $f \equiv g$ or $f+g \equiv a_{1}+a_{2}$ or

$$
f(z)=\frac{c}{2} \pm\left[\frac{a_{1} a_{2}-b_{1} b_{2}}{2} e^{-p}\right]^{1 / 2} \text { and } g(z)=\frac{c}{2} \pm\left[\frac{a_{1} a_{2}-b_{1} b_{2}}{2} e^{p}\right]^{1 / 2}
$$

where $c=a_{1}+a_{2}$ and $p(z)$ is a polynomial.
Proof. According to the assumptions, we have

$$
\begin{equation*}
\left(g-a_{1}\right)\left(g-a_{2}\right)=e^{p(z)}\left(f-a_{1}\right)\left(f-a_{2}\right) \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(g-b_{1}\right)\left(g-b_{2}\right)=e^{q(z)}\left(f-b_{1}\right)\left(f-b_{2}\right), \tag{7}
\end{equation*}
$$

where $p(z)$ and $q(z)$ are polynomials. The difference of the above two identities yields

$$
\begin{align*}
a_{1} a_{2}-b_{1} b_{2}= & e^{p(z)}\left(f^{2}-\left(a_{1}+a_{2}\right) f+a_{1} a_{2}\right) \\
& -e^{q(z)}\left(f^{2}-\left(b_{1}+b_{2}\right) f+b_{1} b_{2}\right) \\
= & f^{2}\left(e^{p(z)}-e^{q(z)}\right)+c\left(e^{q(z)}-e^{p(z)}\right) f \tag{8}\\
& +a_{1} a_{2} e^{p(z)}-b_{1} b_{2} e^{q(z)}
\end{align*}
$$

where $c=a_{1}+a_{2}=b_{1}+b_{2}$. Let $e^{p(z)}-e^{q(z)} \equiv E(z)$, then (8) becomes

$$
\begin{equation*}
E(z) f^{2}-c E(z) f+a_{1} a_{2} e^{p(z)}-b_{1} b_{2} e^{q(z)}+\left(b_{1} b_{2}-a_{1} a_{2}\right) \equiv 0 . \tag{9}
\end{equation*}
$$

Since f is entire, the discriminant of the above quadratic equation (in f) must be a complete square of an entire function unless $e^{p}-e^{q} \equiv 0$. Clearly, if $e^{p} \equiv e^{q}$, then from (8) it follows that $e^{q} \equiv e^{p} \equiv 1$. This case leads to the assertion right away.

Now suppose that $E(z) \not \equiv 0$, then the discriminant of (9) is

$$
\begin{align*}
H^{2}(z) \equiv & {[c E(z)]^{2}-4 E(z)\left[a_{1} a_{2} e^{p(z)}-b_{1} b_{2} e^{q(z)}+\left(b_{1} b_{2}-a_{1} a_{2}\right)\right] } \\
\equiv & E(z)\left[c^{2} E(z)-4\left\{a_{1} a_{2} e^{p(z)}-b_{1} b_{2} e^{q(z)}+\left(b_{1} b_{2}-a_{1} a_{2}\right)\right\}\right] \\
\equiv & E(z)\left[e^{p(z)}\left\{\left(c^{2}-4 a_{1} a_{2}\right)-\left(c^{2}-4 b_{1} b_{2}\right) e^{q(z)-p(z)}\right\}\right. \tag{10}\\
& \left.-4\left(b_{1} b_{2}-a_{1} a_{2}\right)\right]
\end{align*}
$$

where $H(z)$ is an entire function.
Let

$$
K(z) \equiv c^{2} E(z)-4\left(a_{1} a_{2} e^{p(z)}-b_{1} b_{2} e^{q(z)}+b_{1} b_{2}-a_{1} a_{2}\right) .
$$

Now we shall treat two cases separately: case (i) $\operatorname{deg} q<\operatorname{deg} p$, case (ii) $\operatorname{deg} q=\operatorname{deg} p$. We treat case (i) first. In case (i), if $q(z)$ is not a constant, then e^{p} would have both e^{q} and

$$
\left[\left(c^{2}-4 b_{1} b_{2}\right) e^{q}-4\left(a_{1} a_{2}-b_{1} b_{2}\right)\right] /\left(c^{2}-4 a_{1} a_{2}\right)
$$

as completely ramified deficient functions. We also note that these two deficient functions can not be identically the same. Thus, according to the extension of Nevanlinna's second fundamental theorem for deficient functions (see [3, p. 47] for example) we have a contradiction. Hence $q(z)$ must be a constant, say $q(z) \equiv q_{0}$ for some constant. Then the two constants $e^{q_{0}}$ and

$$
\left[\left(c^{2}-4 b_{1} b_{2}\right) e^{q_{0}}-4\left(a_{1} a_{2}-b_{1} b_{2}\right)\right] /\left(c^{2}-4 a_{1} a_{2}\right)
$$

must be equal (since $e^{p}-A, A$ a non-zero constant has all, except finitely many, of its zeros simple). It follows that $4\left(e^{q 0}-1\right)\left(b_{1} b_{2}-a_{1} a_{2}\right)=0$. Since $b_{1} b_{2} \neq a_{1} a_{2}$, we must have $e^{q_{0}}=1$. Hence from (6) or (7) one derives $f \equiv g$ or $f+g \equiv c=a_{1}+a_{2}$ as claimed. Now suppose that case (ii) holds. First of all, if both p and q are constants, then these two constants must differ by $2 n \pi i$ for some integer n. Otherwise, by taking the difference of the two identities (6) and (7), one would derive $d_{0} f^{2}+d_{1} f+d_{2} \equiv 0$ for some constants $d_{o}(\neq 0), d_{1}$, and d_{2}. This is certainly impossible for any non-constant entire function f. Once p and q are constants and can differ only by $2 n \pi i$, then again, by taking the difference of (6) and (7), we can conclude that $e^{p}=e^{q} \equiv 1$ and the assertions follow from this. Thus, we shall concentrate on the case that p, q both are non-constant with $\operatorname{deg} q=\operatorname{deg} p$. Two subcases may arise: subcase (I) $\operatorname{deg}(q-p)<\operatorname{deg} p$ and subcase (II) $\operatorname{deg}(q-p)=\operatorname{deg} p$. In subcase (I), suppose that $q-p \not \equiv$ constant (also note that $c^{2}-4 b_{1} b_{2} \neq 0$), then we see from the last equation of (10) that both the functions e^{q-p} and

$$
L(z) \equiv 4\left(b_{1} b_{2}-a_{1} a_{2}\right) /\left[\left(c^{2}-4 a_{1} a_{2}\right)-\left(c^{2}-4 b_{1} b_{2}\right) e^{q-p}\right]
$$

are completely ramified deficient functions of e^{P}. This is again impossible as we have argued in case (i). Now, suppose $q-p=$ constant. Set $t=e^{q-p}$. We only
need to consider $t \neq 1$ for the case $t=1$ has been settled in the very beginning of the proof. Thus

$$
E(z) \equiv e^{P}\left(1-e^{q-p}\right) \equiv e^{p}(1-t)
$$

is a zero free factor of $H^{2}(z)$. We shall treat two cases separately:

$$
\text { case (a) } \quad c^{2}-4 a_{1} a_{2}-\left(c^{2}-4 b_{1} b_{2}\right) t=0
$$

and

$$
\text { case (b) } \quad c^{2}-4 a_{1} a_{2}-\left(c^{2}-4 b_{1} b_{2}\right) t \neq 0
$$

Suppose that case (a) holds. Then, by taking the quotient of identities of (6) and (7), one can derive easily that $t=-1$,

$$
f(z)=\frac{c}{2} \pm\left[\left(\frac{a_{1} a_{2}-b_{1} b_{2}}{2}\right) e^{-p(z)}\right]^{1 / 2}
$$

and

$$
g(z)=\frac{c}{2} \pm\left[\left(\frac{a_{1} a_{2}-b_{1} b_{2}}{2}\right) e^{p(z)}\right]^{1 / 2}
$$

Now, suppose that case (b) holds; then

$$
e^{P(z)}\left\{\left[\left(c^{2}-4 a_{1} a_{2}\right)-\left(c^{2}-4 b_{1} b_{2}\right) t\right]\right\}-4\left(b_{1} b_{2}-a_{1} a_{2}\right)
$$

has to be a complete square of a certain entire function. Clearly, this is impossible, since

$$
4\left(b_{1} b_{2}-a_{1} a_{2}\right) \neq 0
$$

Finally, we need to treat subcase (II): $\operatorname{deg}(q-p)=\operatorname{deg} p$. In this case, let z_{0} be a root of $e^{q-p}-1=0$, i.e., $e^{q\left(z_{0}\right)}=e^{p(z 0)}$. Then it follows from (8) that $e^{p(z 0)}=e^{q(z 0)}=1$. Thus we have two non-constant polynomials $p(z) / 2 \pi i$ and $[q(z)-p(z)] / 2 \pi i$ of the same degree, and $p / 2 \pi i$ assumes an integral value whenever $[q-p] / 2 \pi i$ does. Then, according to a known result [5, p. 411],

$$
p(z) \equiv t[q(z)-p(z)]+s 2 \pi i
$$

for some integers t and s. Thus, $e^{p(z)} \equiv e^{t[q(z)-p(z)]}$. Moreover, we may assume without loss of generality that t is a positive integer. Let

$$
e^{q(z)-p(z)} \equiv F(z) .
$$

Then (10) becomes

$$
\begin{aligned}
H^{2}(z) & \equiv F^{t}(1-F)\left[F^{t}\left(C_{1}-C_{2} F\right)+C_{3}\right] \\
& \equiv F^{t}(1-F)\left(d_{0} F^{t+1}+d_{1} F^{t}+d_{2}\right),
\end{aligned}
$$

where $d_{0}(\neq 0), d_{1}$, and $d_{2}(\neq 0)$ are constants. Since F^{t} is zero free, we require

$$
(1-F)\left(d_{0} F^{t+1}+d_{1} F^{t}+d_{2}\right)
$$

to be a complete square of a certain entire function. Now the derivative (with respect to F) of the factor

$$
M(F) \equiv d_{0} F^{t+1}+d_{1} F^{t}+d_{2}
$$

is

$$
(t+1) d_{0} F^{t}+t d_{1} F^{t-1}=F^{t-1}\left\{(t+1) d_{o} F+t d_{1}\right\} .
$$

Since $d_{2} \neq 0$, the only possible multiple root of the factor $M(F)$ arises from the factor

$$
(t+1) d_{0} F+t d_{1}
$$

which is a linear function. Thus $M(F)$ can have one multiple root with multiplicity equal to 2 . There is one other factor of $M(F)$ which is linear, hence $M(F)$ is of degree 3 in F. It follows that $t=2$. Furthermore, it can easily be shown that $d_{0}+d_{1}+d_{2}=0$ and $F-1$ is a factor of M; consequently the multiple factor of M by a simple calculation is $(F+2)^{2}$. Solving (9) for f we get

$$
\begin{aligned}
f & =\frac{c E(z) \pm \sqrt{H^{2}(z)}}{2 E(z)} \\
& =\frac{c}{2} \pm \frac{\left(-d_{0}\right)^{1 / 2} F(F-1)(F+2)}{2 E(z)} \\
& =\frac{c}{2} \pm \frac{\left(-d_{0}\right)^{1 / 2} F(F-1)(F+2)}{2 F^{2}(1-F)} \\
& =\alpha_{0}+\alpha_{1} F^{-1}=\alpha_{0}+\alpha_{1} e^{-(q-p)}
\end{aligned}
$$

for some constants α_{0} and α_{1}. Substituting this into (8) would lead to an impossibility. This completes the proof of the theorem.

Remarks. (i) The above argument is applicable to two meromorphic functions satisfying $E_{g}(\{\infty\})=E_{f}(\{\infty\})$.
(ii) We suspect that the assertion remains valid for entire functions of arbitrary growth.

By means of a linear transformation one can generalize Theorem C. Let $S_{1}=\{a, b\}$ and $S_{2}=\{c, d\}$ be two disjoint pairs each with distinct elements. Let L denote a linear transformation on the plane such that $L S=\{L x, L y\}$, whenever $S=\{x, y\} x, y$ are points in the finite plane. We claim that it is always possible to find a transformation $L: L(z)=A z+B$ such that it maps a, b into $-a_{1}, a_{1}+c_{0}\left(c_{0} \neq 0\right)$ respectively and c, d into $-c_{1}, c_{1}+c_{0}$ respectively for some a_{1} and c_{1} and given c_{0}. For the equations

$$
\begin{array}{ll}
A a+B=-a_{1}, & A b+B=a_{1}+c_{0} \\
A c+B=-c_{1}, & A d+B=c_{1}+c_{0}
\end{array}
$$

have a solution for A, B, a_{1}, and c_{1} provided that the determinant

$$
D=\left|\begin{array}{rrrr}
a & 1 & 1 & 0 \\
b & 1 & -1 & 0 \\
c & 1 & 0 & 1 \\
d & 1 & 0 & -1
\end{array}\right| \neq 0
$$

Now,

$$
\begin{aligned}
D & =-\left|\begin{array}{rrr}
a & 1 & 1 \\
b & 1 & -1 \\
c & 1 & 0
\end{array}\right|-\left|\begin{array}{rrr}
a & 1 & 1 \\
b & 1 & -1 \\
d & 1 & 0
\end{array}\right| \\
& =-[(b-c)+(a-c)+(b-d)+(a-d)] \\
& =-2(b+a)+2(c+d)
\end{aligned}
$$

which is not equal to zero as long as $a+b \neq c+d$.
One can easily verify that Theorem C can be stated in a more general form as follows.

Theorem D. Let $S_{1}=\left\{a_{1}, a_{2}\right\}, S_{2}=\left\{b_{1}, b_{2}\right\}$ be any two disjoint pairs of complex numbers with $a_{1} a_{2} \neq b_{1} b_{2}$. Suppose that there are two non-constant entire functions f and g of finite order such that $E_{f}\left(S_{i}\right)=E_{g}\left(S_{i}\right)$ for $i=1,2$. Then either $f(z) \equiv \operatorname{Ag}(z)+B$ for some constants A, B or

$$
f(z)=c_{1}+c_{2} e^{p(z)} \quad \text { and } \quad g(z)=c_{1}+c_{2} e^{-p(z)}
$$

for some polynomial $p(z)$, and constants, c_{1} and c_{2}.
Remark. If $a_{1}+a_{2} \neq b_{1}+b_{2}$, and $f(z) \equiv A g(z)+B$ for some constants A and B, then an elementary analysis will show it is necessarily that $f \equiv g$.

Finally Theorem B can be generalized as follows.
Theorem E. Let T be a set with $n-1$ distinct numbers and let $S_{1}, S_{2}, \ldots, S_{i}$ be pairwise disjoint finite sets of distinct complex numbers such that the difference between the numbers in each of the sets $S_{i}(i=1,2, \ldots, l)$ is in T. Let m_{i} be the number of elements in S_{i}. If f_{1} and f_{2} are any two non-constant meromorphic functions such that

$$
f_{1}\left(z_{\alpha}\right) \in S_{i} \text { iff } f_{2}\left(z_{\alpha}\right) \in S_{i} \quad \text { for } i=1,2, \ldots, l
$$

and if

$$
m_{1}+m_{2}+\cdots+m_{l}>2(n+1)
$$

then $f_{1} \equiv f_{2}$.

Proof. Arguing as in Theorem B, we obtain

$$
\begin{aligned}
N_{1}(r, & \left.a_{11}, a_{12}, \ldots, a_{1 m l}\right)+\cdots+N_{1}\left(r, a_{l 1}, a_{l 2}, \ldots, a_{l m l}\right) \\
\leq & N\left(r, \frac{1}{f_{1}-f_{2}}\right)+N\left(r, \frac{1}{\left(f_{1}-f_{2}\right)-A_{1}}\right)+\cdots \\
& +N\left(r, \frac{1}{\left(f_{1}-f_{2}\right)-A_{n-1}}\right), \\
& <n\left[T\left(r, f_{1}\right)+T\left(r, f_{2}\right)\right]+O(1) .
\end{aligned}
$$

Now if $f_{1}\left(z_{\alpha}\right) \in S_{i}$ iff $f_{2}\left(z_{\alpha}\right) \in S_{i}$ for $i=1,2, \ldots, l$ then with $k=m_{1}+m_{2}, \ldots$ $+m_{l}$,

$$
\begin{align*}
(k-2)\left[T\left(r, f_{1}\right)+T\left(r, f_{2}\right)\right] \leq & \sum_{i=1}^{l} N_{12}\left(r, a_{i 1}, a_{i 2}, \ldots, a_{i m_{i}}\right) \\
& +O\left(\log r T\left(r, f_{1}\right) T\left(r, f_{2}\right)\right) \\
= & 2 \sum_{i=1}^{l} N_{1}\left(r, a_{i 1}, a_{i 2}, \ldots, a_{i m_{i}}\right) \tag{11}\\
& +O\left(\log r T\left(r, f_{1}\right) T\left(r, f_{2}\right)\right)
\end{align*}
$$

Thus, from (11), we have

$$
\begin{align*}
\left(m_{1}+m_{2}+\cdots+m_{l}-2-2 n\right)\left[T\left(r, f_{1}\right)+\right. & \left.T\left(r, f_{2}\right)\right] \\
& \leq O\left(\log r T\left(r, f_{1}\right) T\left(r, f_{2}\right)\right) \tag{12}
\end{align*}
$$

Since we may assume that f_{1} and f_{2} are transcendental, thus (12) is impossible to hold if

$$
m_{1}+m_{2}+\cdots+m_{l}-2-2 n>0 \quad \text { or } \quad m_{1}+m_{2}+\cdots+m_{l}>2(n+1)
$$

unless $f_{1}-f_{2} \equiv c, c$ a constant. Again c has to be zero. Theorem E is thus proven.

Acknowledgment. The authors are grateful to the referee for his careful reading of the manuscript and the many helpful suggestions and comments.

References

1. F. Gross, Factorization of meromorphic functions, U.S. Government printing office, Washington, D.C.
2. -, On the distribution of values of meromorphic functions, Trans. Amer. Math. Soc., vol. 131 (1968), pp. 199-214.
3. W. K. Hayman, Meromorphic functions, Oxford Univ. Press, London/New York, 1964.
4. R. Nevanlinna, Le Théoreme de Picard-Borel et la theorie des fonctions meromorphes, Gauthier-Villars, Paris, 1926.
5. C. F. Osgood and C. C. Yang, On the quotient of two integral functions, J. Math. Anal. Appl., vol. 54 (1976), pp. 408-418.

University of Maryland, Baltimore County
Catonsville, Maryland
Naval Research Laboratory
Washington, D.C.

