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1. Introduction

We suppose that two meromorphic functionsfl andf2 assume certain values
at the same points (regardless of multiplicity). What can be said about the
relationship between fl and f2 ? In certain instances a great deal is known
about the functions in question. For instance, Nevanlinna [4-1 showed that if
the equations f- aj 0 have the same roots (regardless of multiplicity), for

1, 2 for each fixed j, where al, a2, a5 are five distinct values (possibly
including or), then fx =--f2 or both fl and f2 are constants. For rational
functions only four distinct values will assure fx =f2 if f and f2 both are
non-constant. In [2], the first author of the present paper studied a pair of
meromorphic functionsfand O such that f(z,) S iff 9(z,) S for certain sets S
of complex numbers and derived the corresponding relationships between f
and 9. In particular, he proved:

THEOREM A. Let St (i 1, 2, 3) be distinct finite sets of complex numbers
such that no set is equal to the union of the other two, and let T (i 1, 2, 3) be
any finite sets of complex numbers havin9 the same number of elements as St
(i 1, 2, 3) respectively. Let f(z) and 9(z) be two meromorphic functions
satisfyin9 the conditions

Ef(Si) Eo(Ti), i-- 1, 2, 3,

and Ex/y({0}) Ex/g({0}), where Eh(S aS{ h() a 0}; a zero of
multiplicity m bein9 included m times. Then f(z) and 9(z) fire aloebraically
dependent.

With additional information about the sets St (i 1, 2, 3) several precise
relationships between f and 9 were obtained in [2]. Here we also refer the
reader to the book I-1] for the above results and some other related topics. In
this note, as a continuation of the previous studies, we characterize some of the
sets Si which have the property that any two meromorphic functions having
the same preimage sets at those sets Si must be identical. It is assumed that the
reader is familiar with the definitions and basic properties of the quantities
T(r, f), N(r, f) etc., employed in the Nevanlinna’s value-distribution theory of
meromorphic functions.
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II. Main results

THEOREM B. For any positive integer n > 1 (resp. n > 2) there exists 4 (resp.
3) sets Si, 1, 2, 3, 4, (resp. 1, 2, 3) each with n distinct elements such that
any two non-constant meromorphic functions ft and f2 satisfying ft(z) St iff
f2(z) Sifor 1, 2, 3, 4 (resp. 1, 2, 3) must be identical.

Proof. We may assume without loss of generality that ft and f2 are
transcendental. For otherwise, simply replace ft, f2 by #(z)ft(z) and g(z)f2(z)
where g is some suitable transcendental entire function. For given distinct
finite values at, a2, a,, let S {at, a2, an}. Let nt (r, at, a2, an) be
the number of elements in

{z: Izl r, f(z) S and f2(z) S},

each z counted only once.
Let

Nl(r at, ae, an f nt(t, at, an)-t nt(O, at, an)
dt

+ nt(0, at, an) log r.

Let

( 1)( 1 /N12(r, an)al Nt + Nt r,r’Jt at f2

an)+Nt(r, l

a)+ N(r,f f2-

( 1 ) nt(t’a)-nt(O’a)dt+nt(O,a)logr,Nt r,f_ a

where nt(t, a) is the number of distinct roots off(z) a 0 in zl t.
Now let us consider the sets

Si {at, at + b, at + 2b, at + (n 1)b},

where b is some fixed non-zero integer and i= 1, 2, 3,..., I. Furthermore b
may be chosen so that Sjl c Sj2 for J :/: J2.
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By Nevanlinna’s second fundamental theorem, for any k distinct numbers,

(k 2)IT(r, A) + T(r, f)! <_ N r,

+ Nx r,
f2 b

+ O(log (rT(r, f)T(r, f))

for all r outside a set of finite measure. With the points bj taken to be the
elements in St, 1, 2, l, we have

N(r, ax, a + b, a + 2b, a + (n- 1)b) +
+ N(r, at, a + b, a + (n 1)b)

s r,A_A, +s ’A-A-b +s r,A_A_2b (2)

+"" + r’A -f-(n-
n(r(r, A) + r(r, f)) + O(1).

Now, if f()e S iff f()e S for i= 1, 2,..., l, then, with k In,

( )[r(r,A) + r(r,f)] N(r, a, a + b, a + (n 1)b)
=1

+ O(log rr(r, A)r(r, f)).
(

2 N(r, a, a + b a + (n l)b)

+ O(log rr(r, f)r(r, f)).

Thus, from (2) and (3), we have

(In- 2- 2n)[T(r, f)+ T(r, f2)] N O(log rT(r, f)T(r, f2)) (4)

for all r outside a set of finite measure. Hence

In 2- 2n N 0. (5)

Thus, for sets with

2(n + 1) 2
1> =2+-,

n n

we must have fl f2 + c for some constant c. Since each St is finite, it follows
that c must be zero. This also completes the proof of Theorem B.
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For n 2, the three sets (at, at + b), (a2, a2 + b), (aa, aa + b) do not assure
that ft --f2, so that for sets of this form the number 4 in Theorem B is sharp.
We illustrate this with the example: let 9(z) be any non-constant meromorphic
function and set

f(z)
9(z) + 3
g(z)- 1

with St=(-1-2x/2, 3-2x/2), $2=(-1,3), and Sa=(-l+2x/2,
3+ 2 x/2).

It is reasonable to ask: Can one exhibit two pairs St (at, a2), $2 (bt, b2)
such thatft(z,) Si ifff2(z,) St impliesft f2 for any two non-constant entire
functions? In this connection, we present the following result for the class of
entire functions of finite order.

THEOREM C. Let St (at, a2), $2 (bt, b2) be two pairs of distinct elements
with at + a2- b + b2 but at a2 b b2. Suppose that there are two non-
constant entire functionsfand 9 offinite order such that Ef(Si) Eg(Si) for 1,
2. Then eitherf =- 9 off + 9 =- at + a2 or

c at a2 bt b2 t/2 c at a b bz epflz) - +_
2

e-P and g(z) - +_
2

where c at + a2 and p(z) is a polynomial.

Proof According to the assumptions, we have

(9 at)(9 a2) eP(Z)(f at)(f a2) (6)

and

(g bt)(g b2) eq(Z)(f bt)(f b2), (7)

where p(z) and q(z) are polynomials. The difference of the above two identities
yields

at a2 bt b2 em)(f2 (at + a2)f + at a2)

eq(’)(f 2 (bt + b2)f+ bt b2)

=f2(era)- eq(’)) + c(eq(z) em))f
(8)

+ at a2 ep(z) b b2 eq(z)

where c a + a2 bt + b2. Let em) eq(z) -- E(z), then (8) becomes

E(z)f 2 cE(z)f + a a2 e
p(z) b b2 e

q(z) + (b b2 a a2) 0. (9)

Since f is entire, the discriminant of the above quadratic equation (in f) must
be a complete square of an entire function unless ep- eq -= 0. Clearly, if
ep =_ eq, then from (8) it follows that e -= ep 1. This case leads to the asser-
tion right away.



436 FRED GROSS AND CHUNG-CHUN YANG

Now suppose that E(z) 0, then the discriminant of (9) is

H2(z) -= IcE(z)] 2 4E(z)[at a2 em)- bt b2 eqt’) + (bt b2 at a2)]

=- E(z)[c2E(z) 4{at a2 em)- bt b2 eqtz) + (bt b2 at a2)}]
(10)

=- E(z)[em){(c2 4at a2) (c2 4bt b2)et’)-m)}
4(bt b2 at a2)]

where H(z) is an entire function.
Let

K(z) cZE(z) 4(at a2 em)- bl b2 et’) + bt b2 at a2).

Now we shall treat two cases separately" case (i) deg q < deg p, case (ii)
deg q deg p. We treat case (i) first. In case (i), if q(z) is not a constant, then e
would have both e and

[(c2 4bt b2)e 4(at a2 bl b2)]/(c2 4at a2)

as completely ramified deficient functions. We also note that these two
deficient functions can not be identically the same. Thus, according to the
extension of Nevanlinna’s second fundamental theorem for deficient functions
(see [3, p. 47] for example) we have a contradiction. Hence q(z) must be a
constant, say q(z) =_ qo for some constant. Then the two constants eq and

[(c2 4bt b2)e 4(at a2 bt b2)]/(c2 4al a2)

must be equal (since e’- A, A a non-zero constant has all, except finitely
many, of its zeros simple). It follows that 4(e- 1)(bl b2 -a a2)= 0. Since
b b2 at a2, we must have e 1. Hence from (6) or (7) one derivesf= 9 or

f + g C a + a2 as claimed. Now suppose that case (ii) holds. First of all, if
both p and q are constants, then these two constants must differ by 2n7i for
some integer n. Otherwise, by taking the difference of the two identities (6) and
(7), one would derive do f2 + dt f+ d2 0 for some constants do
and dE. This is certainly impossible for any non-constant entire function f
Once p and q are constants and can differ only by 2n7i, then again, by taking
the difference of (6) and (7), we can conclude that e’= e 1 and the as-
sertions follow from this. Thus, we shall concentrate on the case that p, q both
are non-constant with deg q deg p. Two subcases may arise" subcase (I)
deg (q p) < deg p and subcase (II) deg (q p) deg p. In subcase (I), sup-
pose that q p constant (also note that c2 4bl bE :/= 0), then we see from
the last equation of (10) that both the functions eq-p and

L(z) 4(bl b2 at a2)/[(c2 4at a2) (c2 4bt b2)eq-’]

are completely ramified deficient functions of d’. This is again impossible as we
have argued in case (i). Now, suppose q p constant. Set e-’. We only
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need to consider 4= 1 for the case 1 has been settled in the very beginning
of the proof. Thus

E(z) ee(1 eq- P) eP(1 t)

is a zero free factor of H2(z). We shall treat two cases separately"

case (a) C2 4ata2 (c2 4b b2)t 0

and

case (b) c2 4at a2 (c2 4b b2)t 4: O.

Suppose that case (a) holds. Then, by taking the quotient of identities of (6)
and (7), one can derive easily that 1,

f z - _+ .a a2-2 bib2 e-
1/2

and

c al a2 bl b2 em)O(z) - +_
2

Now, suppose that case (b) holds; then

eetZ){[(c2 4al a2) (c2 4bl b2)t]} 4(bl b2 al a2)

has to be a complete square of a certain entire function. Clearly, this is
impossible, since

4(bl b2 al a2) 4 O.

Finally, we need to treat subcase (II): deg (q p) deg p. In this case, let Zo
be a root of eq-n- 1 0, i.e., etZ)= em). Then it follows from (8) that
em= et 1. Thus we have two non-constant polynomials p(z)/2ni and
[q(z)- p(z)]/2ni of the same degree, and p/2ni assumes an integral value
whenever [q pl/2ni does. Then, according to a known result [5, p. 41 ll,

p(z) t[q(z)- p(z)] + s2gi

for some integers and s. Thus, em)= et[ttz)-m)l. Moreover, we may assume
without loss of generality that is a positive integer. Let

Then (1O) becomes

e)-m)= F(z).

H2(z) U(1 F)[F’(C1 C2 F) + Ca]

FFt(1 F)(do F’+1 + d + d2),

where do (4 0), dl, and d2 0) are constants. Since F is zero free, we require

F(1 F)(do F’ + + d + d2)
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to be a complete square of a certain entire function. Now the derivative (with
respect to F) of the factor

FM(F) =_ doFt+x + dx + d2
is

(t + 1)do F’ + td F’- Ft-{(t + 1)do F + td}.
Since d2 : 0, the only possible multiple root of the factor M(F) arises from the
factor

(t + 1)do F + tdx,

which is a linear function. Thus M(F) can have one multiple root with multi-
plicity equal to 2. There is one other factor of M(F) which is linear, hence
M(F) is of degree 3 in F. It follows that 2. Furthermore, it can easily be
shown that do + d + d2--0 and F- 1 is a factor of M; consequently the
multiple factor of M by a simple calculation is (F + 2)2. Solving (9) forfwe get

f=
cE(z) +_ v/H2(z)

2E(z)

c (-do)/2V(F- 1)(F + 2)
2 2E(z)

c__ + (-do)X/2V(F- 1)(V + 2)
2- 2F2(1 F)

=o+F-X=oWxe-(-

for some constants o and . Substituting this into (8) would lead to an
impossibility. This completes the proof of the theorem.

Remarks. (i) The above argument is applicable to two meromorphic
functions satisfying Eo({ }) E.({ }).

(ii) We suspect that the assertion remains valid for entire functions of
arbitrary growth.

By means of a linear transformation one can generalize Theorem C. Let
S {a, b} and $2 {c, d} be two disjoint pairs each with distinct elements.
Let L denote a linear transformation on the plane such that LS {Lx, Ly},
whenever S {x, y} x, y are points in the finite plane. We claim that it is
always possible to find a transformation L: L(z)= Az + B such that it maps
a, b into -aa, ax + Co (Co 4: 0) respectively and c, d into -cx, c + Co respec-
tively for some a and cx and given Co. For the equations

Aa + B -ax, Ab + B a + co
Ac + B= -cx, Ad + B=cx +Co
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have a solution for A, B, at, and c provided that the determinant

Now,

a 1 1 0
b 1 -1 0
c 1 0
d 1 0 -1

a 1
b 1 -1
c 1 0

a 1 1
1 -1
1 0

-[-(b c) + (a- c) + (b- d) + (a- d)]

=-2(b+a)+2(c+d)

which is not equal to zero as long as a + b 4: c + d.
One can easily verify that Theorem C can be stated in a more general form

as follows.

THEOREM D. Let S {at, a2}, $2-- {bt, b2} be any two disjoint pairs of
complex numbers with at a2 b b2. Suppose that there are two non-constant
entire functionsf and 9 offinite order such that Ey(S3 Eg(St) for 1, 2. Then
eitherf(z) Ao(z) + Bfor some constants A, B or

f(z) ct + c2e
m) and O(z)

for some polynomial p(z), and constants, c and c2.

Remark. If at + a2 :/= b + b2, and f(z) Ao(z) + B for some constants A
and B, then an elementary analysis will show it is necessarily thatf O.

Finally Theorem B can be generalized as follows.

THEOREM E. Let T be a set with n 1 distinct numbers and let St, $2, St
be pairwise disjoint finite sets of distinct complex numbers such that the
difference between the numbers in each of the sets St (i 1, 2,..., l) is in T. Let
mt be the number of elements in St. If ft and f2 are any two non-constant
meromorphicfunctions such that

ft(z,) e St iff f2(z,) e St for i= 1, 2,...,

and if

mt + m2 +"" + mt > 2(n + 1),

thenf f..
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Proof Arguing as in Theorem B, we obtain

Nt(r, art, at2 arm,) +"" + N t(r, art, at2, at,.,)

< N r,
ft -f2 + N r,

(f _f2)_ At

(+ r r,
(A -f,)- -’

< n[_r(r,f) + r(r,f)] + 0(1).

Now if ft(z) St ifff2(z)e St for i= 1, 2, then with k mt + m2,

+ mz,

(k- 2)[T(r,f) + T(r, f2)3 < Nt2(r, a,t, a,2,

+ O(log rT(r, f)T(r, f2))

2 Nt(r, air, a2, as,.,)
i=1

(11)

+ O(log rT(r, f)T(r, f2)).

Thus, from (11), we have

(mr + m2 +"" + mt- 2 2n)[T(r, ft) + T(r, f2)]

< O(10g rT(r, f)T(r, f2)).
(12)

Since we may assume that ft and f2 are transcendental, thus (12) is impossible
to hold if

mt + m2 + + mt- 2 2n > 0 or mt + m2 + + mt > 2(n + 1)

unless ft-f2 c, c a constant. Again c has to be zero. Theorem E is thus
proven.
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