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THE DISTRIBUTION OF POWERFUL INTEGERS

BY

A. IvIt AND P. SHIU.

1. Introduction and statement of results

Let k be a fixed integer greater than unity. A positive integer is said to be
powerful if it contains only powers of primes as factors; more precisely, let
G(k) denote the set of all positive integers with the property that if a prime p
divides an element of G(k), then pk divides it also. In other words the set of
powerful (or k-full) numbers G(k) contains numbers whose canonical represen-
tation is

n a a+x ak-x, (1.1)

and this representation is unique if we stipulate that a2
we set

ak is square-free. If

f(n)
n G(k)

Fk(S) , A(n)n-, (1.2)
n G(k)’ n=l

it follows that for Re s > 1/k,

Fk(S) 1-I (1 + p-k + p-tk+ , +...)= I-I (1 +
p P 1 p- (1.3)

For x >_ 1 we denote by Ak(X the number of k-full integers not exceeding x,
so that from (1.1) and (1.2) we have

Ak(X) 1= Z f(n)-- la2(a2""ak), (1.4)
n<x,n G(k) n<x a]a <x

where #(n) is the M6bius function. For further factoring of (1.3) we note that
for k > 2 and K (3k2 + k 2) there are constants a,.k (2k + 2 < r < K)
such that

/
v

(1 v)(1 --/)k+l) (1 U 2k-1) 1 D2k+2 + r=2k+3Ear, k
(1.5)
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This follows when we note that the product of the first two factors on the
left-hand side equals

(1-v4-v)(14-v/"’4-v-)=14-v + x4-v +24-’’’+v2-x,

and multiplying out the remaining factors we obtain (1.5). If we substitute
v p- in (1.5) and take the product over all primes, then using (1.3) and the
product representation (s) I-L, (1 p-)-1 (Re s > 1) for the Riemann zeta
function it follows that

F(s) (ks)((k + 1)s)... ((2k- 1)s) [-[ 1 -p + +
p r=2k+3

((ks)(((k + 1)s)... (((2k- 1)s)(-((2k + 2)s)dPk(S), (1.6)

where tP2(s)= 1 and R(S) has a Dirichlet series with the abscissa of absolute
convergence equal to 1/(2k + 3) if k > 2. Therefore we may write

Fk(S) G(s)Hk(s),

where

and

(1.7)

where

Gk(S) ffk(n)n rkk(S)/(((2k + 2)s) (1.9)
n=l

is a Dirichlet series converging absolutely for Re s > 1/(2k + 2). From (1.7) we
infer that

Ak(x) E la2(a2 ak) 9k(m)hk(n), (1.10)
aa..... a <x mn<x

so that Adx) is closely relateO to the unweighteO sum

Sdx) E hdn) 1, (1.11)
X Ul 2 uk

where the summation is taken over positive integers a, ak. Following
standard procedures (e.g., the inversion formula for Dirichlet series used in
Section 2) we may write

2k-1

Sk(X) C,.k xx/" + A(x), (1.12)
r=k

2k-

I-[
j=k,jr

H(s)- h(n)n-= (ks)((k + 1)s)... ((2k- 1)s) (1.8)
n=l
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and A’(x) may be considered as an error term. If we define p’ as the infimum
of all p satisfying

A’(x) , xa (1.13)

as x--, o, then an application of E. Landau’s classical results concerning
lattice point problems (see [16], [17]) gives, for k > 2,

k-1 1
_< p’ < (1.14)

k(3k- I) k + 2"

From (1.10) and (1.12) it is seen that the asymptotic formula for Ak(X, may
be written as

Ak(X )O,k xl/k dl- l,kX,
1/(k+l) -- "" k_l,kX,1/(2k-1) -[ Ak(x), (1.15)

where, for 0, 1, k 1,

?,.k Rcs Fk(S)S- Ck+,.kdPk(1/(k + i))/(((2k + 2)/(k +/)),
I/(k + i)

and Ak(X may be considered as an error term. The estimation of Ak(x) will be
the main goal of this paper, and in analogy with (1.13) we define Pk to be the
infimum of all p satisfying

ak(X) ’ xa (1.16)

as x---- .
The investigation of powerful numbers began in 1935, when P. Erd/Ss and G.

Szekeres [4-1 proved in an elementary way that Pk < 1/(k + 1) for k > 2. Their
result was sharpened in 1958 by P. Bateman and E. Grosswald [1i, who
proved that/92 _< 6

, Pa -< 6, Pk <-- 1/(k + 2) for k >_ 2 and

Pk < max (r/k(r + 2), 1/(k + r + 1)), r [x/], k >_ 4. (1.17)

Further improvements may be found in the work of E. Kritzel [15], whose
results include the estimate

pk<l/(k+H(k))’8 ()< H(k) < 1 + (1.18)

which is valid if k is sufficiently large. The sharpest results for 3 < k _< 5 were
obtained by A. Ivi6 in [9] (further improvements in [11]), where he proved

Pa <- 0.1410

P4 -< 22 0.1240... (1.19)

P5 < 62279976656613 0.1068

It was also proved in !91 that Pk <-- 1/2k for k > 2 if the (so far unproved)
Lindel6f hypothesis that ((1/2 4- it) , holds.
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For small values of k we shall improve on existing bounds for Pk by proving
the following result.

THEOREM 1.

Pa < 0.128167 p, < 2as99sl 0.118971

We conjecture that Pk < 1/2k, and apart from the absence of suitable power
moments for the zeta function, our methods would give this for k < 13. The
proof of values for Pk when k 5, 6, 7 will be given by complex integration,
while the values of pa and p, will follow from an estimate for the general
three-dimensional problem. If 1 < a < b < c are integers, then we have

O(a,b,c;x)= 1

((b/a)((c/a)xTM + ((a/b)((c/b)x/b (1.20)

+ ((a/c)((b/c)x x/c + A(a, b, c; x),

where A(a, b, c; x) may be regarded as an error term, and the main terms are
evaluated most conveniently by residues. In case some of the numbers a, b, c
are equal, the main terms are obtained by taking the appropriate limit. It will
be seen from Lemma 1 of Section 2 that A3(x is essentially of the same order
of magnitude as A(3, 4, 5; x), so that/93 _< 2- is a special case of the follow-
ing.

THEOREM 2. If a, b, c are integers such that 1 <_ a < b <_ c, c <_ a + b,
92b < 17 la or/f(a, b, c) (1, 2, 2), then as x- we have

A(a, b, c; x) , X,263/171(a+b+c) log2 x. 1,1.21)

We shall prove Theorem 2 in Section 3, where some applications and re-
marks concerning (1.21) are given, and we devote Section 4 to certain additive
problems concerning powerful numbers, focusing our attention on

Bk, m(X) Rk,.,(n),

where Rk,,,,(n) is the number of ways n can be written as a sum of m k-full
numbers.

In concluding this section, let us make the following two remarks. Firstly,
from (1.7), (1.8) and (1.9) it is seen that p’ < 1/(2k + 2) (at present known by
[21] to hold only for k 2) would give

Ak(X , X1/(2k+ 2) exp (--Ck 6(X)) (1.22)

where CR > 0, di(X) loga/5 X (log log X)-/5. The case k 2 was settled
by Bateman and Grosswald in [1]. The general estimate in the case p’ <
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1/(2k + 2) could be obtained following their proof [1], or it could be
obtained directly by applying the convolution theorem of [10]. Thus, apart
from unproved conjectures like Riemann’s or Lindel6f’s, the estimate (1.22)
appears to be the limit of present methods, since there is no way to remove
1/((2k + 2)s) from the product representation (1.6) of Fk(S).
Another remark is that, for k > 3, the line Re s 0 is a natural boundary

for the function Gk(S) given by (1.9). To see this we need a lemma of T.
Estermann [5] which states that, for small x,

1 x + x* YI (1 xn)tkn). (1.23)
n=l

Here lk(n) is an integer given by
k

lk(n)= l-n ab=n#(a)
where 21, 22 2k are the roots of 2k- 2k-1 + 1 0. From the product
representation of Fk(S) and (1.5) we have

((s)
[} _,),Gk(S Hk(s (1--p -I-p

SO that from (1.23) we see that Gk(S) can be written as an infinite product of the
Riemann zeta-functions. For example, we have

(1,0, -1, -1, -1,0,0, 1, 1,1,0,0, -1, -1,
0, 0, 1, 1, 1, 0, -1, -2, -2, -1, 1, 3

for the sequence (/3(n)), so that

G3(s
(13s)(14s)((2ls)2(22s)2(23s)(24s)

(8s)’(9s)( 10s)’( 17s)(18s)(19s)(25s)3(26s)..."
If we assume the truth of the Riemann hypothesis we can deduce easily that

the zeros of Gk(S) (k > 3) are dense in the line Re s 0. If we follow the proof
of the main theorem in Estermann’s paper we can give an unconditional proof
using only simple zero-density estimates for the Riemann zeta-function. We
shall not require this result in our proofs of the theorems, and shall therefore
omit the proof.

2. Proof of Theorem 1

In this section we shall prove Theorem 1, except for bounds for P3 and P4
which will follow from Theorem 2. We require first the following result,

LEMMA 1. If, as x ,
A(x) xk log x (2.1)
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for 1/(2k + 2) < r/k < 1/(2k 1) and 2t >_ O, where A’(x) is given by (1.12), then

At(x) ’ x"k logx;’ x (2.2)

for At(X) defined by (1.15), where 2’k 2k for 1/(2k + 2) < r/t < 1/(2k- 1), and
2’k 2k + 1 for r/k 1/(2k + 2).

Proof. The proof of this simple and useful result is essentially given in [1]
and [9], but we shall give a sketch for the sake of completeness. From (1.10)
and (1.11) we have

At(x) gt(m) hE(n)
m<x n<x/m

2k-

x1/r 1/rE Cr,k E gk(m)m- + gk(m)A(x/m),
r=k m<x m<x

(2.3)

gt(n) < x/t2k + ),

whence by partial summation

gk(m)m -/’ Gk(1/r) + gk(m)m-/’= Gk(1/r) + O(x/2k+2)- /’).
m<x m>x

Substituting (2.4) in (2.3) we obtain

2k-

Ak(X)- E Cr,kGk(1/r)xl/" + O(x1/(2k+2)) + E gk(m)A(x/m)
r=k m<x

with

since

Ok(m)A(x/m) , x" logx x IOk(m) lm- , x" loga x,
m<x m<x

because the second sum above is O(log x) if k 1/(2k + 2) and it is bounded if
r/k > 1/(2k + 2).
Lemma 1 is therefore proved; we have not considered the case k <

1/(2k / 2), since this would lead to (1.22), as remarked in Section 1.

We now proceed with the proof of Theorem 1 supposing 4 < k < 8. By
Lemma 1 it will be sufficient to prove A’(x), X1/2k+e, but we remark that
taking more care we could obtain A’(x),xl/2tlog x, with explicit
c c(k)> O. The classical method of contour integration is applied to the
function Hk(S), which is regular except for simple poles at

s- 1/k, 1/(k + 1), 1/(2k- 1).

(2.4)

X1/(2k- 1)
--O,k xl/k / Yl,k X1/(k+l) / / Yk-l,k /O(xlk log X) (2.5)

Y,.k Ck+,.k Gk(1/(k + i))= Ct+,.kCk(1/(k + i))/((2k + 2)./(k + i)),

where we have used (1.12) for Sk(X) .sx hk(n). From (1.9) and the fact that
Ckk(S) converges absolutely for Re s > 1/(2k + 3) we infer that
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Proceeding similarly as in [24, Lemma 3.12], we have, for x half a large odd
integer, and b > l/k,

b+iT

hk(n (2:i)- Hk(s)xSs ds
n<x db-iT (2.6)

+ o(xbT (b l/k)- x) + O((2x)xl/kT log x).

Here b(x) denotes a non-decreasing positive function for which hk(n
O(b(n)), so that from the definition of hk(n it is seen that one may take
b(x) x for any e > 0. Therefore for fixed 1 > b > 1/k, e > O,

b + iT

hk(n) (2hi)- nk(S)XSS ds + O(xX/k+T- ) + O(xbT ). (2.7)
n<x -iT

Moving the line of integration to Re s 1/2k, we obtain, by the residue
theorem,

b+iT

(2hi)- Hk(S)xss ds
db-iT

2k-1

ResHk(S)xss-x + (2;i)-t(It + 12 + la), (2.8)
r=k s= 1/r

where

l/2k+iT

I Hk(S)XS ds,
dl/2k-iT

l/2k-ir

12 HR(S)XS- ds,
db-iT

b+iT

Ia Hk(S)XSS -1 ds.
dl/2k+iT

(2.9)

We have

r 2xl ((r/2k + rit) t-
r=k

dt + X1/2k, (2.10)

and we now proceed to estimate

T 2k-

14 N I((r/2k + rit)l dt, (2.11)
r=k

by repeated use of the Cauchy-Schwarz inequality for integrals, giving the
detailed proof for k 7, and omitting the easier cases k 5 and k 6. For
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this we shall need the following power moments for the zeta-function:

1(1/2 + it)14 dt , r log4 T., [(tr + it)14 dt , T, tr > 1/2,

rl(tr 1 dt T +* for s
,+ it)

rl(tr it)[ t6 dt Tt+ for >{’6.+

(2.12)

(2.13)

(2.14)

The estimates (2.12) are to be found in 7.5 and 7.6 of [24], (2.13) was
recently proved by D. R. Heath-Brown [7-1, and (2.14) follows with 1/2 from
Theorem 7.9 of [24] when one uses

r
((1/2 it) x6 dt , T8/3,+

which follows trivially from jr 1(2x + it)I t2 dt , T2 logt7 T, proved by D. R.
Heath-Brown [6]. We obtain then, for k 7,

14 _< ((r/14 + rit)14 dt
r=7 r=9

l/8

(r/14 +rit) 18 dt

((r/14 + rit) 6 dt , T + 8, (2.15)
r=12

when we apply (2.12), (2.13), and (2.14), since > and > , so that
integrating by parts

It " Xt/2kT. (2.16)

The integrals I2 and I3 are estimated in the same fashion; we give the details
only for Ia. With b 1/k + e we obtain

l/k+e 2k-

I3 " Jt/2k xr-t r=kH [((rtr + irr) dtr. (2.17)

If we use ((tr + it) < tt-‘)/a log t, >_ to, 1/2 <_ tr < 1 (see [24]), then it follows
that

where

12 + 13 < xt/k+*Tq xl/k+eT(k-ll)/12+ke < 1 (2.18)

12t(r)q - r=k
+ke- 1



584 A. IVI AND P. SHIU

if 4 < k < 10 and T T(x) is sufficiently large. Using more refined estimates
for the order of the zeta function in the critical strip, we could also obtain
(2.18) for k 11, 12 and 13. Our result that Pk < 1/2k for 4 < k < 8 will follow
from Lemma 1, (2.7), (2.8), (2.16) and (2.18) if one chooses T T(x) sufficiently
large. For the estimates of/93 and p# the reader is referred to Section 3.

3. The general three-dimensional divisor problem

Let now A(a, b, c; x) denote the error term in the general three-dimensional
divisor problem, as defined by (1.20), where 1 < a < b < c are fixed integers,
and for brevity we set d a + b + c. In the same paper [4] where the investi-
gation of powerful numbers was initiated, Erd6s and Szekeres investigated the
asymptotic formula for the number of non-isomorphic abelian groups whose
order does not exceed x. Subsequent authors successfully carried on this re-
search (see [21-1, [22], [23-1), and the problem can be reduced to the estimation
of A(1, 2, 3; x). A useful formula for A(1, 2, 3; x) was discovered by P. G.
Schmidt in [22], involving sums with the function

(x) x- Ix] -1/2. (3.1)

Following Schmidt’s method of proof, the following generalization of his
result may be obtained (see [11] for a proof)"

LEMMA 2. If 1 <_ a < b <_ c, b <_ 2a are inteoers, then

A(a, b, c; x)= S.,o,w(X) + O(xX/a), (3.2)
(u,v,w)

where d a + b + c,

S,o,w(X)= @((xm-On-W)/), (3.3)
nxl/d n<m<(xn-w)l/(u+v)

and (u, v, w) is any permutation of(a, b, c).
We may write

S,o,w(X) , max lSu, o,w(X; M, N) log2 x
M,N

where the maximum is taken over M, N satisfying N < x,TM, N < 2M, and
M +VNW < x, and

Su, v,w(X; M, N)= ((xm-On-’)x/"). (3.5)
M < < 2M,N < < 2N,mu+vn%< x,m >

To estimate the above sum we shall apply the following result of B. R.
Srinivasan [23, Theorem 5-1, which enabled him to prove

A(1, 2, 3;x) , x5/47 log2 x,
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and which we state as follows:

LEMMA 3.

Su, v,w(x M, N) (F1/2-Ma/4-/2NS/4-3/2)l/(3/2-) + Fx/’MX/’N

+ F- X/2MN, (3.6)

where F (xM-VN-W)x/u, 0 < aa
250"

We are now ready to prove Theorem 2. Since N < M in Su,o,w(X; M, N), the
condition c _< a + b of Theorem 2 gives

(MN)a/2 <_ MU+N <_ x. (3.7)

The conditions c _< a + b, 92b _< 171a ensure 3u d/2 >_ 3a d/2 >_ O, and
so we obtain

F1/gM1/4N (x(M4Na)U/2(MU+VNW) 1)t/,u < (x(MN)3U-d/2)i/4u < X3/2d,

(3.8)

and similarly

F-1/2MN xTM X3/2(a+b+c). (3.9)

With 0 ’a, the first term on the right-hand side of (3.6) becomes

(F92M171N263)1/342 (x92(MN)263U(MU+VNW)-92)1/342u
(x92(MN)263u-46d)1/342u (3.10)

(X526u/d)1]342u X263/171(a+b+c),
since 263u-46d_>263a-46(a+b+c)>_0 if (a, b, c)=(1, 2, 2) or if
c <_ a + b, 92b _< 171a. Formula (1.21) follows from the above estimates sinee

< 171.

With (a, b, c) (3, 4, 5), we obtain

A(3, 4, 5; x) , X263/20s2 log2 X,

which in view of Lemma 1 gives P3 < 22.
Finally to prove p, < 2sS*l we use a result of [-9] based on the work of E.

Kriitzel [-15]. If A(k,m; x) denotes the error term in the asymptotic formula for

X 1
?ik+mOnl

and if A(R,m; x) < Xflk’m, then (2.11) of I-9] gives, with the exponent pair (7z, 7),

2 + k,m-x,m 5k + 2m- 2k(k + m)Ok,
if 27kfl,m < 14 + 13k0,m_, where fl,m is precisely defined in [9]. From
Lemma 1 it is seen that p is essentially g,,3 and using Theorem 2 we obtain
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04,2 --< 25-6 which gives (after verifying that 108fl4,3 _< 14 + 5604,2)
30911 + 2,t,2 < 0.118971P4 < 13 28t4,2 25981

as claimed.
Under suitable conditions on a, b, c one can replace in the exponent of

(1.21) with

(5 + 620 621)/(3 + 220 221),

where (20, 21) is any two-dimensional exponent pair satisfying 320 + 21 < 1/2
(for the definition and properties of two-dimensional exponent pairs see [22]).
If (, 1/4) were a two-dimensional exponent pair, then one would obtain a
sharpening of Theorem 2 in the form

A(a, b, c; x) , X3/2(a+b+c) log2 x. (3.11)

However, (3.11) certainly cannot hold for arbitrary values of a, b, c, since E.
Kritzel has shown in [14] that

A(a, b, c; x) f(xl/2+), c > 2(a + b), (3.12)

where as usual (f(x)) is the negation of o(f(x)) as x--, . E. Landau’s classi-
cal theorems on lattice point problems (see [16], [17]) yield

A(a, b, c; x) , x1/2, A(a, b, c; x)= f(Xl/(+b+c)). (3.13)

The estimate A(a, b, c; x) , x/2 can also be obtained easily (with a factor
log3/2 x) following our proof of Theorem 1, and it supersedes the conjectured
estimate (3.11)if b + c < 2a.
We may further remark that Theorem 2 gives

A(1, 2, 2; x) , X263/855 log2 X , X0"3076024, (3.14)

which is an improvement of

A(1, 2, 2; x) , X577/1740 ’ X0"3316092, (3.15)

proved in [11]. As shown in [11], (3.15) gives for some suitable constant
dk>_0

Ak(X, h) 1 (dk -t- o(1))h, h >_ x581/17’’t log x, (3.16)
< < + h,a(n) k

where k is fixed, x---, and a(n) is the number of non-isomorphic abelian
groups of order n. By the method of proof of [11], the estimate (3.14) would
improve the range for h in (3.16) to

877
h > x877/2653 log x, c > 5, -0.3305

2653
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4. Additive problems involving powerful numbers

Let q, denote the mh element of G(k). The weak asymptotic formula

Ak(X) 1 YO,k x/R + Ok(X/0’+ )
n < x, n e Glk)

implies, for x qk,n,

and therefore

.,.,1/k t’ t’l/(k +n 0,k k,. + ’-’,. )),

(4.1)

(4.2)

may be written as

Bk, m(X) E 1 ’ 1, (4.7)
Xl+"’+Xm<X,Xl XmeG(k) n] +’.. +n < Y

Rk, m(n) Y’, 1 (4.5)
Xl +"" + Xm n,xl Xm e G(k)

as the number of ways n can be written as a sum of m k-powerful numbers (0
and 1 are considered as k-powerful) it is seen from (4.3) that the summatory
function

Bk.,n(X) ., Rk,m(n) (4.6)
nx

where

y k
70,k x _. Ok,m(X,(k2+k 1)](k2+k)), (4.8)

and ’ denotes summation over non-negative integers nl, nm.
Our main goal is an asymptotic formula for Bk,m(X), and from (4.7) it is seen

that this problem is transformed into the well-known problem of determining
the number of lattice points in certain well-defined multi-dimensional regions.
It is well known (see [251, [12]) that Bk, m(X) is approximated by the volume of
the corresponding region, so that as x oz, we have

Bk,m(X, Ck,m.Xm/k, (4.9)

where C,I may be explicitly evaluated. In case k 2 we have

o, (2a)/(3)= 2.1732

Defining

qk., (n/’O.k)k + Ok(ntk+k- )/tk+ )), (4.3)

where Ok means that the implied constant depends on k, and, by (1.15) and
(1.3),

?O,k H 1 + p(k+i?, (4.4)
p
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and from the asymptotic formula (see [25], [26], [2])

m/2xm/2Z 1 "-1-" Om(XCm), (4.10)
nf +...+,. < r(m/2 + 1)

where c2 < , c3 < 1/4, Cm m/2 1 for m > 4, we obtain

em(2),m/2xm/2
B2,m(X) 2mm(3)F(m/2 + 1) + Om(x(m2+m-1)/(2m+2))" (4.11)

Therefore, on the average there are ((-)/(3)) more representations of an
integer as a sum of m square-full numbers, than as a sum of m non-negative
integer squares. Similarly from (4.7), (4.8), and the asymptotic formula for

(see [ 13]), we obtain

( 1--pt-k)2 F2(k+l/k)x2/kB, 2(x) H 1 + p( + iT/r, F(k + 2/k) (4.12)
+ Ok(x.k2+k-

The above result for k 2 was obtained in [8] by an application of an
additive theorem of V. Tabaev [19, pp. 102-104]; the same theorem would
improve the error term in (4.12) to O(x+1)/’+), and it may be mentioned
that starting from B.(x) and proceeding inductively an improvement for the
error term in (4.11) may be also obtained.
From (4.12) it is seen that for k > 2 there exist arbitrarily large integers

which are not representable as a sum of two k-powerful numbers. In case
k 2 the density of integers which are a sum of two square-full numbers is
zero according to P. Erd6s, and in the other direction it was proved recently
by R. Odoni [ 18] that the number of integers not exceeding x’which are a sum
of two square-full numbers is much greater than

x(log x)- / exp (C log log x/log log log x)

for some constant C > 0 and x > x0. A problem similar to Waring’s may be
proposed: find an integer M(k) such that all but finitely many numbers n are a
sum of M(k) numbers from G(k). Since a perfect kth power certainly belongs to
G(k), it follows from the work on Waring’s problem that M(k) is finite for all
k > 2. P. Erd6s conjectured that M(k) k + 1. In particular, this conjecture
asserts M(2)= 3, and it seems that all numbers except 7, 15, 23, 87, 111 and
119 are a sum of three square-full numbers (this was verified for n _< 32761).
Integers not representable as a sum of three squares are numbers of the form
4a(8K + 7), therefore only integers of the form 8K + 7 are possibly not rep-
resentable as a sum of three square-full numbers, since if n 4"(8K + 7),
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a > 1, then 8K + 7 x2 -- y2 + 2g2, where x, y, z are integers (see [3]) and
therefore

n (2ax)2 + (2ay)2 + 8(2 Z)2,
which is a sum of three square-full numbers. By considering various quadratic
forms it may be shown that certain types of integers are a sum of three
square-full numbers. For instance, if N 25n, the only case when N might not
be a sum of three square-full numbers is when n 8K + 7. But in this case
n x2 + y2 + 5z2, since (see [3]) this quadratic form represents integers not of
the form 4a(8L + 3). Thus we have N (5x)2 + (5y)2 + 5az2, which is a sum of
three square-full numbers.
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