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VALUES OF CERTAIN WHITTAKER FUNCTIONS
ON A p-ADIC REDUCTIVE GROUP

BY

MARTIN L. KAREL

Introduction

It is our purpose here to calculate explicitly the values of Whittaker func-
tions on the p-adic points of a reductive algebraic group G of type E7 and
defined over Q, the field of rational numbers. These values appear as Euler
factors as(T)p of the Fourier coefficients as(T) for the Eisenstein series of weight
s constructed by Baily on the exceptional tube domain of dimension 27. Here,
the index T ranges through a certain lattice A in the exceptional simple
Jordan algebra of dimension 27.
Our calculation is based on W. Casselman’s idea for exploiting the function-

al equations of Whittaker functions on the p-adic group GL(n, Qp) to obtain a
formula of J. Shalika for their values; see [5]. Casselman’s argument works for
split groups, at least, with the Whittaker functions that one attaches to a
minimal parabolic subgroup. However, we deal here with Whittaker functions
attached to a maximal parabolic Q-subgroup, and we have available only a
single functional equation, whose existence we established in [9]. This makes it
necessary for us to calculate some complicated p-adic integrals, unfortunately.
For a large class of discrete groups one can define Eisenstein series; see

L.-C. Tsao’s paper [14]. The exceptional modular group is distinguished
among these by the lack of theta functions as an arithmetic tool at present,
making it seem likely that a better understanding of Eisenstein series for this
group will be essential eventually.

Before summarizing our results, we sketch some history. Although the com-
putability of the Fourier expansion of Eisenstein series is fundamental for the
arithmetic of elliptic modular forms, little is known for forms in several vari-
ables. Among Siegel modular forms, the Eisenstein series have Fourier coef-
ficients that can be interpreted in terms of representations of quadratic forms,
but even for Siegel’s standard Eisenstein series in the rank 2 case the Fourier
expansion is not easy to calculate explicitly. Igusa found several coefficients
and used them in determining the structure of the graded ring of rank 2 Siegel
modular forms; see [7]. Later, H. Maass computed all the coefficients before
discovering, as he kindly informed the author, that one can derive the results
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easily from calculations that Kaufhold made in his derivation of the functional
equations of Eisenstein series; see [10-1 and [12], also [13]. In the case of the
exceptional modular group, the author used a p-adic analogue of Siegel’s
Babylonian reduction process to find a formula for the Fourier coefficients
as(T) with T of rank 2 in the Jordan algebra; see [8]. In terms of the p-adic
order invariants of T, z(1) and z(2), one has

G(T)p fr(p5 -s)( 1 p- s)(1 p4
where

(1)

where d z(1) + z(2). This may be rewritten in the form

(1’) fT(X)= oXJj=

(j* min (j, d- j, z(2))).

Of course, the above formulas are local analogues of classical divisor sum
formulas. There are similar, though slightly more complicated, formulas in the
Siegel rank 2 case.
We summarize our results. One attaches "elementary divisors" dl, d2, d3 to

each T in the lattice A. Fix a prime p. Then the p-th Euler factor G(T)p is
determined by the p-adic orders of the di’s, say (1)< z(2)< (3). If (1)= 0,
then G(T)p can be found easily from results in [8]. We have, in this case,

G(T)p (1 p-S)(1 p4-S)(1 p8-S)FT(p9-S
where

r(2)

Fr(X)- 2 (P4X)k(1 X’(3)+’(2)+ 1-2k)/( 1 X)o
k=0

Let q p4 and X p9-S. Then for T as above,

G(pmT)p/G(T)p Co(X-1)x3m + CI(X-1)q2mX2m + Cl(X)q2mX + Co(X),

where

Co(X) 1/(1 X)(1 qX)(1 q2X)FT(X),

C(X) [-(1 + (q + 1)X)/(1 q2X) + FT(X

X2FT/p(X)]/[(1 X)(1 X/q)FT(X)].

Notice that, since it depends only on z(2) and z(3), the polynomial is defined
even for T such that z(1) is negative (i.e., T is not in the lattice A) provided we
use the convention that FT(X) vanishes identically whenever z(2) is negative.
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There is strong evidence that if T satisfies z(1) O, then

a(pmT), (1 p-)(1 p4-)(1 p8-) q q1 Xk

i=0 \j=l \ k=j

where m’= rn + z(2), m"= m’ + z(3) and S(i)= min (m’- i, [(m" i)/2]), Ix]
the largest integer not greater than x. One can restate the conjectured formula
as

a(p T)t, a(E), E X’ q qk
i=0 \j=O k=O

where i* min (i, m" i, m’) andj** min (j, m’ -j, m" 2j, m).
The author is grateful to W. Casselman for explaining his ideas on Whitta-

ker functions and their values. During the preparation of this paper the author
was supported in part by a National Science Foundation grant.

1. Some general results on reductive groups

We require some facts about admissible representations, for which the main
reference is Casselman’s forthcoming book [4].

1.1. Let G be the group of rational points of a reductive algebraic group G
over a p-adic field f, let o be the ring of integers of f and let p be the maximal
ideal of o. We fix an embedding of G into some GL(n) over f. A representation
rr of G on a complex vector space V is smooth if each v V is fixed by some
open subgroup of G. For any subgroup K of G let Vr be the space of K-fixed
vectors in V. Then n is admissible if it is smooth and if Vr has finite dimension
for each open subgroup of G.
By a character on a closed subgroup of G, we will understand a homomor-

phism into C , the multiplicative group of complex numbers, with open
kernel. If ;t is a character on the closed subgroup P of G, then we let

(1) Ind (;tiP, G)

{locally constant f: G Clf(bo)= ;t(b)f(o) for each b e e and O G}.
Then G acts by right translation on Ind (;tiP, G). If P P(f) is a parabolic
subgroup of G, then we refer to the resulting representation of G as an unnor-
malized principal series representation. These are admissible, [4].

Let H be a locally compact group with left Haar measure dx, and let a be an
automorphism of H. Define the modulus fin(a) by

(2) d(a x) n(a) dx.

In particular, if 9 G normalizes a subgroup H, let 6n(O) 6n(Int (O)), where
Int (O)" x- Oxo- 1.
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We shall use as convention the notation H H(Q,) for the Qp-rational
points of an algebraic group defined over Q,. Often we will omit mention of H
entirely when speaking of parabolic subgroups and their unipotent radicals.

1.2. Suppose that (V, n) is admissible for G. Let P be a parabolic subgroup
of G, let N be the unipotent radical of P, and for any compact subgroup NO of
N, define

Let P- be a parabolic subgroup of G opposed to P, so P- c P M is a Levi
complement to N, and let N- be the unipotent radical of P-. Suppose that B
is a compact open subgroup of G. We define a projection II from V to V by

f (b)v clb (v v),II(v)

where gb is a left Haar measure on
The subgroup B is sai to have an Iwaori gecomposition wit respec o

M, N-) if there are subgroups Nff c N-, Mo c M, No c N such that multi-
plication

NxMxN--.G

maps No x Mo x Nff bijectively onto B.
The following important technical lemma is due to Casselman, [4].

1.2.1. LEMMA. Suppose that B has Iwahori decomposition B No Mo N. If
v VMN-, thet Ha(v)= 1-INo(V)and v Ilso(V e V(No).

1.2.2. Let A be the split component in the central torus of M and let

A- {a 6 A: Int (a)Nff Nff}.
Then, for v 6 Vs and a A-, we have n(a)v Vts -. Thus,
(1) rc(a)v H((a)v) V(No).

1.3.
Ind (zIP, G). Suppose that for w G,

Continue with the same notation, but now take (V, n) to be

(i) wAw-1 p,
and,

(ii) for eachf V,

f(wn)d,n

converges absolutely.



556 MARTIN L. KAREL

We normalize the Haar measure dwn on Nw N w-1pw\N so that the
image of N(o) has measure 1.

If a e A, let 6(a) be the modulus of x axa- on N,. Then

(1) (2, zr(a)f) ;t(waw -1)5(a)(2w, f)
for all a e A andf e V. We let w-ix(a) z(waw-).

Suppose now that B is an open subgroup of G(o) with Iwahori decompo-
sition N(o)Mo Nff with respect to (N, M, N-). Assume that the double coset
decomposition P\G/P has a family W of representatives with the following
properties"

(i)
(ii)

(iii)
of Vz.

W is also a set ofrepresentativesfor P\G/B;
wAw-1 c P for each w e W;
The 2’s are absolutely convergent and form a basis of the dual space

Then we can consider the dual basis {f} of Vs. Since each 2 annihilates
V(N(o)), we see from 1.2.2 (1) and 1.3 (1) that, if a e A -,
(2) lIn(n(a)f) w- 1;t(a)6w(a)f.

1.4. Let w be the element of W that interchanges each positive root with a
negative root. Suppose that @ is a character on N/N(o). According to [.9, 3],
we can define a linear functional A, A,(;t) on lnd (;tiP, G) by

(1) (A,, f)= lim t" f(wtn)$(n) -1 dn,
H

where the limit is taken over a sequence of compact subgroups H, of N with= H N. We refer to such limits as Cauchy principal value integrals.
Note that A, annihilates V(N(o)).
We are interested in the case ;tiP(o)= 1, G P. G(o). Then Vt is one-

dimensional. Let the spherical function Cz be the unique "function in Vt

with b(e) 1. We must evaluate (A,, ) for certain characters $. To do this,
first notice that

(2) (A,,lnt(a), b)= 5p(a);t-l(a)(A,, dp(a)),

for each a A-. In each orbit of A acting on the characters of N, there is a
character $ for which the integral (A,, n(a)b) is not so difficult to evaluate.
The idea is then to write e, (2,, )f, so

(3) (A,, r(a)) w-1;t(a)3w(a)(2,, b)(A,, f).
PwP

Take bw to be the restriction of to PwB. To evaluate (A,, f) we write

Cw X (2,,,
PxP
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and invert the linear operator with matrix entries <2x, tkw). By virtue of the
functional equation proved in [9] we can avoid calculating half of the terms
<A, fw>. However, to use the functional equation, we must extend each 2w to
all but finitely many spaces Ind (ZI P, G) with Z P(o)-= 1. Such Z are called
unramified.

1.5. We now extend the definition of 2, 2w(Z) to almost all unramified Z.
Let V Ind (KIP, G) as before, and given a subset X of G with PX X, let
V[X] be the space of locally constant functions f: X---} C such that

(1)
(2)

f(bg) z(b)f(9) for all b P and 9 G,
P\supp (f) is compact.

Let l(w) dim (P\PwP) and arrange a family wx, w2, w of representatives
for P\G/P with l(w l) < /(w2) <’"< l(wt). Then one has a sequence of open
subsets X of G such that X PwP and each X is the disjoint union of X +

with Pw P. As in [9, Lemma 1.4.3], one sees that the sequence

(1) 0- V[Xt+ l] =’ V[Xt] .t’ VEPwtP]-, 0

is exact, with a inclusion and ff restriction.
For any smooth N-module V’, let V’(N) (’]s V’(H), where H runs through

the compact subgroups of N; see 1.2. Let Vv V’/V’(N). The functor V’ Vv
is easily seen to be exact, hence the sequence

(2) o-, v[x + ] ’ v[x’], V[Pwt P]v--} 0

is exact for each i. Let vs be the image of v V’ in Vv.
Each space V[PwP]N is naturally an A-module, and we denote the represen-

tation by rcN. For a A and v V[PwP]s we find after a brief calculation

(3) nx(a)v w- 1z(a)fw(a)v.

If the characters w-Ix t are distinct for the different double cosets PwP,
then Z is called reoular. In this case, Vs - eP V[PwP]u, and, to make the
isomorphism explicit, we construct projections Hk" VN--. V[PWkP]S for
l<k<t.

Fix k with 1 < k < t. For i= 1, 2, let w wt and Zt w-lz
Choose at e A such that zt(at) Zk(at) and define St" V V by St(v)
-zt(at)v. Note that if v V[Xt], then St(v)u V[Xt+ 1] because flv(St(v)s)=
0, so there are induced maps St" V[Xt]N -* V[Xt+l] Define Hk"

N"

Vu--} v[xk]s by

(4) rig (zg(at) xt(at)) flno Sg_l Sg_ 2 $1.
\i=1
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By 1.3 (1) we have, for w WR and j < k,

whenever the right side exists, e.g., if n --f(wn) is compactly supported. There-
fore,

(5) (2, v> f(wn)d,n,
w- 1Pw\N

for any f VPwP] such that fN H(v) We can find such f for any v, how-
ever, so formula (5) allows us to extend the definition of 2 to all of V,
provided Z is regular.

2. The arithmetic group

2.1. We recall Freudenthal’s description of a simply connected algebraic
Q-group G such that (R) is isogenous to Aut (T); f. the introduction. For
details, see I-1, Section 31. Let det be the generic norm and tr be the generic
trace on J. The Jordan product of X and Y is X Y and the identity element
is E. There is a bilinear map (X, Y)-,X Y from to , with the
property that X (X X) det (X)E, and we let X* X X.
For any field K let V and V’ be copies of the underlying vector space of the

Jordan algebra J(K) of K-rational points in . Let 2 and 2’ be copies of K,
and let the K-vector space W(K) be defined by

W(K)= VF, V’ F_,’.

The group fg(K) is then the group of elements in GL(W, K) that preserve both
a certain quartic form . on W(K) and a certain alternating bilinear form
{ } on W(K). Let A J(Z) be the lattice of matrices in J whose coef-
ficients lie in the maximal order o of the Cayley algebra , as defined in [1,
Section 1]. The identifications of V and V’ with J give lattices V(Z) in V and
V’(Z) in V’. Define a lattice W(Z) in W by

w(z) v(z) ze v’(z) ze’,

where e (0, 1, 0, 0) and e’ (0, 0, 0, 1). Then the stabilizer F f(Z) of W(Z)
in fg(Q) is an arithmetic group considered by Baily in [1], where it is proved
that F is maximal among arithmetic subgroups of G(Q). As a consequence of
strong approximation, [ 11], one finds that for each rational prime p, the group
G(Z,) is a maximal compact subgroup of f(Q).

Let ’(K) be the stabilizer, in f(K), of Ke’ and let ’-(K) be the stabilizer, in
f(K), of Ke. For each element B J(K) we define an element u in the
unipotent radical V’- of- by

X

(1) u , X+’B

’+ (B, X’) + (B*, X) + det B
X’ + 2B x,X + ’B*
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Note that u maps the additive group of J isomorphically onto -. As a
Levi complement to t/’- we take t’ # -.

2.2. It is necessary to consider an extension f# of (, namely, the group of
similitudes of the forms . and { }. That is, an element # e GL(W, K) lies
in (a if there exists 2 e K such that .(g. x)= 2.(x) and {g.x, . y}
2{x, y} for all x, y W. In particular G contains the elements

It(t)" (X, , X’, ’) (tX, t-, X’, t2’) (t GL(1)).

By a short calculation/(t)-uff/(t) ut. The element e f(Z) defined by

(x, , x’, ’) (-x, -’, x, )
satisfies Int (0V V’ and Int (0 #(t) #(t) c( t), where c(-t) acts on W
as multiplication by -t and clearly lies in the center of (. It follows that
Int (/(t)) acts on as scalar multiplication by t e GL(1). Let S, be the image
of/ in f# and, for each algebraic subgroup H of f, normalized by Su, let
H H Su. Note that for each rational prime p, f(Zp) fg(Z,) Su(Z,) is a
maximal compact subgroup of f*(Qn).Let un Int (Ou-n.

Define a rational character Zs" P* ---} GL(1) by

x(b) det (Int (b)E).

Note that Z(g(t)) t3 for t GL(1), while det. (Ad (#(t)) 27, where n is the
Lie algebra of. Since both ;O and det. Ad are trivial on the center of (9"
and since is a rank-1 parabolic subgroup of f, we have det. Ad Ct)9.
Note that the modulus character of (Qn) for any prime p is given by

6(b) ]det. (Ad (b))ln for b #(Q).
For each prime p and for each complex number s we let ;t(b)= I;t(b)l/2,
b (Qn). We sometimes write z ;t.

2.3. LEMMA. For each rational prime p, ((Q,) (Z,)#(Q,).

Proofi For each 9 . fa(Q,) we wish to find ? fg(Z,) such that ?a(e’)
Qp. e’. Our proof is adapted from [1, 5.2]. In 1-6], Freudenthal defined an
algebraic cone 931, in W invariant under f and satisfying, among other con-
ditions,

X xX=’X’, X’ xX’=X, XoX’=’E
for (X, , X’, ’) 9X. Since e’ 9X and since (X, , X’, ’) 9X with X 0 but
’=/= 0 implies X’= 0 and 0, it suffices to find ? f(Z,) such that
?9(e’) (0, , X’, ’). We begin by choosing ?o in ((Zn) so that #(e’) (X, , X’,
’) has I’ Ip maximal. We claim that (’)-1X J(Z,). Suppose not. We may
assume that X is in elementary divisor form by [1, 3.4]. Now the first diagonal
entry of X, say d, must have p-adic order ordp (d) < ordn (’). Let e denote the
idempotent of J with ith diagonal entry 1 and all other entries 0, and set
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B -et. Then uB),og(e’)= (*, *, *, ’-d), and the p-adic order of ’-d is
strictly smaller than that of ’, contrary to assumption.

Let Y (t)-lX and note that u?,og(e’)= (0, *, *, ’). Since ’= 0,
u?Yo g(e’) ’e’, as required.

2.4. Let Bp be the subgroup of all ((Z,) such that ,(e’) a,e’ + pw with
w W(Z). We shall need an Iwahori decomposition for B,. Let N-(p) be the
image of pJ(Zt, under X-u.

2.4.1. LEMMA. Bv N-(p)#(Zv),A(Zv).

Proof. We first show that Bv=N-(p)(Zv). Suppose #Bv, so
#(e’) ae’ + pw, with w 6 W(Zv) and a 6 Zv Then it suffices to show that we
can find Y 6 pJ(Zv) with ua(e’) Q" e’. However, since #(e’)6 , as in 2.3
above, we need only show that u a(e’) (0, *, *, ’) with ’ - 0. Take Y X,
where a(e’) (X, , X’, ’). Then u-(X, , X’, ’) (0, *, *, ’), and ’ is a p-adic
unit. Therefore, u?0(e’) ’(e’).
To finish, we must show that (Z,)= ’(Z,)vV’(Z,). By [2, 3.14] each b

(Q,) can be written mn with m ’(Q), n vl(Q). Clearly, it suffices to
show that m ’(Z,) whenever b e (Z). We have

m(X, , X’, ’)= (re(m). X, v(m), rr*(m) X, v*(m)’)

where zr*=zrolnt(0 and v*=volnt(0. Since fg(Z) and since
v(m) det (zr(m) E) is in Z whenever r(m) GL(J, Z,), it suffices to check
that rr(m) X J(Zp) whenever X J(Z,). However, if X J(Z,) and n ur,
then

muy(X, O, O, O) (zr(m) X, O, O, *) W(Z,),
so zr(m) X J(Z,) also, as required.

2.5. In [1, 4.1] there appears a maximal Q-split torus St of f# such that the
components of J in its Peirce decomposition (as an algebra "of matrices over
the Cayley algebra) are the weight spaces of St in C. The relative Q-root
system of f# with respect to St is of type Ca. Also, Baily defined representatives
l(j) (Z), j 0, 1, 2, 3, for the double cosets (Q)x(Q) with x fg(Q). It is
easy to describe the effect of ttJ), on the roots of St in V. Namely, the roots
are of the form + e,, where Int (t)e (t)Ze if St, and where we write
the product additively. We have

and

)( + ,)= <j)() + <j>(,)

ek if k > j,
l(J)(’k)

ek if k _< j.

An important fact about the double coset decomposition with respect to
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is that each double coset (Qv)a(Qv) with # e f(Qv) contains a point of
f(Q), see [9, 4.5.3]. Thus, the t)’s are a complete family of representatives for
the double cosets (Q)a(Q), ff e ((Q).
We let s’ be the largest subtorus of S(= St S) on which e e for all

and j. Let A S’(Q).

2.6. Recall that un -tu-n N; see 2.1 (1). Then the action of ’# on
vl via conjugation leads to an action of’ on J. Namely, for each m e ’,
define m B J by

(1) tim. B m us m -1.

Fix a prime p. According to I-1, 3.4], each element X of J(Qv) can be brought
into elementary divisor form (that is, reduced form) by the action of ’(Z).
Namely, for some m ’(Z),

m X d2 (diagonal matrix),
d3

and d divides d+ for i= 1, 2. We let v(X)= ordv (d) be ith p-adic order
invariant of X, for 1, 2, or 3, and we let vo(X) 1. Let G f(Qv), B By,
P (Qv)and w 0 for 0 < < 3.
Let N be the product of the root spaces for e + ek with j _< and k < i, and

let jr0 be the corresponding Jordan subalgebra. The proof of Lemma 3.4 in [1]
shows that each X jt0(Qv)can be brought into reduced form by elements of

’(z) r w-’(Z)w,.

2.6.1. LEMMA. If X jt0(Qv) and v_+ I(X) > 0 > v_j(X), then WUx
Pw B. Moreover, ifw Ux bwg fl with b P and fl B, then.

dip(b)-- H
k=l

Proof. First observe that a simdar statement holds for Go SL(2, Q) with
Po the upper triangular Borel subgroup, Bo the Iwahori subgroup obtained as
the inverse image of the reduction of Po mod p in SL(2, Z/pZ), tro e and

(010) (’0 7)crl -1 Vx=

Namely, ao vx e Po Bo for all x e Qp, tylv e Po trlBo if x e Zv, and trlv e Po
Bo if x Zv.
We begin by reducing X by elements of ’(Zv) c w’(Zv)w- 1, so we may
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assume that X ,= akek. Suppose that j i- 1, so a Zr, but ak Z
for k _> 2. By [1, 7.7], there are isomorphic injections k of $L(2) into ff that
take tr to t and vx to u. We have ik(SL(2, Zv)) ff(Zv), i(Bo) B and
ik(Po) P. Let B i:(Bo), P i:(Po). Let x a e:. Then w u P B, so
w u P B and

wux wwPB PwwB
because ww is a product of ’s, each of which centralizes P. Now, by [1,
2.4], both P and B contain representative for the Weyl group of ’, which acts
as the full symmetric group on the e:s. Therefore Pww tB Pw_ B, and we
have w Ux Pw_ B.
Ifw Ux bB with b e P, then w Ux b mw_ B for some m t’(Z) and

6p(b m) 6e(b) p8tx), as required.
Cases where j :/: 1 are handled similarly.

2.7. By Lemma 2.6.1, the double cosets PwB are distinct. However, in
order to apply the method described in 1.4, we would require that G
Oa o Pw B. In fact, this is not difficult to prove if p > 3. We sketch a proof.
Let f9v be the reduction of f modulo p. It is a split group over Fv, the field of
p elements, and is of type E7. Corresponding to the algebraic subgroups ,-, :, etc. in f are algebraic subgroups v, -, V’v in fqv. Let
p" ((Zv)--+Gv= fCv(Fv) be the mod p reduction map, and note that
p((Zv)

_
P v(Fv), etc. By [3, Theorem 5!, Nv and N- generate Gv, but

clearlyN p(,:(Z)), and similarly with N-, so p(fC(Z)) G. Now, one can
deduce from root theoretic manipulations plus !" 9, 4.5.3 ] that the p(w)’s are
representatives for the Pv double cosets in G. Since p is surjective, it follows that

3 3

G(Zv) 0 P- (Pv P(w,)Pv) 0 Bwi B.
i=0 i=0

By Iwahori decomposition for B we have BwB (Zv)w B, so P. Bw B
Pw B, but P fq(Z) G, so -o PwB G.
For p < 3, however, we do not know that G a=o PwB. To avoid this,

we modify the procedure described in 1.4.

2.7.1. Let q, be the restriction to PwB of the spherical function b, and let
ck dpw for 0, 1, 2, 3. Let Vrg )a= o Cb and let BVsi,g be the space
generated by bw’S corresponding to double cosets PwB not among the Pw B’s.
Then VB VrBeg BVg, and we let Hrgbe the projection onto Vtreg"

Let q/ be a character of J(Qv)/J(Zv) and note that, for any non-trivial
character zv of Q, there exists T J(Q) such that

q/(x) zv((T, x)) (x J(Qv)),
where (T, x)= trs (T x). We take zv to be trivial on Zv but non-trivial on
p-1Zv. Then T J(Zv) because J(Zv) is self-adjoint with respect to the bilinear
form( )onJ;se [1, 1.5].
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2.7.2. We wish to calculate the linear functionals A A(Z) defined by the
Cauchy principal value integral (see 1.4)

(A,, f) J f(w3 n)k(n) -1 dn

for eachf Ind (;tiP, G). Let w w. Recall from 1.5 that the linear functional

2 satisfies

(2,, f) f f(wn)dn
w- 1Pw\N

forf Ind (zIP, G) whenever the right side converges. Since, by Lemma 2.6.1,
wN c PxB is empty unless PxB PwB for some j < i, we see that
annihilates Vsing as do the 2’s. Furthermore, (2, b#)= 0 if i< j, and
b) 1 because PwN c PwB Pw.A/’(Z,) by Lemma 2.6.1. Clearly, the
matrix ((2, b#))o is lower triangular unipotent, hence the 2’s form a basis for

Bthe dual of Vg. Let {f} be the dual basis to the basis {2}oss3 of Vg. Then
f3 ba andf2 b2 (23,

2.7.3. Let A- {a A#: aN-(p)a-
_

N-(p)}. Suppose a A-. Then, by
1.2.2 (1) and 1.3 (1),

(1) rI,g n((a)f) w; x(a)f(a)f,
where 6# 6w is the modulus of Int (a) on N c wxPw#\N. It follows that

(2) (A,, (a)f) w- Xz(a)6(a)(A,, f).
Since (a)tp ’.=o (2#, )(a)f, we have the important formula

3

(3) (At,, r(a)b) (2, dp)w]-Xx(a)6(a)(A,, f).
j=O

Let

(4) (,(;t, a)= (A,, n(a))/(A,, ),
(5) c (x)
By [9, 4.7 (1)] we have the functional equation (,(Z, a) (,(6;t-, a).

2.7.4. LEMMA. For a A#(=So#(Q;,)) we have wif(a)fi(a) 6a_i(a),
0<i<3.

Proof. This is obvious for 0 or 3, so suppose 1. Recall that the
maximal Q-split torus S in / leaves invariant under conjugation the lines
spanned by the orthogonal idempotents e (i 1, 2, 3) in J (= r). The
character t with Int(t)e (t)e, for S, corresponds to the Q-root 2e, and
we find that the modulus of Int(t) on the 8-dimensional Peirce components J
(with j =/= 1) is (t)%gt) I. Let t (t). Then 6(0 [tlt2t3 [p9 and, noting that
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N wflpwj\N can be identified with the subalgebra ju)= (Jkk, where
0 < k, k’ < j, we see that di,(t) tl Ip, di2(t) tit2 I, and w16(t) It? lt2t319p.
Since S’ is the subtorus of S defined by t, t2 t3, if we let 0q(a), then

wx(a)x(a)--[ t9 Ipl t[,--[tl --6(a).

The case 2 is similiar.

2.7.5. Let 9- 9- I)lTf2 as in 2.2, s C. Then Z(t)= It,t2tal/2 and
(w(t))j t’ with e 1 if < j and e 1 if _> j. Therefore,

g(w,a) z(a) 1/3, Z(w2a) z(a)-1/3 and Z(w3a)= z(a)-1 for a e A*.

Let di 1, so Z t3s, 62 1o, di 63 t27. We have

t27 3s
W1 IZ (I I +s, W-Iz 12 lO-s and w-’Z 63

For s :/= 1/2, 5/2, 9/2, 13/2 or 17/2, the characters wf-lZ.61 are distinct and
therefore linearly independent, i.e., Z is a regular character. The functional
equation (,(Z, a) (,(6Z-1, a) therefore implies that, if Z is regular, then

(1) Ci(6Z- 1) Ca-(Z).

Moreover, since s- (,(Zs, a) is an analytic function of s and since our formulas
will be analytic, there is no harm in restricting our attention to the regular
characters.
To compute the value of (,(Z, a), it suffices to compute Ca(X) and C2(Z),

which requires the calculation of <A,, (>, <23, (>, <A,, b3>, <23, 2> and
<A,, (k2>, but only for a restricted class of characters . This will be done in
the next section.

3. Values of some p-adic integrals

3.1 We first evaluate (A,(Zs), b), where ,(X) z,((T, X)) with z, the
standard character on Q,/Z, and T J(Z,) but T pJ(Z,). CAll such ff and T
primitive. Observe that each orbit of A * on J(Q,) contains a primitive T.
Observe also that (A,, b> coincides with S,(T) calculated in [8, Section 12]
except that we must replace 9 there by s. In particular, we may assume that
T D(t, t’, t"), the diagonal matrix with diagonal (t, t’, t"), and that is a
p-adic unit. From formula (12.11) of [8-1,

(1) <Ao(z), b) (1 p-)(1 p-)(1 pS-)r(T),

r,(T)
m=O

and since ordp (t) 0 we have, from (12.10) of [8],

(2) a:,(T) Cm(T),

where dPm(T is defined by [8, 12.3]. Let T’ be the 2 by 2 lower right corner of
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T. Then bm(T) coincides with ,(T’) of [8, Section 6]. By (6.5) and (6.6) of [8],
then

m=O k=O m=k

where z’ ordp (t’) and d ord, (t’t"). It follows from (1) that

’ d-k

(4) (A,(zs), b) (1 p-S)(1 p4-)(1 p8-S) p,k pm(9-s).
k=O m=k

3.2. We let jr2, 3 be the subalgebra of all matrices in J with first row equal
zero. Henceforth Z will always denote an element of jr2, 3(Z).
To finish computing Ca(;t) we must evaluate (Ao, f3) and (23, b). Recall

from 2.7.2 that f3 ba is the restriction of b to PwaB. By Lemma 2.6.1 we
have

hence,

w3N PwaB w3o/(Zp);

(1) (A,, f3) | dp(w3 n)q(n)- dn 1
(z,)

because dp(w3n) 1 (n) if n /’(Z,).
The integral (23, rk) N qb(w3n)dn can bc evaluated by using results from

I-8-1, since it is Sp(0). Namely, from Section 12 of I-8-1,

(2) (2a, ) (1 p-)(1 p4-S)(1 p8-) pmt8-s),(O)
m=0

where
k

E E
k=O i=0

and ff, is the number of Z jt2, 3(Z)/pmjt2, 3(Z satisfying Q(Z) 0 (mod pro)
with Q the quadratic form

Q(Z,=bc-z if Z ( :).
However, ff,-k is the same as m-k(0) in Section 6 of [8-1, so its value can be
extracted from the results there"

m-k m--kp4(m-k) k 2 p4j p4j(3) Om k pro- pm 1-k

j=O j=O

Therefore, we find that

/’m-k )(4) 0’(0) pm k=oP3k,=oP3 {dk dk-},
k

where dk pk 2 p4j.
j=O
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By letting + k and changing the order of summation we have

(5) Z pm(S-s)(X(O) (1 p9-S)-x (dk dk- 1) Z pl(12-s),
m=O k=0 l=k

dkpkt12-s) Substituting for dand the right side reduces to (1 pg-) o__
and summing yields the value (1 p9-)- x(1 pX3-)- x(1 p-)- for the
right side, hence

(6) (23, ) (1 p-)(1 p-)(1 pa -)/(1 p9 -)(1 pX a -)(1 pX, -).
Therefore,

’ d-k

k=O m=k

3.3. Recall from 2.7.2 thatf2 2 (, 2) 3. We now calculate

(23, 2) 2(n)n for X X

with Re () suciently large to insure convergence.
From Lemma 2.6.1 we find that 2(3Ux) 0 if and only if X has exactly

one elementary divisor d not in Zv, in which case, if ordv (d)= -m, then
2(3ux) p-m. For such an X with elementary divisors d:, d2, and d, we
have pmx lies in J(Zv) but not in pJ(Zv); (pmX)*= mx) pmx has ele-
mentary divisors

p2mdd2, p2mdxd3 and p2md2d3,

which are in mzv, so mx)* J(Zv); det X) psmdd2d3 p2mzv. Con-
versely, if X J(Zv) satisfies X 0 (rood p), X* 0 (rood pro) and det X 0
(rood p2m), then Y p-reX has 2(3ur) p-m. Let am be the number of such
x (z)/v(z). Then

(1) 3, 2 aP-.
m=0

Let Am be the number of integral X rood p with X* 0 (rood pro) and
det X 0 (rood p2m). Let A be the number of X rood pm with X 0 (rood p),
X* 0 (mod m) and det X 0 (mod 2m). Then am A A. By [8, 4.7]
we have

2) 1 v-) L amV- s0),
m=0

which is (, ) and has been clculted in 3.2 (6). The next few subsections
are devoted to ewluating A by the techniques of 8].

3.3.1. Let q pm. As in [8, Section 8]

1) a tz).
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where the sum ranges over Z J{2’a}(Z) modulo q with Z--0 (mod p),
Q(Z) =- 0 (mod q) and where tim(Z) is the number of pairs (a, W) mod q with

satisfying"

0 x y)* 0 0 J12J13
* 0 0

(i) a -= 0 (mod p) and W -= 0 (mod p),
(ii) W* + 2ael x Z =_ O (mod q),

(iii) W(2el x Z) =_ 0 (mod q),
(iv) aQ(Z) + (W*, Z) =- 0 (mod q2).

By the argument of [8, p. 192] we may restrict our attention to Z’s that are in
reduced form, i.e., Z D(0, b, c) with b lc, because the p-adic order invariants
of Z determine tim(Z).
We distinguish three cases" (I) c 0 (mod q), (II) b 0 (mod q) but c 0

(mod q), (III) b 0 (mod q). Case I reduces to calculation done in I-8] because
c 0 (mod q) implies that a 0 (mod p) and W =- 0 (mod p) whenever con-
ditions (ii), (iii), and (iv) hold. To see this, note that one has ab =- N,(x) and
ac =- N(y), where N denotes the reduced norm in the Cayley algebra . This
gives abc =-cN,(x) (mod qc), abc =-bNc(y) (mod qb) and we have also, from
(iv), abc =- cN(x) + bN(y) (mod q2). Thus, abc =- 0 (mod qb), from which it
follows that ac =-0 (mod q), hence a =-0 (mod p). From (iii) we have
cx =- by =- 0 (mod q) hence x y =- 0 (mod p). It follows that in Case I,

(1) tim(z) P4m{fl’m(Z) fln- 1GO- 1Z)},
as in [8, (10.9)] with fl’m(Z) ]b I;lc I; ’,-- o p-, and

k kin(Z)= min {m, ordp (b), ordp (bc)- m}.
Thus, in Case I we have

k k-1

(2) tim(Z)--" pSm+k Z pai pam+k-5 Z pal.
i=0 i=0

3.3.2. We now turn to Case II, where we may take ordp (b) k < m and
ordp (c) m. Conditions (i)-(iv) of 3.3.1 can be rewritten"

x -= 0 (mod p), y 0 (mod p-), (y/pm-) =_ 0 (mod p),

N(y/pm-) =- 0 (mod p) and N(x) 0 (mod p+ 1).
If x is in the maximal order o of the Cayley algebra, let A(x) denote the
number of y o/pm+o with y -= N(y) 0 (mod pk). Then

(1) tim(Z) pk-16m Z A(x),

where the sum runs over x a/q2a with x 0 (mod p), N(x) =- 0 (mod pk+ 1).
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Let

f(x) min {k, ordp (x), ordp (No(x))- k},
where ord (x) is the integer n with p-"x o, p-1-"x o. By results from [8,
Section 10] we have

(2)

where x ranges over Dipk+ 1o subject to the restrictions x 0 (mod p) and
N, (x) 0 (mod pk+ t); these restrictions are equivalent to f(x) > O.
Let ak(F) be the number of x o/f’+ o withf(x) > F andf(x) > 1, and note

that ak(F) pSa’(k- F) whenever k > F > 1, where a’(n) is defined to be the
number of x o/p"o with ordp (No(x)) > n. Also, ak(O) pSa’(k- 1) for k > 1.
From [8, Section 10],

Clearly then,

t k-1

tr’(k) p4k Z pa,_ p4k-1 Z pa,.
i=0 i=0

(3)
k k

tim(Z) p8m-3k Z P3"a’(k n) + a’(k 1)- Z p3"-*a’(k n).
n=l n=l

k pal,Since E.k=o pa"tr’(k n)= pk i=0 we have

(4)

and finally in Case II, we have

(5) tim(Z) pare+k-5 p4 4" p- 1) pai__ pai
t= i=0

A straightforward calculation shows that in Case II we can write

k k-1

(6) tim(Z) p8m +k Z pai pSm +k-5 Z pai -I- dm(k),
i=0 i=0

dm(k p8m+k-S(p4__ 1)(p- 1)/(pa- 1)- pam+4k-8(p4_ 1)(p7 1)/(pa__ 1).

3.3.3. For later use we need the number of Z j{2, 3}(Z)/pmj{2, 3}(Z that fall
into Case II with kin(Z) k, 1 < k < m. The number is the same as the number
of Z (mod pro-k) with Z 0 (rood p) and Q(Z)=_ 0 (mod pro-k), call it d’m-k.
Let d be the number of Z (rood p") with Q(Z) =_ 0 (rood p"). If n > 1, then
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d’. d,’ pld"--.- 2, while d d 1. We have d 0(0) in the notation of [8,
Section 6], so it follows that

(1) d, pS" p4i pS-
i=0 i=0

A brief calculation yields

(2) ; (1 + p-’) p"+-).
Let d E=2 P {za.( )}, where for each m the inner sum ranges over Z

(mod p’) that fall into Case II, and d,(Z) d(k.(Z)). One verifies easily that
m-1

p8-’-8 -’a’e ._ p (1 + p ")(p 1)p-’/(1 p-’)(1 p-’)
m=2 k=l

and that

"-
(p -/( p7 pg-).p-" pd;_ p + 1 p 1 -1

m=2 k=l

It follows that

(3) d (pS_ 1)(pa 1)p2-2S[(p_ 1)/(1- p9-S)

(p7 1)/(1 p2-s)]/(p3 1)(1 pl

We let dm be the coefficient of p-ms in the power series expansion of d.

3.3.4. To complete the calculation of A, it remains only to deal with Case
III, where we must compute tim(O), which is the number of

(a, x, y) p(Z x o x o)/pm(Z x o x a)

that satisfy N,(x) =_ N, (y) x -= 0 (mod pro). Clearly, if m >_ 2, then tim(O)
pro+ SDm_2 where Dk is the number of (x, y) o x o/pk(o X O) with Nc(x
N,.(y) x 0 (mod pk). From [8, Lemma 2.4],

(1) Dk p4k paak(j pa-4trk(j)

where ak(j) is the number of x o/pko with x 0 (mod p) and N(x)= 0
(mod pk+ j). Since trk(j) ao(k -j), and, by [8, p. 182],

k-j k-(j+ 1}

fro(k j) p,,k-4 p3, p4k-4-
i--0 i-0

we find after a straightforward calculation that

(2) Dk pSk pai p- pal
ki=O i=0
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Therefore, if rn > 2, then

fm-= m 3

(3) tim(O) p9m-1 p3i Z p3i- 5

i=0

Therefore, we have,

(4) tim(O)--’- p4m p5m Z p3i__ pS(m-1) Z p3i dt Cm
k =0 =0 .)

where, for m > 2,

(5) Cm [(p5_ 1)(p- 1)p9m-6- (pT__ 1)(p8 1)p12m-12]/(p3__ 1).

Let c =2 crop-m. Then

(6)

c--(p- 1)(p5- 1)/(1- p9-S)_ (pT_ 1)(pa 1)/(1- plZ-s)-]plZ-Zs/(p3_ 1).

Moreover, with d as in 3.3.3 (3),

(7) c + d (1 + p’ p9 pX2)p17-2/(1 pX7-s).
-mz’ and (23 bz) A A’. Let3.3.6. We now calculate A’ =o P

k

fl’.(z) p’" + Z
i’-O

where

k km(Z min (m, ord, (b), ordp (bc)- m).
k- pSfl’ (p A) + providedNote that p4m+k- 5 Zi=O pai pam+4k

Z =- 0 (mod p), so

tim(Z) (p5 1)p4mfl’ (P- Z) q- p4m + 4k -t- cm(Z -I" dm(Z),

where dm(Z 0 unless Z 0 (mod pm) and c,,(Z) 0 unless c = 0 (mod pm)
and b 0 (mod pro).
We let am(Z)= (p5 1)pSmfl,m_l(p- IZ), and bin(Z)= pSS+,k. We require the

values of

a=y=2 am(Z p-ms and b-- Z bm(Z p-mS,
m"2

where Z runs mod p" with Z 0 (mod p). We note that

a p4-(p5 1) Z p(4-s)m Z fln(Z)
m=O Z
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where Z runs mod pm without restriction. Comparing this with 18, 10.101, we
see that

(1) a (p5 1)p,t-s(2a, b)/(1 p-S)(1 p4-S) (p5 1)p,-s.

On the other hand, we can calculate b by counting Z (mod pro) such that
Z=0 (mod p) and kin(Z)= k. For example, if k > 1, this is m-k(O)
m-k-1 (0), where ,(0)is the number of Z (mod f) with Q(Z) =- 0 (mod f).

If k 0, we have plm_ 2(0)- m-1(0) such values for Z. Using the fact [8,
Section 6] that

(2) .(0) p5. p_ pS.- p,
i=0 i=0

a lengthy but routine calculation yields

(3) b [p2-, + s p7 pa)pS-2]/(1 pa-l p7-) p2-.

Recall that (23, 2) A A’, A’ a + b + c + d + p- + 1. Assembling
the results (1) and (3) above along with the values of A, c and d, we find that

(4) (, ) (1 pS-)(1 + p9-, + p-’)/(1 p7-’) f-" p-" 1.

3.4. To calculate C2(Z) we need the values of (22, ) and (A,f2), where
A (z, > .

3.4.1. We have

22, tk) N dp(wn)d,,n,
w- 1Pw\N

where w w2. The subgroup N w-tPw is the product of root groups
corresponding to the roots ei + ca, so we can identify N w-tPw\N with the
product of root groups ei + ej with 1 < i, j < 2. This makes it possible to
identify the integral with the following sum, which is evaluated in I-8,
Section 6-1"

(1)

Thus

(2)

(1 p-S) Om(O)p-mS (1 p-S)(1 p,-S) pak pro(S-s)
m=O k=O m=k

(/2, t) (1 p-S)(1 p4-S)/(1 pS-S)(1 p9-S).

3.4.2. We have (A,, f2) (A,, b2) (23, b2) because (A,, ba) 1; cf.
3.2 (1). Thus, we must calculate (A,, b2). Recall that ck2(WaUx) 4:0 if and only
if X has exactly one p-adic order invariant < 0. Suppose that q/(X) Zp((T, X))
with T primitive in J(Zp). Let 09, Zp(a/pm), and let

Am E (’O(mT’x)
X
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where the sum ranges over X J(Z,)/pmj(z,) satisfying X* =- 0 (mod pro) and
det (X) =- 0 (mod p2m). Let

A: Z ’x)

X

where the sum runs over X J(Z,)/pIj(Z,) satisfying X*= 0 (mod pro),
det (X) =- 0 (mod p2m) and X _= 0 (mod p). Then

(1) 2> P-m(A,,,- A’,,,)= A- A’,
m=l

where A 2=x P mSAm and A’=

3.4.3. From [8, Section 11] we have

(2) Am-- E OJ(mT’X)flm(T; Z)’
Z

summed over Z J(2)(Zp)/pmj(2)(Zp) with

tim(T" Z)= p4m{ffm(T; Z)- fl,_ (T; p-XZ)},

and fl,(T; Z) is the characteristic function of the set of Z with Q(Z)=-0
(mod pro). Then

(3) A (1 p4-S) E X’mPm(4-s) 1,
m=0

with

(4) E
Z

where Z is summed modulo pm with the restriction Q(Z) 0 (mod pm). As in
[8, Section 6] one finds that

z’ d -k

(5) A -(1 p4-S)(1 pS-S) p4k E pm(9-s)
k=0 m=k

where z’= ordp (t’) and d ordp (t’t") if T is reduced with diagonal (t, t’, t").
Let

’ d-k

(6) Fr(X) Z p4k E xm"
k=O m=k

3.4.4. The calculation of A, proceeds by the method of [8, Sections 8-9].
Let T’ be the lower right 2 by 2 submatrix of T and let ,(T’) be as in [8,
Section 6]. In particular, if T’ is not integral, then ,(T’) 0. The result of the
calculation for m > 2 is

(1) A, p4m+ xo.,_z(p-a T, p4mom_ l(T,).

From [8, Section 6], we have

(2) A’= p- + p’- + (1 pS-)[pXS-2Fr/p(p9-S p4-Fr(p9-)]"
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Recall that (A,, (2) /1 l’. Since from 3.4.3 (5) we have

A (1 p’-s)(1 pS-)Fr(p9- 1

it follows that

(3) <A,, 2> -1 p-- p4-_ (1 p8-)[pla-2Fr/,(p9- Fr(p9-)].

On the other hand, (A,, f2) (A,, b2)- (23, tk2), so combining (3) with
3.3.6 (4) gives

(4) (A,,f2> (1 p8-)[--(1 + p9- + p13-)/(1 p7-)

+ Fr(p9-) pa-2Fr/t,(p9-)]"
From 2.7.3 (5),

C2(Z)

From 3.4.1 (2) and 3.1 (4) it follows that

(5) C2(Z)- [-(1 / (p4 + 1)X)/(1 paX) + Fr(X

X2Frn,(X)]/[(1 X)(1 X/p4)Fr(X)],
where X p9-S, )(, Zs.

4. The value of the Whittaker function

Having evaluated C2(Z) and C3(Z) for Z Z and for primitive , we now
compute <A,, b> for all characters , on N/’I,(Z,) and all regular unramified
characters Z on A. Observe that

(1) (A,,
and recall that, for a A-, by 2.7.3. (3),

3

(2) (A,,
j=O

Since each character of (Q,)/A/’(Z) is expressible as Int (a) for some
a e A- and some primitive character , it suffices to work with primitive
characters

4.1. Suppose that Int (a) acts on N- as multiplication by p". With
X p9-S, then X3n/2 6(a)-t/2z(a), and we have

(3) 6(a)-1/2(,(Z, a)= Co(Z)Xa"/2 + C(z)X"/2p8" + C2(z)X-"/2pa"_
C3(()X- 3n/2.

Therefore, by (1) and the functional equation

(4) (A,. h,, t,,),

8n(c(z ’)x3" + c(z ’)X"p
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We let ro(X -C3() (I(X)= C2(Z). Then, for regular Z, ro(X-X)=
Ca(6;t-1) and rgx(X-1)= C2(6Z- x). From 7.7 and 9 (5) in [1] one sees that if
(X)- zp(tr (T X)) for all X in J(Q,), then <A,, > is the pth Euler factor
as(T)(=S(T) in the notation of [1]) of the Fourier coefficient as(T) of the
Eiscnstcin series of weight s.

4.2. Let q p’. Then for primitive T e J(Z) and for m Z, m >_ 0, we
have

(1) as(pmT)n/as(T),--ro(X-1)x3m + (l(X-1)q2mX2m + l(X)q2mX 4. (o(X).

Here, the rational functions rgo(X and rgl(X are given by the formulas

(2) o(X) 1/(1 X)(1 qX)(1 q2X)FT(X)

(see 3.2 (7) and 3.4.4 (5));

(3) I(X) [-(1 4. (q 4- 1)X)/(1 q2X) 4- Fr(X X2Fr/p(X)]/
(1 X)(1 X/q)Fr(X).

4.3. The formulas for a(T) have been checked against values computed
directly from [8, Chapter III] for T pinE with m 0, 1, 2 and with E the
identity element of J and for T pinTo with m 0, 1, 2 and To D(1, 1, p).
Further computations suggested the conjecture that, for T with p-adic order
invariants z(1) 0, z(2) and z(3),

(S) (m’jj ))() as(p’nT),/as(E)t, oq’ qJ Xk

i= \j=l \ k=j

where m’ m + z(2), m" m’ + z(3) and

S(i) min (m’- i, [(m" -i)/2],

where Ix] is the largest integer less than or equal to x.
A high-speed computer evaluation of formulas (1) and 4.2 (1) with p 2 and

X 1.4, and with p 3 and X 1.2, produced additional evidence for the
conjecture. The values of T and m considered were 0 < m < 5,
0 < z(3)- z(2) < 5 and z(2) 3, 4.
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