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THE AUTOMORPHISMS OF PU2(K, f)

BY

VIJI SUNDAR AND J. H. WALTER

The automorphisms of the classical groups have been discussed in many
places [13, 1-2-1, [33, [63, [73, E93, [103. The paper presents a solution to the
problem in a minimal case heretofore not discussed. Namely, let E be a vector
space over a field K admitting an automorphism J such that j2 1. Let there
be a hermitian sesquilinear form f: E x E---, K defined relative to J. Then,
designate by U(E, f) the group of linear transformations leaving invariant f.
When dimr E n, we also use the notation U.(K, f). Let Z(U.(K, f)) desig-
nate the center of U,(K, f). Then U,(K, f)/Z(U.(K, f)) acts on the projective
geometry P(E) obtained from E. Let U.+(K, f) be the subgroup of U.(K, f)
consisting of transformations of determinant 1. Let PU.+(K, f) denote the
image of U,+(K, f)in PU.(K, f).
A sesquilinear form f is said to be anisotropic if its Witt index is zero. Then

f(x, x) 0 only if x 0. It is known that f is never anisotropic if K is finite.
Also, the group U.(K, f) contains no unipotent transformations when f is
anisotropic. This means that the action of every element of U(K, f) on E is
completely reducible.
The group U.(K, f) acting on E is the group of semilinear transformations

u acting on E relative to an automorphism tr tr(u) of K such that for all x,
y E, f(ux, uy) ef(x, y) where e is an element of K such that d e. It is
known that FU.(K, f) is the normalizer of U.+(K, f) in the group FL(K) of
semilinear transformations. Let PFU.(K, f) denote its image in the group
PFL.(K) of collineations of P(E). Then PFU.(K, f)

_
Aut PU.+(K, f). When

n > 3, it is known that PFU.(K, f) Aut PU,(K, f) except when n 4 andf
is anisotropic, the case we treat in this paper.

Indeed, the most conclusive results in this direction are due to Wonenberger
[10] who covered the cases when n # 4 and K has characteristic not 2, and
Borel and Tits [1] who in a very general argument worked out the automor-
phisms of almost simple algebraic groups defined over K when the groups
contain unipotent elements. This covers the case PU,(K, f) except when f is
anisotropic. The result of this paper is the following.

THEOREM. Letf be an anisotropic hermitian sesquilinearform defined over an
infinite field of characteristic not 2, relative to an automorphism J ofK of order
2. Then Aut PU(K, f)= PFU(K, f).
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There have been essentially two approaches to the characterization of the
automorphism of the classical groups. One approach is to study the unipotent
elements or unipotent subgroups and then to study the action of G on either
the internal BN-structure of the algebraic group or on the projective geometry.
A second approach is to use the semisimple elements of G. Involutions are the
most convenient elements of this type. Here one studies commuting invol-
utions to obtain a characterization of involutions with 2-dimensional eigen-
spaces, and also sets of noncommuting involutions in order to obtain a
characterization of the action of the automorphism on the underlying projec-
tive geometry. Because the dimension of E is small, there are not enough
involutions for the methods which handle the general case to apply directly.
To overcome this problem, other semisimple elements are used here in obtain-
ing the characterization of exceptional pairs. Also, in the characterization of
the underlying geometry in group-theoretic terms, dihedral subgroups are
used.
The techniques we introduce can be extended to the case where f has non-

zero Witt index. But this leads to a more complicated analysis due to the
existence of isotropic vectors, and not all characterizations we establish here
appear to go through directly. It seems that the approach using semisimple
elements is particularly effective in the anisotropic case.
When K is the field of real numbers or, in general, locally compact, there

exists results of Van der Waerden [8-1, Freudenthal 14] and Borel and Tits 12]
covering this case.

1. Definitions and notations
We use the terminology of Dieudonn6 [3]. Let E denote a vector space of

dimension n over an infinite field K of characteristic not 2. Assume that K
admits an involutory automorphism J: z -,.

Let f: E x E--, K denote a nondegenerate hermitian sesquilinear form rela-
tive to J. Because f is anisotropic, all subspaces and vectors are nonisotropic.
Set V+/- to be the orthogonal subspace to a subspace V. Then ] V ff VI. Let
1 be the identity transformation on E. Set

(1.1) Z {2 6 K122= 1, 24= 1},
(1.2) Z, {2112 Z}
For convenience of notation, we set G U2(K, f) and G*= PU2(K, f).
Denote images in G* under the natural homomorphism by stars. Thus an
element g* in G* may be regarded as a coset 7Z,t where # #*. We also define
for a subset S of G,

C(S) {g G l[g, S-I __.
Co(S) {g e Gl[g, S]

_
{1, -1}},

(1.3) +/- , +c,(s )= c(s)*,
+ ,c,(s )= cds)*.
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All these sets are subgroups. Clearly C(S)* Co,(S*). Two elements g* and
+ , g*h* are said to strongly commute if #* Co,(S ). Then for # 6 and h 6 h*,

[0, hi 1 when 0" and h* strongly commute.
Let n be a positive integer. For any group H, set

H (hnlh H).

PROPOSITION 1.1.

(1.4)

Let S* be a subset of G*. Then
+ ,,(s*)"

___
c,(s ).

When S* consists of involutions,
+ , +(1.5) Ca,(S*)2

_
Ca,(S

_
Ca,(S )= Ca,(S*)

Proof. Let s* 6 S* and take s 6 s*. Let g* 6 Co,(S*) and take g e g*. Then
Is, g] Z4. But Z, has exponent 4. So Is, g’] Is, g]4 1. This implies (1.4).
When s2=l, l=[s2, hl=[s, hi2. So[s, hi= +1, and[s, h2]=1. This
implies (1.5).
An involution u* of G* is said to regularly commute with a second invol-

ution v* provided

(1.6) [u*, fi*] 1

for some * G* with ,2 v*. Then v*6 Ca,(u*)2. So u* and v* strongly
commute by virtue of (1.5).
We omit consideration of the case that K is finite since the results are well

known in that case. Then we can use the following lemma to obtain the
nontriviality of Ca(u*)2 when u* is an involution.

LEMMA 1.2. Let K be an infinite field of characteristic not 2 admitting an
involutionary automorphism J. Then there are an infinite number of elements r
such that r/ar/ 1.

Proof. There exists 6 e K such that 6a -6 and K F[6] where F is the
fixed field of J. Let/ 2. Then kt F. Let 7 e F and set r/ r + fir where

0 (72 + #)/(72 #), / 27/(72 #).
2 fl2# 1. The lemma now follows since 7- r/ is an injec-Then r/vr/v v

tion.

PROPOSITION 1.3. Let V be a 2-dimensional nonisotropic subspace of E. Let
Gv be the subgroup of G leaving invariant V. Then G, acts irreducibly on V and
G, is nonabelian.

Proofi Let el be any nonisotropic vector in V and let e2 Ke so that
V Kel + Ke2. By Lemma 1.2, there exists r/e K such that r/r/a= 1 and
r/a :/= 1. Let ( r/’. Let/’, be an element of GL(Kel + Ke2) defined by/’,(et)
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r/e and /’,(e2)= r/-le2 Then /’ has determinant 1. Hence there exists an
extension t. of to an element of G since f(/’e,/’ex) lef(e, et)=f(et,

4e) and f(te2, te2)= 1-1 Xf(e2, e2)=f(e2, e2). Let (= r/*, and let t, t.
Then as ( =/= _+ 1, t is a nontrivial element of G, with two distinct eigenspaces
Ke and Ke2. Then only Ke and Ke2 are left invariant by t. Then no
subspace of V is left invariant by G*v since V always contains a vector not in
Ke or Ke2 from which a transformation not leaving invariant Ket or Ke2 can
be defined. It is now clear that G*v is nonabelian since G : (t,).

COROLLARY 1.4. Let J 1. Let V be a nonisotropic 2-dimensional subspace.
Then C6v(Gv) contains only one involution.

Proofi By Schur’s lemma, Cv(G, can be embedded in the multiplicative
group of a division ring, which necessarily contains only one involution.

2. Classification of involutions in G*

Let u* be an involution in G*. Then u2 1 where Z when u u*. Thus
TT 1 and T is a fourth root of 1. We distinguish three types of involutions:

(i) u* is ordinary if), 22 where 2ff 1 for some 2 K
(ii) u* is isotropic if), 22 where 2ff 1 for some 2 K

(iii) u* is nonordinary if is a nonsquare in K.

Clearly the type of involution is a well defined concept. Accordingly any
element u such that u* uZ, is said to be a projective involution in G. It is said
to be an ordinary, isotropic, or nonordinary projective involution according as
u* is ordinary, isotropic, or nonordinary. When r 1 and 22, 22 1.
So all involutions in G* are ordinary, isotropic, or nonordinary.

Ordinary Involutions. Let u* be an ordinary involution in G*. Let u’ u*.
Then u’2 71 where , 22, if2 1. Set u 2-lu’. Then u is an involution in
G. So E U / U- where U / and U- are the eigenspaces of u associated
with the eigenvalues 1 and -1. Then U /, U- are the eigenspaces for all the
projective involutions in u* uZg, and they will be called the spaces of u*. As
-ueuZg, we may always choose u so that dim U-<dimU/. Set
p dim U-. As dim E 4, p 1 or 2. We call u as well as u* a p-involution.

PROPOSITION 2.1. The ffroup G* always contains 2-involutions. It contains
1-involution ifand only ifZ contains a primitivefourth root of 1.

Proofi Consider the determinants of these involutions.

Let u*, v* be a pair of strongly commuting ordinary involutions of G* with
eigenspaces U /, U- and V /, V-, respectively. Let v e v*. Then v leaves
invariant both U / and U-. Set

PI U + c V+, P2 U + c V-, P3 U- c V+ and P,= U- o V-.
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Then E P1 P2 ) P3 () P4. The subspaces P, 1, 2, 3, 4, are mutually
orthogonal.

Suppose v* anticommutes with u*. Let v e v* and let U /, U- be the eigen-
spaces of u*. Then it is clear that v(U/) U-. In particular U/ and U- are
isometric.

Isotropic involutions. Let u* be an isotropic involution in G* and choose a
representative u in u*. Then u2 1 where 22, 2 is in K and 2r2 -1.
Then u’= 2-1u is an involution of FU4(K, f) with multiplier -1, and
E U/ U- where U / and U- are the eigenspaces of u’ and of u for any u
in u*; the subspaces U / and U- are totally isotropic of dimension 2 [3, p. 27].
Becausef is anisotropic, G* contains no isotropic involutions.

Nonordinary Involutions. Let u* be a nonordinary involution in G* and
choose a representative u in u*. Then u2 where is a nonsquate in K. Let
L be a quadratic extension of K obtained by adjoining a root p of y. Now E
can be considered a vector space F of dimension 2 over L by setting xp u(x)
for x in E by [3, p. 25]. The involutory automorphism J may be extended to L
by setting pr= p-. Corresponding to F, we define a new nondegenerate
hermitian sesquilinear form 7 by setting

(2.1) 7(x, y) =f(x, y) + p-f(x, u(y))

Let be an element of U4(K, f) which is relative to an automorphism z of K
and which commutes with u. Extend z to L by setting p p. Then t belongs
to FU2(L, g). Conversely, if is an element of FU2(L, g) which is relative to an
automorphism z of L such that K K, then is also an element of FU,(K, f)
which is relative to the restriction of z to K and which commutes with u.

3. Regular commuting pairs of involutions

The characterization of 2-involutions is based on a study of exceptional
strongly commuting pairs of involutions. To obtain such pairs, we take an
involution u* in G* and consider the involutions which regularly commute
with u*.

PROPOSITION 3.1. Let u* be an nonordinary involution in G*.

(i) There exists a 2-involution with which u* regularly commutes.

(ii) u* commutes only with nonordinary and 2-involutions.

Proof. By Section 2, C(u) is a subgroup of U(F, ) where F is a 2-
dimensional space over L K(p). Let v be a loinvolution in U(F, ) then v is
also a 2-involution in U(E, f) and so also in G. If Z contains a primitive
fourth root of 1, then let be defined by Iv- ilv- and I,/ 1,+ where
lv_ and 1v/ are the identity transformations on V/ and V- respectively.
Then v C(u) and 2 v. This implies that u regularly commutes with v*.
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On the other hand, suppose that Z {__+1}. Then u2=-1. Because
[u. v] 1, leaves invariant both V + and V-. Let now lv-= U lv- and
b Iv+ 1 Iv+. Then clearly 2 v and [, u] 1. So again u* regularly com-
mutes with v*. This proves (i).
To prove (ii), it is required to show that u* does not commute with any

1-involution. So let v* be a loinvolution with eigenspaces V +, V-. As dimr
V + :/: dimr V-, [u, v] 1. Then v U2(L g) acting on F E (R)r L. So dim.
V/ dimL V- 1. Then dimL V/ dimr V- 2, which gives the desired
contradiction.

PROPOSITION 3.2. Let u* be a 1-involution in G*.

(i)
(ii)

Then u* reoularly commutes with a 2-involution.
Thefield K contains a primitive eight root 2 of 1 with if2 1.

Proof. We first argue that (ii) holds. Indeed, if u* is a 1-involution, then
det u 1 for u u*. But there exists a scalar transformation 21 in E such that
u is a 1-involution in G. Then # det (1)= det (2u)= -1. So 2 is the de-
sired primitive eight root 1. It is clear that ;ta;t 1.
To prove (i), let U +, U- be the eigenspaces of u*. Then dimr U + 3. Let

e, e2, ca, e, be an orthogonal basis such that

U- Ke4 and U+ Kel Ke2 ( Ke3.
Let V-= Kel Ke2 and V+= KeaKe,. Define b on E by setting
f)(e) ie, (e2)= ie2, (ea)= ca, (e,)= e,. Then b has eigenspaces V+ and
V- and 2 4: 1. Clearly [u, v] 1. So ,2 is a 2-involution and u* commutes
with v*.

PROPOSITION 3.3. Let u* be a 2-involution in G*. Then if u*. regularly com-
mutes with some involution v* distinct from u*, it regularly commutes with some
2-involution.

Proof. Let v* be an involution in G* which regularly commutes with u*.
Then there exists * Co,(u*) such that v.2 v*. Take b* and set v b2.
Then v Co(u) where u is a 2-involution in u*.

First, take the case that v* is a nonordinary involution. Set L K[v] and
F E (R)r L. Let g be the sesquilinear extension of f to F x F such that
Ca(v

_
U2(F g). Then v, u U2(F g). Hence F U + U- where U+, U-

are the eigenspaces of u. As L K[v-I, v is a nonsquare in L. As 2 v, is a
nonordinary projective involution in U2(F, g). Then acts irreducibly on F
and hence also on E. Consequently K[b] is a maximal subfield in the simple
algebra Homr (E, E). So Co()-KIWI. But KIWI has but one involution,
namely, the scalar 1. Hence u Co(); so by (1.5), [u, ] 1.
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Then b(U /) U-. Let el, e2 be orthogonal elements of U /, and set ea
v(el) and e4=v(e2). Take W/=KexKes and W-=Ke2Ke4. Set
w(e) ea, w(ea) -e, w(e2) e2, and w(e) e. Then w2 is a 2-involution
w with eigenspaces W/, W-. Clearly u* regularly commutes with w.2.

Consider next that v* is a 1-involution. Then by Proposition 2.1, Z contains
a primitive fourth root of unity which we designate by 2. Again let e, e2 be
orthogonal vectors in U / and es, e, be orthogonal vectors in U-. Now set
W/= Ke Kea and W-= Ke2 )Ke,. Let w be the 2-involution with
eigenspaces W/, W-. Then [u, w] 1;so u* and w* strongly commute. Let
be the transformation defined by (e)=el, (ea)= ea, v(e2)= 2e2 and
if(e,0 2e4. Then G as 22"r= 1. Clearly 2= w and w C(u). So u*
regularly commutes with w*. Thus in all cases u* regularly commutes with a
2-involution.

4. Characterization of 2-involutions

Now, when 2-involutions fail to regularly commute with any other invol-
ution, they are distinguished by group-theoretic properties by virtue of
Propositions 3.1, 3.2, and 3.3. This section treats the remaining case. By virtue
of Proposition 3.3, we may begin with an involution u* which regularly com-
mutes with a second involution v*. Then {u*, v*} form a strongly commuting
pair.

Let {u*, v*} be a pair of strongly commuting involutions of G*. We say that
{u*, v*} is an exceptional pair of involutions provided there exist a nontrivial
element t* C.(u*, v*)2 such that C.(t*) is not contained in any of C.(u*),
C,(v*), C,(u*v*).
The following is a direct consequence of Proposition 1.1.

LMMA 4.1. Let {u*, v*} be a pair of strongly commuting involutions in G*
and take u u* and v v*. Then {u*, v*} is nonexcepIional if C(I) is contained
in one of C(u), C(v) and C(uv) whenever C(u, v) and 1.

Proof. From (1.5) and the hypothesis, it follows that

(4.1) C,(t*) C,(t*)= C(t)*
_
C(w)*

for w u, v, or uv.
We now consider a variety of cases.

Prtor,ostTION 4.2. Let {u*, v*} be a strongly commuting pair of involutions of
G* where u* is nonordinary and v* is ordinary. Then {u*, v*} is an nonexcep-
tional pair.

Proof. Take uu* and vv*. Then u2=vl where vZ,),K.2 and
,,rV 1. Let L Kip] be a quadratic extension of K obtained by adjoining p
where p2 ,, and the action of p on E is given by px ux. Let F E (R)r L,
and let # be an L-sesquilinear defined by (2.1). Then C(u)

_
U(F, #) and v is a
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1-involution of U(F, O). Thus the eigenspaces V+ and V- of v are 1-
dimensional subspaces of F.

For the purpose of showing that {u*, v*} is nonexceptional, take

t* C,(u*, v*)2 with .2 1.

Let t*; then C(u, v) by Lemma 4.1. So both V+ and V- are t-invariant.
Hence t(x)= zSx where z8 L for x V, e +, -, since It, u] 1. So V +

and V- are t-eigenspaces when z / z-.
Let s* e C,(t*)4, and take s e s*. Then Is, t] 1 by Proposition 1.1.

Consider first that z+ z-. Then s(V) is also a t-eigenspace. So either
s(V /) V+ and s(V-)= V- or s(V /) V- and s(V-)= V+. Then Is, v!

1. Hence C,(t*)’
_
C,(v*)in this case.

So it remains to consider that z / z-. Then E itself is an L-eigenspace for
t. Let z+= + tip where , fl K. By virtue of the action of u on E,

+ flu. Since It, s] 1, [u, s] 1. Hence C,(t*)’ C,(u*) in this case.
This shows that {u*, v*} is nonexceptional.

PROPOSITION 4.3. Let {u*, v*} be a stronoly commutino pair of nonordinary
involutions. Then {u*, v*} is nonexceptional.

Proof. Take u e u* and v e v*. Then u2 1 and v2 fll where fl and are
nonsquares in K. By hypothesis u* and v* are a strongly commuting pair. So
l-u, v-I 1. Let L K(p) be a quadratic extension of K obtained by adjoining a
root p of and designate by F the L-space obtained from E by setting
xp u(x) for all x e E. Let 0 be a sesquilinear extension off to F defined in
(2.1). Then C(u)

_
U2(F, 0).

If v is ordinary in U(F, 0), then p is a square in L. Since L is the splitting
field of x2 , fl (bp)2 for some b e K. Thus v2 (bu)2. Then u’v* is ordi-
nary and the result from the previous proposition applies to show that
C(t*)4 C,(u*) or C,(u*v*). Hence we may suppose that both v and uv are
nonordinary projective involutions in U(F, 0). Then we may extend L to
M L(p’) where p,2= fl and yp’= v(y) for y F. Hence M is a quadratic
extension of L. The Galois group of the extension M over K is a four group,
and M has intermediate fields K(p), K(p’) and K(pp’).

In order to show that {u*, v*} in nonexceptional, take t* C(u*, v*)2 so that
.2 1, and take t*. Then M. If K(p), K(p’) or K(pp’), then
2v, 3uv with/i K. So C(t) C(u), C(v) or C(uv), respectively.

In the remaining case, Kit] M. So

C(t) C(K[t])= C(M)= C(u, v).

Therefore, {u*, v*} is nonexceptional by Lemma 4.1.

PROPOSITION 4.4. Let {u*, v*} be a pair of stronoly commutin9 ordinary
involutions of G*. Then {u*, v*} is an exceptional pair.
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Proof. Let u e u* and v v*, and let U +, U- and V+

spaces of u and v, respectively. Set
U- be the eigen-

Pl U+ V+, P2 U+ c V-, Pa U- V + and Pa U- c V-.

As [u, v] 1, E P ) P2 ) Pa Pa. Let Pi Kei, 1, 2, 3, 4. There are
three cases according as both, one, or none of u, v are 2-involutions.

(i) Suppose u and v are 2-involutions. Then the subspaces P, 1, 2, 3, 4,
are 1-dimensional and mutually orthogonal. By Lemma 1.2, there exists K
such that r/r/J= 1 and r/a =/= 1. Define G by taking tet r/ae and te
r/-e, 2, 3, 4. Then T Kel and T2 Ke2 + Kea + Kea are the eigen-

C,(t )=spaces of t. Clearly Co(u, v). As dim Tt =/= dim Ta, Co(t)* + *
Co,(t*) by (1.5). So when w Co(t)a, w* Co.(t*)a.
Again by Lemma 1.3, there exists ( K with (t6 1 and ((J= 1. Also it

easily follows that there exists e’ T2 such that

e’ 2e2 + aea + aea with 02030a :/: 0.

Set W Ke’ and W2 W-. Let w be the transformation with eigenspaces Wt
and W2 and respective eigenvalues (a and (-1. Now (16 =/: 1 implies (12 =/: (-4.
Thus W and W2 are eigenspaces for w4. Clearly w4 Co(t)a. As W P + Pj
for 1 < < j < 4, wa Co(u), C(v), or Co(uv). As dim Wt =/: dim W2, [wa, r]

l for r u, v, or uv. Hence wa Co (r), r u, v, uv. Hence w*a fk Co.(r*),
r* u*, v*, or u’v*. Thus {u*, v*} is exceptional.

(ii) Let now u be a 1-involution and v be a 2-involution. We may now
suppose P 0, dim P2 2, dim P3 dim Pa 1. Let Qtbe a 1-dimensional
subspace of P and let Q2 Q c P2. Then E Q Q2 P3 Pa. Set
Q Kdl, Q2 Kd2. Define a transformation on E by setting td r/3d
and td2 r/-Id2, te r/-e, i= 3, 4, where r/Jr/= 1 and r/A =/: 1 for some
r/ K as before. Then T Q1 and T2 Q2 P3 Pa are the eigenspaces for
t. As before, there exists a vector e’ which is not contained in Q2 or Pa
Defining w as in the preceding part, we again conclude that {u*, v*} is an
exceptional pair.

(iii) Consider finally that u and v are 1-involutions. Then uv is a 2-
involution, and this case is then the same as case (ii).

The following result is the desired group theoretic characterization of 2-
involutions.

THEOREM 4.5. An involution u* of G* is a 2-involution if and only if one of
thefollowing conditions hold.

(i) u* does not regularly commute with any other involution of G*.
(ii) u* regularly commutes with an involution v* :/: u* such that {u*, v*} is an

exceptional pair of commuting involutions and, when G* contains 1-involutions,
Co,(u*, v*) contains an involution not in (u*, v*).
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Proof Let u* be a 2-involution. By virtue of Proposition 3.3 we may
assume that u* regularly commutes with another 2-involution v*. Then, by
Proposition 4.4, {u*, v*} form an exceptional pair. When G* contains 1-
involutions, it follows that K contains a primitive eighth root 2 of 1 such that
2r2 1 by virtue of Proposition 3.2. Then because u* and v* strongly com-
mute, E P1 P2 () Pa P, where each P is the intersection of an eigen-
space of u and an eigenspace of v. Then Co(u, v) contains a transformation
with eigenspaces P1 and P2 Pa P, corresponding to eigenvalues 2s and 2.
Then t* is an involution in C,(u*, v*), and is a 1-involution. Thus t*e
(u*, v*) since u*, v* and u’v* are all 2-involutions. Thus 2-involutions satisfy
either conditions (i) or (ii).

Conversely let u* be an involution in G* satisfying (i) or (ii). We wish to
show that u* is a 2-involution. By virtue of Propositions 3.1 and 3.2, we may
assume that u* regularly commutes with an involution v*. By assumption,
(u*, v*} is an exceptional pair. Then by Propositions 4.2, 4.3 and 4.4, u* and
v* are ordinary involutions. Then they are both 2-involutions when G* con-
tains no 1-involution.
Otherwise C,(u*, v*) contains a 1-involution. Assume that u* is 1-

involution in order to obtain a contradiction to (ii). Then E P Pa P,
where Pt =U/ n V/, Pa=U- c V+ and P,=U- c V-, U+, U- and
V/, V- being the eigenspaces of u and v, respectively. Hence dim P 2 and
dim Pa dim P, 1. In this case if C(u, v), t(P) Pj for some j. Then
t(e) P1, which implies t(U /) U / and t(V /) V +. So C(u, v) Co(u, v).
Clearly Co(u, v) has seven involutions since E is the direct sum of exactly three
subspases P1, P3, P,. Then Co,(u*, v*) +/-Co(u, v)* contains exactly three
involutions, namely u*, v*, and u’v*. This contradiction to (ii) implies that u*
is a 2-involution.

THEOREM 4.6. The followin# conditions on a pair {u*, v*} of commutin#
2-involutions are necessary and sufficientfor {u*, v*} to be stron#ly commutin#.

(i) Co,(u*, v*)2 is abelian when 1 g2

(ii) u’v* is a 2-involution when 1 K2.

Proofi Let u u* and v v* be involutions. Then I-u, v] e lE where
e __+ 1. Let w uv. Then w2 elE.

(i) Take first the case -1 K2. Let e -1. Then uv -vu. Let U /, U-
be the eigenspaces for u. Then v(U+)= U-. Let C=Co(u). Then
C C/ C-(t) where C/ is the normal subgroup of C leaving fixed U- and
C- is the normal subgroup of C leaving fixed U /, and is a 2-involution in
Co(u, v) with U +/- U +/- c T / + U +/- T- where T /, T- are the eigenspaces
for t. Then C / and C- are the unitary groups U(U+, fits+) and U(U-,
f Iv-). By Proposition 1.3, U(U, f It,)2 is nonabelian for e +, But as
v(U +) U-, v(C +) C-. As 1)2 1, Cc+c-(V)= {ccVlc C+}. Then Cc+c-(V)
is isomorphic to C /. So Co(u, v)2 has a nonabelian subgroup of index 2. Since
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C(u, v)= Co(u, v)(u, v>, C(u, v)2 is nonabelian. Then Co.(u*, v*)2 is nonabel-
ian as required.

Next, let e 1. Let V /, V- be the eigenspaces for v. Then

E P1 P2 P3 P4

where P1 U + c V+, P2 U + V-, P3 U- V + and P4 U- c V-
are all 1-dimensional. Consequently Co(u, v) is abelian as Co(u, v)let is clearly
abelian, 1, 2, 3, 4. Then, as C(u, v)_ C(u, v)2, Co,(u,+ v) is a abelian
subgroup of Co(u v*) containing Co,(u*, v*) as required.

(ii) Suppose -1 K2. If e -1, W2 --1. So w is a nonordinary invol-
ution. If e 1, then w uv is a 2-involution with eigenspaces

U + c V+U- c V- and U+ c V-U- c V+

where U +, U- and V +, V- are the eigenspaces of u and v respectively.

COROLLARY 4.7. Let if’* be a set of 2-involutions in G*. Let tr be an auto-
morphism of G*, and let C,+(6a*) denote the group generated by the 2-
involutions of Co,(6a*) which strongly commute with the involutions of if’*. Then

.(c;.+(se,)) cg.

Proofi This follows from the previous theorem together with the group-
theoretical characterization of the set of 2-involutions given by Theorem 4.5.

5. Noncommuting pairs of involutions

On the basis of Theorem 4.5, we have distinguished group-theoretically the
set of 2-involutions from the set of nonordinary involutions. We will consider
pairs of noncommuting involutions on the basis of the following lemma.

LEMMA 5.1. Let u*, v* be noncommutin# 2-involutions of G* with ei#en-
spaces U +, U- and V +, V-, respectively. Then dim (U + V +) 1 implies
that dim (U- c V-) 1.

Proofi Let W=U+ V+. Then W=(U+)+/-+(V +)1
dim (U- + V-)= 3. Hence dim (U- c V-)= 1.

=U-+V-.So

We define a pair of noncommuting 2-involutions {u*, v*} to be intersecting
if for some eigenspace U of u* and V of v*, U c V :p 0. Otherwise we say that
{u*, v*} is nonintersecting. When {u*, v*} is intersecting, we may always
choose u u* and v v* to be 2-involutions with eigenspaces U /, U-, and
V /, V-, respectively, so that dim (U / c V /) dim (U- c V-)= 1. Then
set w uv and I4,’ U / c V / + U- V-. Clearly I4/’ is the fixed subspace
of E for w and the dihedral group (u, v) acts faithfully on W1. As [u*, v*] :p 1,
W2 Z4. So <u*,/)*> is nonabelian.
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It is easy to see that

(5.1) C (u, v)= C (u) C (w) C (w)

Since C](u, v)/Co(u, v) has exponent 2 and C](w)/Co(w) is cyclic,

Thus

C(u, v)/(Ca(w) c C(u, v))] < 2.

C(u, v)Ca(w)/Ca(w)l< 2.

Because C(9) maps onto Ca.(0*) for O e G, we can study Ca.(u*, v*) by
studying Ca(w*).
Let/ E (R)K/ where/ is an algebraic closure of K. Then___

wheref is an extension off to] 1 K. Thenfis a sesquilinear hermitian
form relative to an extension of J to an element of Aut/.

LEMMA 5.2. Let {u*, v*} be a noncommutino pair of 2-involutions. Take
u u* and v v* so that u, v are 2-involutions. Set w uv. Then uwu w-1. If
w. qfor some g and f, w(u) rl- l(u).

If rt +_ 1, then . e where e E and, replacin9 u by -u and v by -v, if
necessary, we have that e W where

(5.2) W U + c V + + U-c V-

With this choice of u and v, 1 1 and W is thefixed subspace of w on E. In this
case, {u*, v*} is an intersecting pair.

Proof. Because (u, v) is dihedral, uwu w-. Then direct calculation
shows that w(u.)= r/-l(u,) where w r/. Let r/= _+ 1. Then. r/= r/-1, so w
has an eigenspace ’ with respect to r/. Also, w2 Iw 1. So " 4:/. As (u, v) is
a dihedral group acting faithfully on E, (u, v) acts faithfully on ’, which then
has dimension at least 2. Then dim W 2. This decomposition of/ into
(u, v)-irreducible modules can be obtained over K. Then W W (R)K K where
W is a u-variant subspace of E. Then W W & U/ + W U-. As v uw,
W c U/ and W U- are also v-invariant. Hence, either W U/ V+ :
0 or W U /

;’ V- 4: 0. We choose u and v so that the former case occurs.
Then U / c V / is a 1-dimensional subspace of W. Similarly, U- c V- G W.
Then, as w uv, wl, lw; that is, r/= 1. Clearly {u*, v*} is an intersecting
pair. This proves the lemma.

LEMMA 5.3. Assume the notation ofLemma 5.2.

(i) When C(w) =p Ca(w), neither 1 nor 1 is an eigenvaluefor w. In particu-
lar, {u*, v*} is a nonintersecting pair ofnoncommuting 2-involutions.
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(ii)

(5.3)

When {u*, v*} is an intersecting pair,

C(u, v)= C(u) r Co(w)

Proof. (i) Suppose that C(w)= Co(w)<g> and that r/= + 1 is an eigen-
value for w. Let e e E so that we r/e. Now, [g, w] 21 with 2 e Z and 2 =/= 1.
So either ge or g2e is an eigenvector e’ for w with we’= -rid according as
2=-1 or 22=-1. By Lemma 5.2, both e and e’ belong to
W U/ V+ + U- c V-. By the choice of u and v given in Lemma 5.2,
w Ir lw. Then a contradiction results. So r/=/= + 1. Then {u*, v*} is noninter-
secting.

(ii) Let {u*, v*} be an intersecting pair. Then, from (i), C(w)= Co(w).
Thus, C(u, v) C(u, w) C(u) Co(w).
The following theorem uses the notation introduced in Corollary 4.7.

THEOREM 5.4. A pair {u*, v*} of noncommuting involutions is intersecting, if
and only if thefollowing holds.

(i)
(ii)

Each abelian normal subgroup of Co,(u*v*) has index greater than 4.
r,+ +t,,, v*) contains a 2-involution.Z(Co,(u*v*)) c ,o, ,-

Furthermore, one of the spaces of the 2-involution is also the fixed subspace of
the element w u’v* described in Lemma 5.2.

Proof Assume (i) and (ii). Let w* u’v*, and let t* be a 2-involution in

t"+ +/’’* V*).Z(Co,(w*)) c ,o, -Choose u u* and v v* as described in Lemma 5.2, and take to be a
’+ +,,* v*), t e Co(u, v). Then w leaves2-involution in t*. Set w uv. As t* .,-,o, -invariant the eigenspaces T* and T- of t.

Assume that neither T/ nor T- is an eigenspace for w. Then T, +, -,
is either a direct sum of 1-dimensional eigenspaces of w or a cyclic Kiwi-
module. Consequently Co(w) is abelian. But Co(w) is a normal subgroup of
C(w) of index at most 4. This contradicts (i).
From this contradiction, it follows that T is a w-eigenspace for +,

We may suppose that T / is a w-eigenspace with eigenvalue r/1. By Lemma 5.2,
w(ue) tl (ue) for e e T +. As T+ is u-invariant, ue T+. So r/ r/i-.
Then by the choice of u and v in accordance with Lemma 5.2, r/ 1 and
T / W. By Lemma 5.2, {u*, v*} is an intersecting pair.
Conversely assume that {u*, v*} is an intersecting pair of noncommuting

2-involutions and use the same notation as in the first part of this theorem.
Then

W= U+ c V+ U- c V-,

and W is the fixed subspace of w uv as described in Lemma 5.2. Let be the
2-involution with eigenspaces W and W+/-. Since Co(w) leaves W and W+/-
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invariant, Z(C(w)). By Lemma 5.3, C,(w)= C(w). So t* Z(C,(w*)).
Clearly C,+(u*, v*). So (ii) holds. Since C(w)lv - U(W,f I,), it follows
from Proposition 1.3 that (C(w)lye)’ is nonabdian. So (i) follows inasmuch as
C(w)* is contained in all normal subgroups of C(w) of index 4 and C(w)
C(w). This proves the theorem.

Utilizing the group-theoretical characterization of intersecting non-
commuting pairs of 2-involution given in Theorem 5.4 on the basis of Corol-
lary 4.7 and Theorem 4.5, we have the following corollary.

COROLLARY 5.5. Every automorphism of G* leaves invariant the set of inter-
secting noncommuting pairs of2-involutions.

6. Mappings of 1-dimensional spaces

Let tr denote an automorphism of G*. Then tr leaves invariant the set of
2-involutions and also the set of intersecting noncommuting pairs of 2-
involutions. Our aim is to associate with tr a collineation $ of the projective
space P(E) determined by E and show that tr is obtained by conjugation by .
Choose a vector e E, e # 0. Denote by 6e(Ke) the set of all 2-involutions

in G*, one of whose spaces contains Ke. Let {u’, u} be an intersecting
noncommuting pair of 2-involutions with spaces U, U- and U, U, respec-
tively, and with the property that U c U Ket. Let u be a 2-involution
in Y’(Ke) distinct from u’ and u such that the subspace of u which contains
Ke is itself contained in Ui + U. The triple (u’, u; u) with u’, u’, and u
in ff’(Ke) will be called a tight triple in ff’(Ke). Because u; 6e(Ke), 1, 2, 3,
{u’, u} is an intersecting noncommuting pair and the pairs {u’, u} and
{u, u} are either strongly commuting pairs or intersecting noncommuting
pairs of 2-involutions.

LEMMA 6.1. Take e E, e :/: O. Let (u, u; u) be a tight triple of 2-
involutions in 6a(Ke). Let U, Ui-, 1, 2, 3, be the respective subspaces ofu’
chosen so that

Then

U c U c U Kel.

u? c u; u; o.

Conversely, suppose for distinct 2-involutions u, i= 1, 2, 3, with subspaces
U, U, both

U- U U 4:O and U c U U 4:0.

Then (u, u; u) is a tight triplefor some {i,j, k} {1, 2, 3}.
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Proof. Assume (u’, u; uS) is a tight triple. Then U
_
U- + U. So

vi + + +
and

u? + + + u;.

Conversely, let Et U U c U- and E2 U- U- U-, and
assume E1 0 and E2 :/: 0. Then E

_
U + Uf + U.. So dim (U? + Uf +

U) 3. Hence

U+_U+ +U: for {i, j, k} {1, 2, 3}.

Now U+ c U; Et;so U: c U+ c U-= 0. Similarly, U; c U; U-
Uf E2 0. But u and Uk commute if and only if U+ c U- 0 and

U- c U :p 0. Should u commute with both u and Uk, we would obtain

U+ c U-
_
U+ or Uf c U-

_
U[, which is not possible. Hence [ui, u]

1 for some pair i, j, and (u’, u’; u’)is a tight triple.

LEMMA 6.2. Let (u’, u; u’) be a tight triple of 2-involutions. Then there
++exists a 2-involution t* C, (ut, u; u3).

Proof. As (u’, u’; u) is a tight triple, {u’, u} is a noncommuting inter-
secting pair. Then there exists el, e2 e E such that U c U Kel and
U? c U Ke2. Let T/= Ket + Ke2 and T-= (T+)+/-. Let t* be the 2-
involution in G* with subspaces T /, T-. As u ff’(Ket), one space of u
contains et. We may assume that U c U c U Ke; then U- c U
U Ke2. So Kel U c T/ and Ke2 U c T-. Let

Kd (U[)+/- c T / and Kd (Ui)+/- T-, i=1,2,3.

Then E Ket Ke3 Kd Kd[-, 1, 2, 3. These three’ decompositions
+ +,.,show that t* e , t-,

LEMMA 6.3. Let (U, U; U3) be a tight triple of 2-involutions. Let v.*, a(u.*, ),
1, 2, 3, and let V, Vi- be the spaces ofv.*, chosen so that V c V Kd

and V c V gd2 for dl, d2 E. Then d and d2 belong to distinct sub-
spaces Vf, V and the notation can be chosen so that

Kdx V c V V and Kd2= V? c V c V.
In particular, (v’, v; v’) is a tight triple of 2-involutions in ,ga(Kdl) and in

5’(Kd2).

Proof. By Theorem 5.4, {v’, v} is an intersecting pair of noncommuting
2-involutions. Then after an appropriate choice of sign, V c V Kd and
V? V Kd2. Let S + Kdl + Kd2. By Lemma 6.2, C,+(u’, u’, u) con-
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tains a 2-involution t*. Let s* a(t*). By virtue of Corollary 4.7,

,’//-,*S* ..,G**Ij/1

Let s be a 2-involution in s*. Then s Co(v1, v2, Vs).
As (v’, v) is an intersecting pair of noncommuting 2-involutions, it follows

from Theorem 5.2 that S / is an eigenspace of s. When IvY, v] :/: 1, we may
choose the sign +, so that Vg m V 0 since {v v} is an intersecting
pair. When IvY, v] 1, v and v strongly commute by virtue of Corollary
4.7. Then V m V :/: 0 in this case as well. As [(vz, vs), s] 1, s leaves
invariant V m V. So V m V___S+ or V m V_mS- where
S- (S+)-c.

First, take the case that V V __. S +. Then
v; s+=

Hence V- & Vf 40. So V- m V _Swheree= + or-.IfV- m V___
S /, then

V- V-= V S+ V r V-=Kd2.

So suppose that e Then

V mS-=V S-V? S-.

By symmetry, we also conclude that

V mS-=V? oS-4:V oS-,

which is a contradiction. The same contradiction occurs if V- c V
_
S/.

In the remaining case, S- V m V- + V m V. Again by symmetry.
S- V V + V- m V-. As the components in these two decompositions
are all distinct and vs-invariant, S- is an vs-eigenspace. But clearly S- V
and S- :/: V-. This contradiction proves the lemma.

Take e e E, e 0. Let {u’, u} be an intersecting noncommuting pair of
2-involutions with subspaces U, U- and U, U-, respectively, such that
U U Ke. Let u 6e(Ke), with subspaces U, U- such that U

_
Ke.

The triple (u’, u; u) is said to be a loose triple in 6e(Ke) provided

UU +U and V- c U; g;U.

LEMMA 6.4. Take e E, e O. Let {ut*, u} be an intersecting non-
commuting pair in ff’(Ke). Let U, Ui- be subspaces of u.*,, 1, 2, 3, chosen so
that e U, i= 1, 2, 3. Let u ff’(Ke) be chosen with subspaces U with
e U. Then (u, u’; u’)forms a loose triple in 6a(Ke) ifand only if

(6.1) U? U U and U? c U U.
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or ifand only iffor e +, -, 1, 2, 3,

(6.2) U] c U c U 4= 0

only when e e2 ea + and U c U] c U Ke.

Proofi The condition Ui- c U g; U is equivalent to

(tyi- +
So the conditions (6.1) are equivalent to (u’, u; u’) being loose. When (u’, u;
u) is a loose triple in 5a(Ke), it follows that U c U- U- c U 0 since
{u, u} is a noncommuting intersecting pair, and therefore Uc U c

U # 0 only if e e2. From (6.1), it also follows that e e2 +. Now
U c U c U=Ke; so U c U c U-=0 as eeU-. Conversely,
assume (6.2) holds. Then {ul’, u} clearly forms intersecting noncommuting
pair for which (6.1) holds.

Because of the symmetry in the conditions (6.2), it is clear that (u’, u; u)
and (u, u; u’) form loose triples in 5(Ke) whenever (u’, u; u) is loose in
6t’(Ke). Consequently we write (u’, u, u) for any of these triples. When (u’,
u; u) forms a tight triple, so does (u’, u’; u’) for any rearrangement (i, j, k) of
(1, 2, 3) provided I-u’, u}-I 4 1.

LEMMA 6.5. Let u, u, u belon9 to 5a(Ke) for some e E, e # O. Then,
either u$ u u’ or a pair of involutions, say, u, u’, do not commute, and one
and only one of thefollowin# holds:

(i) (u, u u$) is a tight triple in ff’(Ke).
(ii) (u, u u$) is a loose triple in 5V(Ke).

+,.,,(iii) u’ 6 o,

Let U, Ui- be the spaces of u.*, 1, 2, 3, chosen so that U c U 0 and
U? c Uf O. Thenfor e + or -,

(6.3) U U? c U + U- c U-.
ifand only if (iii) holds.

Proof We may suppose that (ul’, u; u) is neither a tight nor a loose
triple, and that U c U c U Ke. Then Ui- c U U- by Lemma 6.1
but Ui- & U-

_
U by (6.1). This gives (6.3), which implies that U is both

ul-invariant and u2-invariant. Then u C,+(u, u’) and (iii) holds. It is clear
that (iii) implies (6.3).

LEMMA 6.6. Take e E, e :/: O. Let (u’, u’, u’) be a loose triple in 5a(Ke).
Set v.*, tr(u.*, ), 1, 2, 3. Then (v, v, v) is a loose triple in 6(Kd) for some
deE, d:/:O.
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Proof. Let V+, V- be the subspaces of v’, 1, 2, 3. By Theorem 5.4, {v’,
v} is an intersecting noncommuting pair. We may suppose that V c V
Kdl, V? c Vf Kd2 for dx, d2 E, dl 0, d2 : 0, and V c V V- c

V 0. Assume to the contrary that (v, v, v$) is not loose. Suppose first that
V c V c V 4 0 for some choice of signs el, e3 +, Then by Lemma
6.5, either (v, v; v) forms a tight triple or v C++(v, v). But now a
contradiction to the looseness of (u, u, u) follows using the automorphism
a- and Lemma 6.3 or Corollary 4.7.

It remains to consider the case

(6.4) Vc V’- V 0

where ei +, -, i= 1, 2, 3. We will contradict (6.4). By Lemma 6.4, {u’, uS}
is an intersecting noncommuting pair of 2-involutions for 1, 2. By Theorem
5.4, the same is true for {v’, v$}. Then V nontrivially intersects exactly one of
V, V- and exactly one of Vf, V-.
Suppose that V c V’:# 0 and V V$’-:/: 0 for ei +, -, i= 1, 2.

Then by (6.4)

(6.5) V

where
(V)+/- V-. But this contradicts (6.4). Thus (v’, v, v) is loose.

PROPOSITION 6.7. Let e E, e O. Then there exists d E, d 0 such that
a(6(Ke)) 6e(Kd).

Proof. Choose (u’, u, uS) to be a loose triple in 6a(Ke). Set v’ tr(u’),
1, 2, 3. By Lemma 6.6, (v’, v, v$) is a loose triple in 6e(Kd) for some d e E,

d :/: 0. Let V+, V- be the subspaces of v’, 1, 2, 3. We may assume that

(6.6) V c V c V Kd.

By (6.2), if e +, -, 1, 2, 3,

(6.7) Vl ( V V 0

except when x =/32 e3 "’.
Now, let u* 5a(Ke). Let v* a(u*), and let V +, V- be the subspaces of v*.

It is required to show that V+ c V+ c V 4:0 either for + or for e
where i, j { 1, 2, 3}. When (v’, v; v*) forms a tight triple, it follows by the

v*definition of tightness that V c V+ c V+:/: 0. When u* ,.,, ,1,
+ + t,,, v) by Corollary 4.7. Then by (6.3),

v; v? v; + v; v;.
In particular, V c V+ c V+ :/: 0.
By virtue of Lemma 6.5, it remains to consider that (u’, u, u*) is a loose
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triple in Sf(Ke). By Lemma 6.6 (v], v, v*) is also loose. Then by Lemma 6.4,
either

or

V c V m V4:0 and Vi- c V V’=O

V- c V m V’=0 and V- c V- m V0
for some choice e +, When the first alternative occurs, v* 6V(Kd)
since V V Kd. Thus, consider that the second alternative occurs. As
[u, u] 4 1 and [u, u] 4 1, we obtain, by symmetry, the relations

V m V V= Kdx2 O,

V V V= Kd2s 0,

V V? V= Kda 0,

where e +, -, i= 1, 2, 3. By (6.2), V? V, V V, and V V?
are distinct 1-dimensional subspaees. Then the spaces Kdo are distinct for
(i,j) (1, 2), (2, 3) or (3, 1). For some pair (i,j), e % Then

V Kd0 + Kdk
where {i, j, k} {1, 2, 3}. But dk and dk belong to . Hence V . Let
vv. Then vV0= V. Thus va(V +)= V + and vV-)= V- since
V + (V-)x. So Ivy, v*] 1, in contradiction to (v, v, v*) being loose. This
proves the proposition.

Now we are in a position to relate tr to the projective geometry P(E)
consisting of the lattice of subspaces of E. Let Pro(E) be the set of subspaces of
E of dimension at most rn + 1. The elements of Po(E) are called points in P(E)
and the elements of PI(E) are called lines in P(E). Each point in P(E) has the
form Ke, e E, e 4: O. Clearly 6f(Kel) Sf(Ke2) if and only if Ke Ke2. So
we define

Jo: Po(E)- eo(E)

by setting

(6.8) 6a(Jo(Ke)) aff’(Ke) for Ke Po(E).

LEMMA 6.8. The mapping Jo is a bijection which maps orthogonal pairs in
Po(E) to ortho#onal pairs.

Proof. Define @)" Po(E)-- Po(E) by setting

6f(@’o(Ke)) a-:6f(Ke) for Ke Po(E).

Then fro )= ff)fro 1. So 0 is a bijection. Let e and e2 be nonzero or-
thogonal vectors in E. Then 6f(Ke)c 6f(Ke2)contains no loose triples by
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virtue of Lemma 6.4, and it clearly contains all tight triples of 2-involutions,
one of whose spaces contains Kel and the other contains Ke2. By virtue of
Lemma 6.3 and (6.8), 6e(ffo(Ke))c 6e(o(Ke2) contains all tight triples of
2-involutions, one of whose spaces contains o(Kel) and the other contains
q)o(Ke2). As the eigenspaces of an involution are orthogonal, o(Kel) is or-
thogonal to o(Ke2).
I remains to extend o to a mapping on PI(E).
LEMMA 6.9.

(6.9)
Then

(6.10)

Let Kei Po(E), 1, 2, 3, 4, and suppose

Kel + Ke2 Ke3 + Keg.

o(Kex) + ffo(Ke2)= ffo(Ke3) + o(Kea).

Furthermore, if Kel + Ke2 is a subspace for a 2-involution u*, then q/o(Ke)
+ o(Ke2) is a subspacefor crw*.

Proof. Let u* be the 2-involution in G* with a space U+ Ke + Ke2.
Then u*= 6e(Ke,) as e, 6U+ for i=l, 2, 3, 4. By (6.8), a(u*)6=x 6e(o(Ke)). Set v*= a(u*), and let V /, V be the spaces of v*. Then
each ,o(Ke) belongs either to V / or to V-. But each Ke can be orthogonal
to at most one of Kel, Ke2, Ke3, Ke,. So each Ke belongs to a triple
obtained from {Kex, Ke2, Ke3, Ke,}, all of whose elements are contained in
the same space U, e + or Then o(Ke)- V, i= 1, 2, 3, 4. So

V= o(Ke) + ffo(Ke2)= o(Ke3) + o(Ke,t).

This proves the lemma.

On the basis of Lemma 6.9, we extend o to a mapping 1 on P(E) by
setting

(6.11) l(Kel + ge2) o(Ke) + ,o(Ke2) for ge, Ke2 6Po(E).

THEOREM 6.10. To each automorphisim cr of G*, there exists a collineation

of P(E) which commutes with the polarity determined by the sesquilinear form f
such that

(6.12) a: g*--* g*- 1.

Proof. The mapping 1, given by (6.11) maps collinear points onto col-
linear points. Then it is well known that 1 extends to a collineation , of P(E).
Furthermore, for every 2-involution u* with spaces U /, U-, a(u*) has spaces
(U+) and if(U-) by virtue of (6.10) and (6.11). Therefore (6.12) holds when
O* U*.

Let G be the subgroup of G* generated by its 2-involutions. Then (6.12)
holds when # G. Let a, be the inner automorphism of G* induced by the
element ff given in (6.12). Set z tr ltr a,_,a. Then z CG.(Gd). Now G is
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a normal subgroup of G*. So by Phillip Hall’s three subgroups lemma,

EG*, , G] [G, G*, =][r, G, G*] [G, ] I.

As G acts irreducibily on E, Co,(G’) - Z(G*) 1. Thus [G*, z] 1. So z 1
and

In the usual way, using the fundamental theorem of projective geometry, it
can be shown that ff is induced by a semilinear transformation of E which
preserves the sesquilinear form f up to a multiplier. Such a semilinear trans-
formation is called a semimulitude. Thus Aut G* is isomorphic to the group
PFU4(K, f) of project semisimilitudes.
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