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ON THE HAUSDORFF DIMENSION OF A SET OF COMPLEX
CONTINUED FRACTIONS

BY

R. J. GARDNER AND R. D. MAULDIN

1. Introduction

This note arose from some general considerations concerning geometric
representations of the shift operator. Specifically, consider an infinite set
T, the product space TN, and shift operator S TN --> T defined by

S(<tl, t2, t3, ...) <t2, t3 .
One can ask whether there are some natural measures on TN with respect
to which S is ergodic or mixing. From our point of view the answer depends
on the geometric structure of a representation of this space. For example,
if T N, then there are, of course, 2 probability measures with respect
to which S is mixing. This can be seen by noting that the permutations r
of N induce distinct mixing measures /o h, where , is Gauss’ measure
and h is the natural homeomorphism of N induced by r. However, if
one considers the extremely natural representation of Nv via the canonical
continued fraction expansion of the irrational numbers in [0, 1], then there
is only one ergodi measure which is connected to the geometric structure
of this set, Gauss’ measure. (See, for example [1, p. 40].) Gauss’ measure
is the only ergodic measure which is absolutely continuous with respect to
Lebesgue measure; this is proved in [4, p. 114].
Let us consider T N Z. Again, there are 2 measures with respect

to which the shift is ergodic. There is a natural geometric representation
of (N Z)N. As is shown here, the map

h((bl, b2 ))

is a homeomorphism of (N Z) onto a subset of the open disc in the
plane with center (1/2, 0) and radius 1/2. Our question is, is there an
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ergodic measure which is naturally connected to the geometric structure
of this representation? By analogy with the representation ofNv, one could
speculate that perhaps there is some ergodic measure which is absolutely
continuous with respect to planar Lebesgue measure. However, we shall
show that the planar measure of our representation is zero. Perhaps more
to the point is the fact that the representation ofNs has Hausdorff dimension
one and that Gauss’ measure is absolutely continuous with respect to the
corresponding Hausdorff measure, obtained from the Hausdorff measure
function h(t) t.
The purpose of this note is to obtain some information concerning the

Hausdorff dimension of our representation of (N x Z)N. The Hausdorff
dimension of the set remains an unsolved problem together with the problem
of whether there is an ergodic measure which is absolutely continuous with
respect to the corres.ponding Hausdorff measure. We show that the Hausdorff
dimension of our representation is strictly between and 2.

2. Preliminary Lemmas

If bn, n 1, 2, are complex numbers, we shall use the notation

bl +b2 +

for the continued fraction with partial numerators equal to one and partial
denominators b, b2, Then qn, the denominator of the n-th convergent
Pn/qn to this continued fraction, is defined by q0 1, ql bl, and
qn+l bn+l qn -t- qn-I for n > 1.

It is shown in this section that the convergents Pn/qn converge provided
that each b N Z. We call J the set of all limits of such continued
fractions. The geometry of J is indicated in Figs. 1-4.

Basic results concerning complex continued fractions may be found in
[6]. In order to prove convergence and our Hausdorff dimension estimates
for J we need lower bounds for q,, an upper bound on the distance between
two continued fractions with the same first n elements, and other results.
We have not attempted, however, to obtain best possible constants in
Lemmas 2.3 and 2.4, as the values of these constants are not crucial to
the dimension estimates. The corresponding constants in the theory of real
continued fractions are and (’X/ + 1)/2, respectively (see [5, p. 136]).

LEMMA 2.1. Suppose Re(z) > 1. Then 1/z 1/21 < 1/2.

LEMMA 2.2. Suppose Re(bn) > 1 for each n. Then

qn-!
< forn= 2

q. 2 - ’
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Fig. 1 Fig. 2

1
bI +

b2

Fig. 3 Fig. 4

bI +
b2

Proof. This is true for n by Lemma 2.1. Suppose
n < k. We have

it is true for

qk-I qk-1

qk bkq:-I q- qlc-2 qk-2
bk +

qk-l

As Re(b) > 1, Re(bk + qk-2/qk-1) by the inductive hypothesis, so

q 2
1

by Lemma 2.1.
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We advise the reader who wishes to follow the proofs of Lemmas 2.3,
2.4 and 2.6 that this may be easier if he draws pictures to illustrate the
fairly simple geometry involved.

LEMMa 2.3. Suppose v, w and bn {Z Re(z) > 1}, for n 1, 2,
Then

+ b2 + + bn + + b2 + + bn +

21qn(qn + qn-,)l

()

Proof. The left-hand side of (1) is easily shown to be

(2)[vq,, + q,,-,llwq,, + q,,-,I
,qnl2 V_ (--qn-,)llW (--qn-l)q,,

Set Zo -qn-/q,,. Then Iz0 + 1/21 < 1/2 by Lemma 2.2.

Suppose, without loss of generality, that Im(v) > Im(w). Choose v’ with
Re(v’) 1, Im(v’) > Ira(v) and

Similarly, choose w’ with Re(w’) 1, Im(w’) < Im(w) and

Iw’- Zol Iw- zol.
Let v" be the point with Re(v") and Im(v") Im(zo). From the

geometry,

Iv"- vl < Iv"- v’l and Iv"- w[ < Io"- w’l.
So

Io- wl < Io o"1 + I"- wl < I’- o"1 + I"- w’l Io’- w’l.
Consequently

< (3)Io zollw zol I’- zollw’ zol
Let Iv’ v"l a, Iw’ v"l b, and IZo- v"l c. Then

Io’ w’l a/b

Io’ zollw’ Zol /(a2 + c2)(bz + c2i
< -c Iv" Zol

(4)

Now IZo + 1/21 < 1/2, so putting Zo Xo + iyo, we have Xo >
> 21yol, and thus 5(1 Xo)2/4 > (1 Xo)2 + y. So

x/l,, zol > I1 zol (5)2
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By (2), (3), (4) and (5), the left-hand side of (1) is no greater than

Iqnl21V’’- Z01 21qn1211 Z01 21qn(qn + qn-’)l"

Note. A more careful argument shows that the constant //2 in (5)
can be replaced by 3/2"X/ (take z0 to be the point where the tangent through
(1, 0) meets the circle Iz + 1/21 1/2).

LEMMA 2.4. Suppose b, N x Z for n 1, 2, Then [qnl > n for
n 1, 2and 3, and

[qn[ for n > 1.

Proof. Clearly, Iql Ibl 1. Now q2 b2b, + 1; let

b a + yi, b2 + i,

so that c > 1,/3 > 1. Then

Iq212 ctzfl2 + 2fl + (y 1) + 22 + y2f12

3 + (y 1)z + 22 + 22.
If Irl 1 or I1 1, we have Iqzlz 4; if r 0,

So Iq21 2.
It may be verified directly, in a similar manner, that Iq31 3.
Now suppose n 3. We have

q +--’-’2 b + +
q ---’--

q, q,

Now Iqn-l/qn 1/2] < 1/2 by Lemma 2.2 and Re(b,+) > 1. It is then
easily verified that for b,+l 4: 1, lb.+, + qn-I/qnl > d, where d is the
distance from the origin to the circle (x 3/2) + (y 1) 1/4. Thus

qn+.._....l >d
/--

qn 2
provided bn+ 1. (6)

Suppose now that b,+ 1. Then

(b + 1) + q,-____2
qn-

(7)

The estimate

now follows from (6) and (7) by induction.

n-I
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THEOREM 2.5. Suppose b N Zfor n 1, 2, Then the continued
1 1

fraction b + b--2 + converges to a unique complex number in the open

disc [z 1/21 < 1/2.

Proof. This follows from Lemmas 2.3 and 2.4. We note however that
convergence can be deduced, assuming only Re(bn) > 1 for each n, from
the "parabola" theorem [6, Theorem 14.2]. To see this, note that it suffices
to prove convergence for the continued fraction

1 a2 a3
1+1+1+

where an 1/bnbn+ (the equivalence transformation [6, p. 20]. Noting
also that I1/b, 1/21 < 1/2, for each n, by Lemma 2.1, we see that the
result follows if for allzi, 1, 2, with Izi 1/2] < 1/2, 1, 2, we
have

[zz:l Re(zz) < . (8)

We may suppose that Izj. 1/21 1/2, j 1, 2, i.e., setting z
rjeij, 1, 2, thatr cos0,i 1,2.

/0 lies in the cardioidNow it is easy to show that the point zz2 rr2e
’(’

region

r < 7(1 + cos 0), (9)
Z

which in turn is contained inside the parabolic region (8).
Now suppose we have

+ b-- c, +c2+
Notice that I1/z 1/21 1/2 if and only if Re(z) 1; so

+b3 + (1)for Re b2 +’if3 + > Re(b2)> 1.

It follows immediately that b ct, and bn cn can then be proved by
induction. Consequently the representation is unique.

It follows that the map h defined by

h((b,, bE, b3 }) ;- .--+ +Ol 2o

is a homeomorphism of (N Z)N with the product topology onto the set
J.
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LEMMA 2.6. Let JMN be the set of values of continued fractions
1 1 .., where bj mj + nji, 1 < mj< Mand -N< nj< N for+b-2 +
j 1, 2, Then there is a constant K > O, depending only on M and
N, such that if zo and Zw are points in JtN with

1 1
z + b- +’"+ b + On+ -]"

and z bS + b’-2 +""
1

+ bn + Wn+l +

and on+ Wn+ 1, then

KIzo Zwl > Iq,(q, + q,-,)[
(10)

Proof. Set

D On+ -’t" and w Wn+ q-
On+ 2 + Wn+ 2 ""

Then

Izo- Zwl IOqn + qn_,llwq + qn-ll (11)

We first show JMN C F1, where F is a closed set whose distance from
the origin is positive. Note that the transformation to 1/z takes the line
x c onto the circle Iz 1/2cl 1/21cl and the line y c onto the circle

Iz + i/2cl 1/21cl.
Let

Sc tz" 1
< and T Z z+

Then JMN C FI, where

F, ,\(SM U T U T_N U {O}),

which has positive distance from the origin, O.
Next we need to show that JtN in fact lies inside a slightly smaller closed

set F2 C F. The points (1 +__ i) are carried by to 1/z to the points
(1/2 +_ i/2). Suppose

z b + b2 + Jm.
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Then

1 1
z where Z’ JMN C F1.b + z’

As F has positive distance from the origin, the set

b + 7" z’ F

has positive distance from (1
_

i). Consequently J C F, where F is
a closed subset ofF whose distance from the points (1/2

_
i/2) is positive.

It follows that the distance between the sets (v/ + J) and (w/ +
J) (vector addition), for admissible v,/ tt2n+ iS bounded below by a
positive constant c, which depends only on M and N. Hence

Iv wl > c. (12)

Now the point -qn-/qn lies in the circle Iz + 1/21 < 1/2; so we certainly
have

v- </(M+ 2)2 + (N+ 1)2
q.

and

(13)

W (--qn-1/qn)l V/(M + 2)2 + (N + 1)2

< /(M + 2)2 + (N + 1)211 (--qn-1/qn)l. (14)

Finally, combining (11), (12), (13) and (14), we obtain (10), as required.

1/2 + i/2

Figure 5
The Set F2 in Lemma 2.6
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3. I-lausdorff Dimension

We now estimate the measure of our set of continued fractions. Our
methods are not new, but follow the techniques devised by V. Jarnik as
exposited in [5, Chapter 3, 2]. We refer to [5] also for an introduction to
Hausdorff measure.

THEOREM 3.1. The Hausdorff dimension of J is less than 2.

Proof. Let I(bl, b2, b,) denote the set of values of the continued
fractions whose first entries are b, b2, bn, and let d(b, b2, bn) be
the diameter of this set. By Lemma 2.3,

d(b,, b2, bn) < 21qn(qn + qn-,)l 21q,121fll (15)

where/3 + qn-1/qn, and, in view of Lemma 2.2, I/3 3/21 < 1/2.
Now

d(bl, b2, bn, bn+ 1) < 2lqn+l(qn+l h- qn)l

21q,12lbn+l +/3 lllbn+l + fl{’ (16)

as in [5, p. 141].
Suppose s > 0. By the argument of [5, Theorem 61],/x(s)(J) 0 for any

s for which there exist, for each n, open sets E(b, b2 b,,), containing
I(b, b2 bn), with

[d(E(b, b2, b,, b,+ l))]S/[d(E(b, b2 , bn))] < 1. (17)
bn+ INZ

Thus, by (15), (16) and (17), it will suffice to show that for some e > 0,

1/3[2- < 1 for I/3 3/21 < 1/2 (18)(Iz / - lllz /zeN Z

Put z m + ni, where m e N and n e Z, and/3’= a + yi. We consider
the following sum which dominates the sum in (18):

m=l n=-o [((m + c 1) + (n + y)z)((m + a) + (n + y)2)](2-)/2.

The integral test gives the convergence of this sum for e < 1. Consequently
the sum converges uniformly in e in the interval 0 < e < 1/2, by the
Weierstrass M test. It follows that if (18) holds for e 0, it also hold for
sufficiently small e > 0. Thus, we will consider the corresponding sum

((2 -- ")/2) Z Z (19)
m=l ((m + a 1)2 + (n + y)z)((m + a)2 + (n + 2,) 2)
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We first fix m and calculate the sum over n, by integrating
zrcotcrz

f(z)
[(z + 7)2 + (m + a 1)2][(z / 3,)2 / (m + 002]

along the square contour with corners (N + 1/2)(___ +__ i), and applying
the theory of residues. (Or, express (19) as the sum of two series by partial
fractions and apply [3, p. 82, (4)].)
Then (19) becomes

(a + 3,)7r m__ 2(m + a)-

sinh 27r(m + a 1)
(cosh 2zr(m + a 1) cos 2zry)(m + a 1)

sinh 27r(m + a)
(cosh 2zr(m + a) -cos 2zrT)(m + a)

sinh 27ra
(t + 7)7r

(cosh 27ra cos 2zr3,)a(2a 1)

sinh 27r(m + a)
4 mO (cosh 27r(m + a)- cos 27rT)(2m + 2a- 1)(2m + 2a)(2m + 2a + 1)

(02 + 2)7r [(cosh sinh 27ra
2ra 1)a(2a 1)

sinh 2r(m + a) ]4 m (cosh 27r(m + a) + 1)(2m + 2a- 1)(2m + 2a)(2m , 2a + 1)

cothTra
< (3a 2)rr [_a(-a --- ])

-4 tanha
(2m + 2a- 1)(2m + 2a)(2m + 2a + l)

(20)
m=0

To obtain (20), we have first noted that (a 3/2) + 2 1/4, so that
a2 + y2 3u 2. Also,

sinh 2(m + a)
tanh(m + a) tanha,

cosh 2(m + a) +

as tanh x is increasing.
By (18) it will suNce to show that

(2m + 2a 1)(2m + 2a)(2m + 2a + 1)m=0

cotha [ coth ]>
4 La(2a 1) (3a 2)

for some k and all a with 1 a 2.

(21)



344 R.J. GARDNER AND R. D. MAULDIN

By direct calculation, e.g., for a 2, it can be seen that (21) is false
for k 0 and k 1. However, with the aid of a computer it can be shown
that (21) is true for k 2, as follows.
With the estimate cothTra < coth 3 < 1.01, it is enough to prove

2 1
(2m + 2a- 1)(2m + 2a)(2m + 2a + 1)m=0

(1.01)2 1.01
+ >0

4c(2a 1) 4(3c 2)(3.142)

(22)

Simplifying the left-hand side of (22), we obtain a ninth degree polynomial
p(c0 9_-0 cia over the canonical denominator of tenth degree. (With
the coefficients rounded down to the nearest integer, p(a) 1034a9 +
4385a8 + 4345ct7 14031a6 34510a 5592ct4 + 49092ct + 39129a2

9461a 8868.) It can now be verified that, for < a < 2,
9

[p’()l < Ylcel" i. 2i-’ < 3"107.
i=1

Thus to show p(a) > 0 for 1 < a < 2, it suffices to check that p(a) >
6000 for 5000 equally spaced values of c in the range 1 < et < 2.
We thank J. Neuberger for writing the necessary programs. This completes

the proof.

Remark. The sum in (20) may also be estimated using [3, p. 54], (19)
and (20), and the properties of the psi function O(x) d(logF(x))/dx (see,
for example, [2, p. 147]). However this approach seems also, eventually,
to require the use of a computer.

THEOREM 3.2. The Hausdorff dimension of J is greater than 1.

Proof. It can actually be shown that there is an M > 0 and N > 0 such
that the set JtN of values of the continued fraction

1 1
where bj

b +bE+ m1+ nji, l < mj < M, and lnjl < N,j 1, 2,

has Hausdorff dimension greater than 1.
Again the proof follows closely that in [5, p. 141-147]. It is clear that

JN is a compact, perfect set and that the estimate of Lemma 2 [5, p. 141],
may be replaced by that of our Lemma 2.6. To show that /xs)(JMu) is
positive, it then suffices to show that

M N

m=l n=-N [((m + c 1)2 + (n + y)2)((m + ct)2 + (n + y)2)]s/2> 1 (23)

for some s > 1, and all/3 ct + yi with I/3 3/21 < 1/2.
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To this end, we consider

=1 n=- [(m + a 1) + (n + 3,)2)((m + O) + (n + 3,)2)]1/2

>
(m + a) + (n + 3,)

7r sinh 27r(m + a)
(m + a)(cosh 2zr(m + a) -cos 2Try)m=l

(24)

again by the theory of residues (or see [3, p. 82, (4)]).
As before,

sinh 27r(m + a)
cosh 27r(m + a) cos 2"rr3,

> tanhTra.

So (24) is divergent for all a with < a < 2, and we may choose M and
N so that

M N

m=l n=-N [((m + a 1) + (n + T)2)((m + a)2 + (n + 3,)2)1 /2>

for all/3 a + y with I/3 3/21 < 1/2, and hence an s > 1 such that
(23) holds.
The proof is now complete.

Added in proof. The proof of (22) can also be achieved by studying the
changes of sign of the derivative p’(a) of the polynomial p(a). This method
still requires the use of a pocket calculator, however. We thank G. Siebert
for pointing out this alternative approach.
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