
ILLINOIS JOURNAL OF MATHEMATICS
Volume 27, Number 2, Summer 1983

THE HOMOLOGY OF THE JAMES-HOPF MAPS

BY

NICHOLAS J. KUHN

If X is a path connected space, there are filtered spaces CnX and CX
which approximate ’n.ns and QX lim_, ’n.ns respectively [11]. Quotients
of successive filtrations are the extended power spaces denoted by Dn,qS
and DqS. Snaith [13], generalizing a result of Kahn [6], showed that

’nns V Dn,qX
q>l

where E=Y denotes the suspension spectrum of a space Y.
Projection onto the q-th wedge summand and adjunction yield the James-

Hopf maps

L QX QDqX and L ’nns "--’> QDn,qX.
It is the purpose of this paper to study the induced maps jq, on homology

and from this deduce geometric results. All homology will be with Z2
coefficients.
Our geometric input is the following. Let DoX S. In [2] it is shown

that, via passage to quotients of filtrations, the additive E=-structure on CX
induces an E=-ring structure on I-Iq>O QDqX. Let J0 QX QDoX send
everything to 1, the identity map in QS. The maps jq piece together to
give a map

j" QX---> I-I ODqS.
qO

F. Cohen, R. Cohen, May, and Taylor [2] show that the mapj is exponential
in the sense that it takes the additive E= structure on QX to the multiplicative
one on IIq>0 QDqX. Also j QX ---> QX is homotopic to the identity and
the composite

Jq

S "- OS "-> ODqS

is nullhomotopic for q > 1.
Recall that the rich structure of iterated loop spaces allows one to define

operations on their homology. Under these operations, H,(QX) is generated
by H,(X).
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316 NICHOLAS J. KUHN

The image of H,(X) under j, is clear, and thus the calculation of j, in
general reduces to the calculation of "multiplicative" homology operations
in H,(Ilq>o QDqX). Projection onto the q-th component then completes the
calculation of jq,.

This leads us into analysis of the relationships between additive and
multiplicative homology operations in E-ring spaces, in particular Tsuchiya’s
"mixed" Adem relations [14]. The applications illustrate the usefulness of
a variety of properties of these formulae.

In 1 we recall the properties of Dyer-Lashof operations and the various
formulae which hold in E-ring spaces and review the computations of
H,(QX; Z2).

In 2 we present some of the more tractable computations of the map
jq, and indicate some of the problems that arise in general. As an application,
we give a proof of the "delooped" Kahn-Priddy theorem.

In 3 we examine the homology operations appearing in the image of
jq,. We prove the following result, the case n 1 of which is due to Kirley
[8].

THEOREM 3.1.
spectra

desuspends to

then d > 2t+p+

Let 2’ < n < 2p+ 1. In Snaith’s splitting, if the map of

"n+ ln+ X OOn+ 1’2’X

.d-n+ ln+ X .dOn + 1’2’X

-2p+1 + n.

Finally, Tsuchiya’s "mixed" Adem formula was published in [14] without
proof. Ensuing discussions between May and Tsuchiya raised questions
concerning the validity of this formula (see [3, p. 105]). Thus, in the appendix,
we provide a complete derivation of the mixed Adem relations.

I would like to thank Peter May for suggesting the approach taken in
this paper.

1. Homology operations in E-ring spaces

Recall that if Y is an (n + 1)-fold loop space, there are operations

Qr Ha(Y) n2a + Y)

defined for 0 < r < n. We also let x y denote the homology product and
Ax denote the diagonal of x in H,(Y) ( H,(Y).

Typically, these Dyer-Lashof operations are reindexed with Qx Qr_ax,
but for the purposes of this paper it will be more illuminating to use the
lower indices.
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If Y is an infinite loop space then the operations Qr are additive. They
satisfy the usual Cartan formula with respect to ,, the diagonal Cartan
formula, and Adem relations. The Nishida relations relate, their action to
the action of the Steenrod algebra. For details of the construction and
properties of the Dyer-Lashof operations see [3].
To describe H,(QX), we recall that there are natural maps

ol CnX -.--> [’nnx and a CX ---> QX,

compatible with the natural inclusions "0 X ---> CnX and ’0 X ---> IlnEnx.
The usefulness of the spaces C,,X and CX derives from the fact that the
maps a are weak homotopy equivalences if X is connected, and group
completions in general 11], [12].
CX has an additive E=-structure allowing Dyer-Lashof operations to be

defined on H,(CX), and H,(CX) can be described as follows. If I
(i, i) is a sequence of nonnegative integers, let QI denote the operation
Oi,Qi2 Qi,. Define 1(I), the length of I, by 1(I) s. Admissible sequences
I will mean nondecreasing sequences with i > 0 or the empty sequence.
Let

T(X) {Q,x lx gt,(x), I admissable}

and let A(X) be the polynomial algebra generated by T(X).

PROPOSITION 1.1 [3]. H,(CX) A(X).

By construction, it is clear that the image of the map H,(Cn+lS --->

H,(CX) generated by elements x with w(x) < q. If x H,(FqCX), we will
denote by 2 the corresponding element in H,(D,X).

If x H,(CX) is a monomial, we define w(x), the weight of x, inductively:
w(x) 1 if x H,(X) C H,(CX), w(Qix) 2w(x), and w(x y) w(x) +
w(y). This gives an algebraic filtration of H,(CX) corresponding to the
geometric filtration of CX. More precisely, H,(FqCX) is the submodule of
H,(CX) generated by elements x with w(x) < q. If x H,(FqCX), we will
denote by the corresponding element in n,(DqS).
An E=-ring space has both additive and multiplicative structure maps,

compatible in the appropriate manner [3]. Typical examples are QS, with
structure coming from loop addition and the smash product, and BO X Z,
with structure coming from the direct sum and tensor product of vector
bundles.

ff Y is an E=-ring space, then H,(Y) admits both additive and multiplicative
sets of Dyer-Lashof operations, to be denoted by Qr and Qr, respectively.
We let x y denote the additive homology product and x # y or xy denote
the multiplicative one. Both are commutative.
Let [0] and [1] in H0(Y) denote the additive and multiplicative units. Note

that O0([0]) Q0([0]) [0], Q0([1]) [1], O([0]) O([0]) 0 if r > 0,
and Q([1]) 0 if r > 0.
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In the example we wish to study, H,(IIq,0 QDqX), there are elements
of the form Y0 * Yl * Y2 * with yq H,(QDqX) and all but finitely many
of the yq equal to [0]. If __H,(DqX) is considered as an element of
H,(IIqo QDqX), then Qx. The multiplicative unit in H,(IIq0 QDqX)
is [1] Ho(QSo).
With this notation, to calculate j, and thus jq, we use the following

consequence of the geometry of j.

LEMMA 1.2. If X H,(X) C H,(QX) and I is a sequences of indices,
then j,(x) [1] x, and thus

j,(Qx) Qj,(x) Q/([1] x).

Also

j,(y z) j,(y) # j,(z) for all y and z.

Madsen, May and Tsuchiya [10], [3], [14] determined various "mixed"
Cartan and Adem relations between the various operations in E=-ring spaces.
These will be used to evaluate expressions of the form Qz([1] x). We
express these relations in lower indices.

PROPOSITION 1.3 [3, p. 80]. Let Ax Ji,x’ @ x", Ay ,y’ @ y".

(1) x # (y* Z) E(x’ #y)* (x"#z)
(2) ([1] * x) # ([1] * y) [1] * x’ * y’ * (x" # y")

Let pr denote the dual to the Steenrod operation Sq.
PROPOSITION 1.4 [3, p. 81]. (QSx) # y Ei QS+i(x # Py)

PROPOSITION 1.5 (the "mixed" Cartan formula) [3, p. 89].
,x’ @ x" and Ay ,y’ @ y" then

IfAx

r(x * Y) Z Z aXt * Qb(X’Y’)* O.Y".
a+b+c=r zx,Ay

Binomial coefficients (a) are defined, for all integers b and a, by

(1 4- x)b a X

We interpret (ab) as an integer mod 2.

PROPOSITION 1.6 (The "mixed" Adem relations) [14]. /f Ax x’ @ x"
then

QrQsX"" \s-i(J+ k-rk)QiO.x’ * Qr+z-i-z-_O.x".
i,j,k Ax
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In the Appendix we provide an elaboration of the details of Tsuchiya’s
unpublished proof of this formula.

Remark 1.7. Both of these last two formulae will be seen to simplify
greatly when homology elements are primitive. In this paper x will be said
to be primitive if Ax [0] @ x + x ( [0].
We list the most useful elementary properties of binomial coefficients.

These will be used both explicitly and implicitly throughout the remaining
sections.

PROPOSITION 1.8.

(3) If b > 0 then

(4) If b ,o b2 and a , a2 are the binary expansions of b
and a, then

In other words, () 1 if and only if a < b for all i.

2. The James maps and the Kahn-Priddy theorem

F. Cohen posed the following question: For a connected space X, is there
a filtration of H,(QDqX) such that jq, H,(QX) H,(QDqX), restricted
to the subalgebra with generators of weight greater than or equal to q, is
a monomorphism of algebras, up to filtration?

In this section, I use good behavior of the mixed Cartan and Adem
relations to answer Cohen’s question in the affirmative when q is a power
of 2, with the assumption that H,(X) is primitive. The calculations of j,
will then imply a "delooped" Kahn-Priddy theorem.
We first examine the mixed Adem relations. The following elementary

lemma plays an important role in all of our calculations.

LEMMA 2.1 ("Pairing" lemma). In the formula

QrQsx ’ , + k. Qijx’ * Qr+2,-i-zj-2kQkx,
i,j,k Ax
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all terms with j + k > r vanish in pairs, as do all terms with j + k r
except those with j k r/2, s r/2, and x’ x".

Proof. The commutativity of * and the commutativity of A imply that,
in the sum, a term QQx’ Or+2s-i-2j-2kOkx" appears twice, unless x’
x", j k, and r + 2s i- 2j- 2k. This last condition implies that

s j k + r/2 so that the corresponding coefficient,

(g;+k-rk) f2(j-r/2,
-i- j- r/2 /’

is 0 unless j r/2.
In all other cases we have terms pairing:

i- s-(r + 2s- i- 2j- 2k)-j

The coefficient is of the form

and is thus 0 unlessj + k r < 0.

COROLLARY 2.2. If X is primitive,

This corollary should be interpreted as saying that the use of the mixed
Adem relations strictly lowers the index of the multiplicative operation.
The following is a consequence of the mixed Cartan formula.

LEMMA 2.3. If X is primitive, Qr([1] x) [1] Qrx + [1] Qrx.

If j (Jl, Js) and K (kl, kt) are two sequences, let JK denote
the sequence (j, js, k k,).

COROLLARY 2.4. If X is primitive, then

,([1] x) [1], stQK sQK.c.
JIKI’" "JmKm =I

The mixed Adem relations can now be used to change terms

_.jQK, JmaKmx
into a linear combination of terms of the form QrOsx. Then the ordinary



THE HOMOLOGY OF THE JAMES-HOPF MAPS 321

Adem relations can be used to change QtQsx into a linear combination of
terms of the form QQ,x where J’ is nondecreasing.

LEMMA 2.5. IfI (il, is) is a sequence of nonnegative integers then
Qtx is a linear cotnbination of terms of the form Qrx such that l(I’) l(I),
I’ is nondecreasing, and if I’ (i i’) then i < i.

Proof. If I is not nondecreasing then iterated use of the ordinary Adem
relations will make it so. Consider the Adem relation

QrQsx 2j- r- s + 2s- 2j QjX.

The coefficient (J2rr_s) is 0 unless 2j r s > 0, so that r + 2s 2j <
s. Thus if s < r then r 2s 2j < r. The lemma follows.

Together with this lemma, repeated use of Corollary 2.2 now implies the
following proposition.

PROPOSITION 2.6. Let I (il, is) be a nondecreasing sequence and
let x be primitive. Then

0t([ll*x)-- [ll*Qr0jx
KJ=I

modulo elements of the form [1] QtcQs,x such that l(K’) + l(J’) s, J’
is nondecreasing, and if J’ (Jl, it), then jl <
Computations of the James-Hopf maps can now be made. Recall that

j, (Qtx) ,([1] x) if x H,(X) C H,(QX).

To compute J2,,, we project onto H,(QD2tX). The terms in the sum of
Corollary 2.4 which will contribute to j2,* will be exactly those with
l(J) / / l(Jm) t. Proposition 2.6 thus implies the following result.

PROPOSITION 2.7. Suppose that x H,(X) is primitive and I (i
is a nondecreasing sequence.

(1) jq,(Qtx) 0 unless q 2 with < s.
(2) If <- s, let I KJ with l(J) t. Then j2,,(Qtx) =- QrQjx modulo

elements of the form Qr,Qs,x such that l(K’) l(K), l(J’) l(J), J’ is
nondecreasing, and if J’ (j jk) then j < is_,+1.

The behavior of j2,, with respect to the product is more complicated.
It is convenient to define a weight function on finite sums of elements in
H,(IIq0 QDqX) of the form [e] * y * Y2 * Y3 where yq is a monomial
in H,(QDqX), e 0 or 1, and all but finitely many of the yq are equal to
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[0]. Inductively we define w’(y) k if y [e] * 2 with

H,(DkX) C H,(1-[ QDqX),
q>O

w’(y * x) w’(y) + w’(x), w’(Qix) 2w’(x)

and w’(x + y) min{w’(x), w’(y)}.

LEMMA 2.8. (1) If AX ,X’ @ X" then w’(x’) + w’(x") > w’(x).
(2) w’ (prx) > W’(X) if prx 7 0
(3) W’(X , y) W’(X) + w’(y) and w’(Qix 2w’(x)
(4) w’(x # y) > w’(x) + w’(y) and w’(Qix) > 2w’(x).

COROLLARY 2.9. If I is nonempty and x is primitive then

([1] * QlX) # ([1] * y) [1] * (Qtx * y)

modulo terms of higher weight.

Proof. We may assume that I (i), a sequence of length 1. By Proposition
1.3,

([1] * Qix) # ([1] * y) [1] * (Qx * y) + [1] * y’ * (Oix # y").
Ay

Proposition 1.4 then implies that Qix # y" is a linear combination of terms
of the form Qs(x # Uy") so that w’([ 1] y’ (Qix # y")) > w’([ 1] * QIX * y).

If X is a connected space, let

T,(X) {Qxlx B,(X), I(I) > t, and I is nondecreasing}.

Let A2,(X be the polynomial algebra generated by Tz,(X). Then A2,(X is
a subalgebra of H,(QX).
The two weight functions w and w’ induce decreasing filtrations on H,(QX)

and H,(QDz,X) respectively, and the map j, is filtration preserving, by
construction and Lemma 2.8.

THEOREM 2.10. IfH,(X) is primitive then H,(QD2,X) becomes an A2,(X)-
module, up to filtration, via the map jzt,. The map

J2,, H,(QX) - H,(QDz,X)

is a map of Az,(X)-modules, and the composite

Az,(X) H,(QX) H,(QDz,X)

is a monomorphism of algebras, up to filtration.
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Proof. As an immediate consequence of Proposition 2.7 and Corollary
2.9, if l(I) > t then jE,,(Q1x * y) =- jE,,(Qx) * JE,,(y) modulo elements of
higher weight. Also Proposition 2.7 implies that the generating set TEt(X)
is mapped monomorphically to an algebraically independent set in H,(Q2,X).
The theorem follows.

Example 2.11. If X S and x HI(S1) is the generator, then

Q3([ 1] x) # Q([1] x)

([1] * Q3x / [1] Q3x) # ([1] * Qx + [1] * QlX).

This can be expanded by Proposition 1.3(2). The only terms which
can contribute to J2, are [1] Q3x * Qx and [1] * (Q3x # Qlx) [1] *
QoQo(x # x) [1] * (x # x)4. We conclude that

j2,(Q3x) Q3x, j2,(Qlx)= Qx,

but

jz,(Q3x * Q,x) Q3x QIX -k- x x 4.

Note that x X4 is in filtration 8 while Q3x * Qx is in filtration 4.
Now suppose that X is a connected infinite loop space with structure

map
0

QX---- X.

0 is an infinite loop map, and thus Y, the fiber of O, is an infinite loop
space.
We construct an infinite loop map g QDzX Y. The composition

q 0
X QX X

is the identity. Consider the diagram

g,....,Y
X ’

..." $i
, F2CX Q) 1-, QX.

$o
X

The composite
-,o o

QX QX X

is nullhomotopic, as is the composite

r/

X QX QX.
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Thus we can find a lifting g’ QX --+ Y such that
rl g’

X QX >X

is trivial (assuming that is a cofibration, see [9]). Then

X F2CX -+ D2X
is a cofibration sequence so that g’ "0 trivial implies that g’ factors through
a map g" D2X ---> Y. Let g QDEX ---> Y be the infinite loop map extending

TnEOaE 2.12. If X S, the composite
j2 g

Y QS QE > Y

is an equivalence, localized at the prime 2.
The following lemma should be contrasted to Corollary 2.2.

LEMMA 2.13.

Proof. The equation

=. j-r-s

is an Adem relation [3]. The other sum also equals QQx by the following
computation"

(J;- ;.)ar+2s-2jajx (j;- ;.)(ir-2s + 2j
r- 2s + j/Qr+2:-2iQix

(J2-’)(2i i-j-l-r- 2s +j)Qr+s-

rx.
The second-to-last equality made use of Adem’s formula [1]"

(a-k)(:+) (a+b+ 1
k c

mod 2.
/
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ProofofTheorem 2.12. As spaces QS S Y, and as A2(S1)-modules,

H,(QS) H,(S1) ( A2(S1).

Let x HI(S) denote the homology generator. Then i,g,(Qix) Qix, by
construction. This, together with the fact that g is an infinite loop map,
completely specifies g, and implies that i, H,(Y) ---> H,(QS1) is an injection
of algebras embedding H,(Y) isomorphically as A2($1). Certainly, g, is
filtration preserving. If I (I’, i) then, reasoning as in Proposition 2.7, we
have j2,(Qx) QrQx modulo elements in the kernel of g,, by virtue of
Lemma 2.13. We conclude that g,j2,i,(QIX) Qx.
By Theorem 2.10, j2,i, is an algebra map, up to filtration. Therefore, up

to filtration, the composite g,j2,i, is a map of algebras, which is the identity
on a generating set. Thus the composite is an isomorphism on Z2-homology.
Since Y is simply connected, this composite is a 2-local homotopy equivalence.
Note that Y is the universal cover of QS, so that 12Y QoS. Thus we

have the following corollary.

COROLLARY 2.14 (Kahn-Priddy Theorem) [7].
j2

QoS -------> QRp QoS

is a homotopy equivalence, localized at 2.

Remark 2.15. In this last corollary, the equivalence visibly deloops
once, but does not deloop twice. For example,

g,j2,(Q3x) Q3x, g,j2,(QlX)= QIx,

but
g,jz,(Q3x * QlX) Q3x * QlX + x8.

See Example 2.11.

Remark 2.16. For a general connected infinite loop space of finite type,
it should still be true that the composite

j2 g
Y ) QX , QDEX Y

is an equivalence, localized at 2. Indeed this is essentially the theorem of
Kahn and Finkelstein announced in [5]. In this generality, however, the
homology calculations of jz, are much more complicated.

3. Applications to stable splittings

In the last section it was shown that use of the mixed Adem relations
lowers the indices of the multiplicative homology operations. In this section
we study the maximal increase in the indices of the additive operations.
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THEOREM 3.1. Let 2p < n < 2p+I and let X be any connected space with
/r,(X; Z2) 0. If the map of spectra

’n+ln+ X Dn+ 1,2tX

desuspends to d,’n+ln+lg ,dOn+l,2tg then d > 2t+p+l 2P+l + n.

Proof. By adjunction, to prove the theorem it suffices to show that if
there were a factorization

’n+ 12n+ 1X "d,dDn+

j2t

Qx QD2,X

then d > 2 +p +l 2p+l + n.
Recall that the image ofH,,n+ ,n+ 1X H,QX is the polynomial algebra

generated by Qix with I an admissible sequence of indices all less than
n + 1. Consider the image under J2,, of elements in H,QX involving only
Dyer-Lashof operations Qi with < n. A lower bound for d can be found
by studying the maximal indices of the additive operations which appear.
The theorem follows from the following proposition.

PROPOSITION 3.2. Let 2p < n < 2p+I and let rn 2p+ n. Let

times

In, (rn, r,, rn, n).

Ifx H,(X) is primitive thenjz,,(Qz.,,x) Qz,+,+,-z,++,x modulo elements
of the form QiQsx with l(J) and < 2t+p+ 2p+ + n. Moreover,
this result cannot be improved by replacing In,t by any other sequence I
of indices all less than or equal to n.

Proof. Corollary 2.2, Corollary 2.4, and the discussion following Prop-
osition 2.6 imply that it suffices to study the effect of commuting or fewer
multiplicative Dyer-Lashof operations past an additive one, with the condition
that all indices be less than or equal to n. Induction on t, Corollary 2.2,
and the following lemma prove the proposition.

LEMMA 3.3.
hold:

Suppose that 2 < n < 2p+l and the following conditions

(1)
(2)
(3)

(4)

r>OJs>O,j>O,
r < n,
S < 2t+p 2p+ + n,
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Then r + 2s 2j < 2t+p+l 2’+ + n. The equality is realized ifj
O, r 2p+I n, and s 2t+p- 2p+I + n.

Proof. First note that the second term in the coefficient

is zero unless 2j r s > 0. But then

r + 2s 2j < s < 2t+p 2p+I / n < 2t+p+l 2p+1 + n.

Thus we can replace condition (4) by condition (4’)"

If j 0, r 2p+I n, and s 2t+p 2p-I / n, then

2t+p 2’+1 + n 2’+’ 2p+ / n :/: 0,

so that (4’) holds. Also r + 2s 2j 2t+p+l 2p+1 + n, as claimed.
To prove that this is best possible we first show that we can assume that

j 0. We do this by induction on n. When n T’ we clearly have the
best possible result, since in this case 2p+l n n. Now suppose that
bothr< nands < 2t+p 2+ + n. Ifj> 0then

(s- 1)-(j- 1)

and, by inductive hypothesis, this will be nonzero only if

(r- 1) + 2(s 1) 2(j- 1) 2’++ 2p+ + (n 1).

But thenr + 2s 2j 2*p+ 2 + + n.
Thus if the lemma is not true then there will be a minimal counterexample

withj 0, so that

So suppose that r and s satisfy conditions (1), (2), and (3) and that

r + 2S > 2t+p+l 2P+l + n.
Then

r / s > 2t+p+l

> 2t+p+

2t+P.

2p+l + n- s

2+ + n (2t+p 2p+1 + n)
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Also r + s + 1 2t+p < s so that 0 < r + s 2’+p < s. Finally
S < 2t+p SO that

This completes the proof of the lemma, and thus the proofs of Proposition
3.2 and Theorem 3.1.

Remark 3.4. The hypothesis that x is primitive in Proposition 3.2 was
made only to aid in the clarity of exposition. The use of nonprimitive
elements will not improve the result given here.

Remark 3.5. Theorem 3.1 and Proposition 3.2 were proved by Kirley
[8] in the special case when n 1, using homology of groups techniques.
This special case suffices to prove the following corollary.

COROLLARY 3.6. If n > 2, then Snaith’s stable splitting

nnx V Dn,qX
ql

does not admit a desuspension

d’nng V dOn,qX
q>l

for any finite d.
Embeddings enter into the F. Cohen, May, and Taylor construction of

the James-Hopf maps [4]. They show that if F(Rn, q)/,q embeds in Ra then
there is a James-Hopf map

jq ’nnX ’ddDn,qg.
Here F(Rn, q) denotes the configuration space of q-tuples of distinct points
in R".

COROLLARY 3.7.
in R2t+p+-2p++n.

Let 2p < n < 2p+l Then F(R"+ , 2t)/Y-.,2 does not embed

Remark 3.8. In [4] it is shown that the embedding dimension of
F(Rn+l, 2)/2 is n + 2 more than the immersion dimension of RP. Thus
Corollary 3.7 implies that RP doesn’t immerse in R2/-. This is precisely
the result detected by the Steifel Whitney classes on RP".

Appendix. The mixed Adem relations

In this appendix we derive the mixed Adem relations. As a starting point
we assume only formulae in [3] and [14] which are published with proofs.
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Our basic line of reasoning follows Tsuchiya’s unpublished proof. For easy
comparison with [3] and [14] we use upper indices in this section.

LEMMA A1.
hold:

For arbitrary integers a, b and c, the following identities

(1) (ak)(c b_k) (a+c b),
:)

Proof. (1 + t)a (1 + t)b (1 + t)a+b, and the comparison of the
coefficients of yields identity (1), when c > 0. If c < 0, both sides of
(1) are clearly 0.
To prove (2), we have

t"(1 + t)b-"= (1 + t)b( )cl+ (1 + t)b(1 + (--1 t)-)

1 + t)b-l’.

If a > 0 we can equate coefficients of a, which yields

If a < 0 and c > 0, then both sides cf (2) are clearly 0.

LEMMA A2 [3, p. 80]. If AZ , Z’ @ Z" then

(x * y) # z (- 1)degydegz’ XZ’ * YZ".

PROPOSITION A3 (Nishida relations) [3, p. 6].

PQx 2i

Let X denote conjugation in the Steenrod algebra.

PROPOSITION A4 [3], [14].

QS[1] # x E, Qs+’Prx and Qx 2 QS+t[1] # xPtx.

PROPOSITION A5 [3, p. 105]. /f r > s > 0 then

QrQ[1] (r-i-1) Qi[1] . ar+s_i[1]"
i=0

s
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It is convenient to define Q, Qr, and er to be 0 if r < 0. Our first
observation is that all restrictions on r, s, and in the last three propositions
are unnecessary.

PROPOSITION A6. For all integers r and s, we have thefollowingformulae"

PQx
ri

Q[1] # x ] Q+rpx, Qx Q’+t[1] # ptx

Proofof(l). If r < 0 then PQx O. On the right hand side, Q-+Px
0 unless 0, and, in that case,

r 2i

If s < 0 and r 0 then PQ 0 and, by excess arguments, Q-+Px
O.

(1)

(2)

Proof of (2). If s < 0, then QS[1] # x 0 and, by excess arguments
Q+prx 0 for all r. Also, it is true that Yr+t=k Prxpt 0 if k 0 and
is p0 if k 0, even when r, t, and k are allowed to be negative. Thus

Z os+t[1 : xetx Z OS+t+rerxetx OSx.
t,r

Proof of (3). Consider the right hand side of the formula. Qi[1] 0
unless > 0, and

(r-i- 1)=0s-
unless s > i, so we can assume that 0 < < s, as in Proposition A.5.

If s < 0, the left hand side of the equation, OQ[1], is 0. If > 0 then

(r-i- 1)=0’s-
so that the right hand side is also 0.

Finally, the commutativity of implies that, in the sum, a term

Qi[1] Qr+S-i[1]

appears twice, unless r + s i. Note that

(r-s i_- 1)= (:-;).
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In this last case, (r + s)/2, so that the corresponding coefficient

is 0 unless r s.

In all other cases we have terms pairing:

s (r + s i)
Qi[1] * Qr+s-i[1]"

The coefficient is of the form

and is thus 0 unless s r < 0.
If r < s then QrQS[1] 0. Also QrQr[1] Qr[1] Qr[1] [3, p. 82]. We

have just shown that the right hand side of the formula agrees with these
results.
We can now prove the mixed Adem relations.

THEOREM A7. Let Ax Xx’ @ x". For all integers r and s,

OQSx X x (r 2k 1 +s_i_j_Okx,,
i,j,k Ax \ s + j i- k ] aiOJx’ * Q

Proof.
---.rQsx Z Or[Q + t[1] ik xptx]

Z Or-aQs+t[ 1] # OaXPtX
ta

t, ,b S + b [Q 1] * b[1]] # Oaxptx

(r-a-b-1) cxpdx
t,a,b Ax S + b [Qb[1] #
c,d

, [Qr+s+t-a-b[1 # Oa-cxet-dx"]., (r-a-b-1) b+,p,Ocxpdx,
t,a,b, Ax S + b Q

d,u,v

, O +s +t-a -b + opoOa cxpt- dxtt
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t,a,b,c,d, ax S + t- b 2m v- 2n
u,o,m,n

Q+UOC-u+mpmxPax’, ar+s+t-a-b+vOa-c-v+nenxet-dx"

[v(r+m+n-i-j-k-v- 1)(Ju -m)
d,e,i,j, Ax S + d + e + u 2m
k,m,n

(ok- n)]QijpmXpdx’,Qr+s+m+n+d+e-i-j-kkenXpex"2n

where we have let b + u,j c u + m, k a c v + n,
and e t d and have eliminated the variables t d + e, a j + k +
u + v m n,b i- u, and c =j + u m.
By excess arguments, }/’em is 0 unless j > m, in which case

(Ju -m) (j j-m )-2m +m-u

Then

(r+m+n-i-j-k-v-1)(j j-m )(kv -n )u,v s + d + e + u- + m- u 2n

=(r+m+n-i-j-k-v- 1)u,v s+d+e+u-i

( j-rn )(ok__-n)x
(j+m +s +d+ e -i) -(s +d+e +u-i) 2n

o(;+n-i-k- v- li)(kv -n)+ m + s + d+ e- 2n (byLemmaAl(1))

o(vk-n)((r-n-i-k- 1)-(v-2n))-2n j+m+s+d+e-i

_( r-i-2k-1 )j+m+n+d+e+s-i-k ifk- n>0

(by Lemma A1 (2)).

If k n < 0 then Oke 0, by excess arguments. Thus

QrQSx
d,e,i,j, AX

r- i- 2k- 1 QiOJemxedx’+m+n+d+e+s-i-k

. Qr+s+m+n+d+e-i-j-kOkenxeex""
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Since rn and d appear combined as rn + d and since E,/d=q emxedx’
0 for q 0, all terms vanish except those with rn d 0. Similarly we
can assume that n e 0. Thus

rasX Z Z + S --i k OiOJx
i,j,k Ax

, Qr+s-i-j-kOkx""

Remark. In lower indices this formula is that given in Proposition 1.5.
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