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SMALL INTO ISOMORPHISMS ON L, SPACES

BY
DaLE E. ArspacH'

Recently, Y. Benyamini proved that an isomorphism 7 of C(K), K compact
metric, into some C(S), S compact Hausdorf is close to an isometry if
ITIT= " is close to one [3]. In this paper we show that a similar result
holds for isomorphisms of L,(u) into L,(v). The method of proof is completely
different than that of [3]. Our argument depends heavily upon results of
Dor [5] and Schechtman [10]. In fact one easy consequence of their results
is that an isomorphism T of I, into L,(v) is close to an isometry if || T||T~"|
is close to one (see Section 1). Hence the main point of this paper is to
show how this can be extended to more complicated measure spaces.

There are a few other results in this direction. It was proved in [2] that
if there is an isomorphism T of L,(u) onto L,(v) and L,(u) is separable
then if |T||7"| is small enough L,(u) and L,(v) are isometric. The proof
does not explicitly construct an isometry but rather observes that it is
sufficient to show that the number of atoms in each measure space is the
same. The form of isometries of L,(u) into L,(v) is well known, e.g., [1],
(61, [71, [91.

This paper is organized as follows: In Section 1 we prove the main result
for the special case of T:L,[0, 1] — L,(v). This case illustrates all of the
major ideas needed to handle more general measures. In Section 2, we then
describe the proof for the general case.

We will use standard notation and facts from Banach space theory as
may be found in the books of Lindenstrauss and Tzafriri [8]. Throughout
this paper p will be restricted to the values [1, ©) — {2}. The case p = 2,
of course, is special because there are many more isometries. This case
can be handled easily by using the polar decomposition of an operator.

1. The separable case

We first state the results of Dor and Schechtman.

THeorREM A [Dor]. Suppose {x;:i € N} is a subset of L,(v) for some
measure v, such that for any set of scalars {a;:i € N}, with finitely many
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non-zero,

1/p
a- e)<2lail") <

‘2 a; X;

1/p
<1+ s)<2 Iafl"> :

Then if ¢ is sufficiently small there exist disjoint measurable sets
{A;:i € N} such that ||x; 4l < ai(p, €), where A{ denotes the complement
of A;. Moreover, a,(p, €) > 0 as ¢ = 0.

This result is stated in the paper of Dor only for the case of L,[0, 1].
However, the proof of Proposition 2.2 of [5] yields a family of functions
{¢;:i € N} C L.(v) such that ¢; = 0, =¢; < 1 a.e., and [|x/|’d;dv =
b(p, €) for all i € N. Because b(p, €) — 1 as ¢ — 0, for ¢ sufficiently
small there is a constant a,(p, €) such that

t/p
[L]xflp] =1-a(p,e) foralliEN

where A; = {¢>,- > %} and a,(p, ) = 0 as ¢ — 0. Clearly these A; satisfy

the conclusion of Theorem A.

THEOREM B (Schechtman). Let {x;:i € N} C L,(v) satisfy the hypothesis
of Theorem A and let {A;:i € N} be measurable sets such that

L]xil" dv=c foralli€ N.

Then

“ 2 a;XiAf

1/p
< a(e, C)<Z|ai|")

for all sets of scalars {a;:i € N} with finitely many nonzero, and a(e, c)
—0ase —>0andc — 1.

As we noted earlier if T:/, = L,(v) and |T|||T""|| is sufficiently close to
1, then x; = ||Te)| ™" Te;, i = 1, 2, ..., where {¢;:i € N} is the usual unit
vector basis of /,, satisfies the hypothesis of Theorem A. Thus there are
disjoint measurable subsets {4;:i € N} such that

leil” > b(p, ) foralli€ N

where (1 — ¢)' = |T|IT""|. Define an isometry S:l, = [x;4)ien by
|
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SE ae;) = Eai"xﬂA."_l Xia» Then

0@ - S)(Z aie,-)

= HZ a(Te; — ”TeilAi”_I TeilAi)

a1l — "TeilA.-"—l) Tey| +

ai||T‘«’i|m"_l Tei|Ar‘

1/p
<sup|l - IlTe,-;Aill“‘HITII(EIaiI”)

1/p
+ a(s, b(pa 8)) SUP ”TeilAl”—l(zklilp) .

Thus |T — S| > 0as e — 0.
Now we will prove the theorem stated in the abstract for the case of
L,[0, 1]. Let T:L,[0, 1] — L,(») be an into isomorphism with

ITNT =" < (1 = &)~
We want to choose a family (tree) of measurable sets
Ap:1<i<2k=0,1,2 .1}
such that

() Arrioict UAn CAg 1 <is<25k=0,1,2, ..
2 AuNAy;=0,i#],

and a function h € L,(») such that
B) [adhfPdv =25 1<i<2%k=0,1,2, ...

*

Once this is done there is a natural isometry S'L,,[O 1] = L,(v) such that
S[G — 127827 =h-Ay, isis2%k=0,1,2,.

(Here we adopt the notational convention that if A is a measurable set we
will write A rather than 1,.) The difficulty is to choose the tree of sets and
the function 4 so that |[T — §|| is small.

First we will choose the tree of sets by modifying the proof of Theorem
A (Proposition 2.2 of [5]). Let

(i > L‘(")>, (2 > Lw(u))

k=0i=1 k=0i=1

with the w* topology. (We may assume L,(»)* = L.(»); in fact, for this
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case, we may assume L,(v) = (L; [0, 1] ® [}),). Let

D = {(¢u)i=0 t21: P € Lu(¥), b =0, bo =1,
and ¢iqpi-1 t brary S Ppiae, 1 <is< 2% k=0,1,2,..}

It is easy to see that D is a bounded w* closed (hence w* compact) subset
of X. Define a map ¥:D — [, by

Y((bii))y = IITI,;I7° IlTIUV’ ¢y dv
where
I;=1G-1D27%2") and L =L4¢Lj):1<j<2,1=0,1,2,..}.

Clearly ¥ is w* continuous.

We will show that there is a constant c(¢), which depends on p as well,
such that for each r € N there is an element d € D such that

(V@)= cle)foralll<r,1<j<2' and limc(e) = 1.

&—0

Once this is accomplished it will follow from the w* continuity of ¥ and
the compactness of D that there is an element (¢4;) € D such that ¥((¢y,)); =

c(e) for all [, j. We then let A;; = {d)k,. > %} and we have (1), (2) and

@ NTLA™ fITL - Ay dv = ci() where ¢(e) = 2 c(e) — 1.
We will need the following lemma:
Lemma 1. Let {B;}'- and {C;}/-, be families of disjoint measurable sets
from measure spaces (X, B, w) and (Y, C, v), respectively, and let
T:L,X, B, u) = L,(Y, C, v)

be an isomorphism (into) with |T||IT™ Y| < (1 — &)~'. If there exists a
constant ¢ > 0 such that |(TB;) - CJ|| > c |\TBj| fori = 1, 2, ..., n, then

I(T(UBy)) - UCH| > (¢ = a(e, ") IT 7T ITUBI.

Proof.

(rlya)-ye

Z(TB,-)(L]J q)

= |>(TB) - C; + 2(IB) - UG

\

S(TB)) - c.-“ - \ Sa)- U




304 DALE E. ALSPACH

1/p
= (ZH(TB,-) : cill") - "E(TB,-) - Ci

(the C;’s are disjoint)

1/p
> (Z ¢’ ||T(B.~)u">

- “ZIITB,-H (ITB:||~* (TB) - C?)

1/p

1/p
> c(ZuTB,-u") ~ a(e, c")(ZIITB,-H”)
by Theorem B where x; = |TB;|”' TB; and A; = C;. Note that

1/p 1/p
(EIITBAI”) 2IIT"III"<2HB,-II")
= T~ UBI
=T T IT(UBYI
Thus

“(T<L.J B))-Uc

as claimed.

Fix r € N and consider the elements x; = |TLJ|"' TI;, i = 1, 2, ... 2.
These elements satisfy the hypothesis of Theorem A and thus there are
disjoint measurable sets C;, i = 1, 2, ... 2" such that

1/p

I(TL) - Cll = (1 = ai(p, &) ITL.

Define an element (y;) € D as follows:

0 ifl>r,
Yo = {u{c,. (-2 <isj2rt iflsr.

= [c — a(e, DT NHITIIT B

Hence

By Lemma 1,

1/p
[ [ |n,,.|p4,y] = (1 = ay(ps o)) — ate, (1 — a(p, )P 1T~ 1T 1T

forl <r.
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Therefore

71,7 I|TIU Py = c(e)
where
c(e) = [(1 — a(p, &) — ale, (1 — a\(p, PIT Y PIT|I > forl<r.

Clearly lim,_,, c(¢) = 1 and thus, as noted above, the w* compactness of
D shows that

Ap:1<i<?24k=0,1,2,..}

satisfies (1), (2), and (4).
Our next task is to find the function A. This will be accomplished in two
steps. For each k € N let

2k

g = 2(Th)Aw

i=1

and let g be a weak limit point of (g,) inthe case p > 1. If p = 1 we let

v be a w* limit point of (g,) in L,(»)** and let g be the part of y absolutely
continuous with respect to v. Note that in either case if # € L,(v)

lg — Al <Tim llg — .

The function g is almost what we want but we must change its modulus.

Claim. There is a constant c,(¢) such that
27 Pcy(e) " < |lgAull < 27¥Peyle)

forall 1 <i =<2 k €N, and lim,_, c,(e) = 1.

Proof of the claim. First observe that if K < [ and
dh={j: - 12 <j=<i2l™

then
p
”(gk - gl) : Akl’"p = 2 TI(/ : AU - TIki * Aki
j&d’a‘
p
<|> 11, - A; — TI,

jE&f‘(i

) nmnp)

JEAki

p
= | 2 T,A4p| <aG, c.(e»"(

JEAki
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by Theorem B. Hence

Igx — &)« Aull” < a(e, cy(e))” ||T||p(

> ||qu")

JEA ki
= a(e, c\(e))” TP 27*.
Passing to the limit on [ (using the lower semi continuity of |-) we have
g — g&) - Aull” < ae, ci(e))? TP 27
and thus
IT)| 277 + a(e, ey(e) ITI 277

= |lgk - Aull + (g — &0) - Al

= |lg - Al = llgw - Aull — lg — &) - Audl

= c)() P IT Y71 277 — ale, cy(e)) ITII 277
This establishes the claim with

cie) = max {(a(e, c,(e)) + DT, (&7 IT 7" = ale, c(NITI) '}

Next, let

2k

he = E"g CAul TP 27 A

i=1
Note that h, € L.(v) and that in fact the claim implies
(5) cAe)’ = hy = ci(e)".

Let A, be a w* limit point of (4,) for k in the subsequence (if p = 1, subnet)
for which g, converges to g. Define & = hY/?g. We will show that A satis-
fies (3).

[inp - Ao = [ o Ay

= lim flgl” h;- Ay dv
j

= lim j g > llgA; ™" 277 A; dv
J resthi

=1lim27/ 3 JlgA; | f &b Ay, dv
J re€sthi

= lim27/ 2/
J

=27k
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It follows that the operator S:L,[0, 1] — L,(v) such that SI; = hA is

an isometry. It remains only to estimate |T — S|. For any sequence
(a)%, of scalars and any k,

”TZ ailki - S 2 a,'Ik,'

= ’2 a,'TIki - 2 a;h . Aki

= ‘2 a;Tl; — 2 aigh};/p “ Ay

-+

I

(2 aigAkf)(l - )

Z a;Tl; — 2 a;g Ay

+ I = A"

< lim 2 aTl,; — 2 a;81A

r Z a;8Ay;

+

<lim |3 a; 21 TI, — X a; 2/ 11, A,

! i reski i restii

2 aigAu(cx(e) = 1)

(by the definition of g, and (5))

1/p
<lim||\> a, > TI(A})| + (Z|a.~|" ||gAk.~u") (cae) = 1)

i r€sdki

1/p 1/p
<lim a(e, cl(s))(Z leail”IIlerll”) + (Zlaiv’z"‘cz(e)") (ca(e) = 1)

i redk

(by Theorem B and the claim)

2 aly

1

1/p
< lim (e, ¢(&) ||T||(2 leaflpullrup) + ex(e)

i redu

(ca(e) = 1)

< [a(e, c1(&) |T|| + c2(e)(ca(e) — 1)]\

Therefore

2 aly

IT — S| < 7(e)
where

() = a(s, () |T|| + cxe)(ce) — 1) and lim7(e) = 0,

&—0

proving our result.
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2. The general case
In this section we will prove our result for an isomorphism
T:L,(w) = L), [TIIT™ < - &)

with no restriction on w. First let us recall that any abstract L, space
is isometric to (Z,ex L, ([0, 11™) @ 1,(K})), where K, K, and m, are cardi-
nals (see [6, page 136]). To simplify our notation we will write /(1) =
L0, 11% and thus we may assume that

L,(p) = (Z Lo, 1]'"~)
kEK p

where some of the summands may be one dimensional. Our argument in
the general case is very similar to that for L,[0, 1]; essentially all we do
is replace sequences by appropriate nets and proceed as before.

We begin by choosing our replacements for (I;;). For each k € K, let

{(ng, ks, i) : 1 < s <j}

be a finite subset of m, X N U {0} x N such that 1 < i, < 2* and n, #
ny, if s # s'; and define

Ck, {(ns, ks, i) : 1 <s<j}) ={x €0, 1]™: x(ny) € I, ;,}

where, as before, I, ;, = [(i, — 1)27%,i,27%). Let C(k, $) = [0, 1]™. These
cylinder sets will be used in the same way that the dyadic intervals were
used before. Note that for « fixed the sequence {(n,, k,) : 1 =< 5 < j}

establishes a level of [0, 1]™ and that the levels are partially ordered by
refinement, i.e.,

{(ng, k) s 1ss<jt<{n;, k) : 1 st<j}
if
{n:l1ss<sjicCin : 1<st<j}

and if n, = n;, then k;, < k;.
Our first task is to find sets Ak, {(n,, k,, i) : 1 <s < jp forall k €
K, and finite sets of triples (n,, k,, i;) in m, X (N U {0}) X N, such that

¢)) Ak, {(ng, kg, i) s 1<s<jtUu{(n, k +1,2i — 1)}
UA, {(ng, k,, i) : 1ss<jtU{n k+ 1,20}
C AWk, {(n,, ky, i) : 1 s s <jIU{(n, k, i)},
@) Ak, {(n,, ks, i) s 1 <ss<jHNAK, {(n, kp, i 1st<jh =P

(@) if k # ' or
b)) ifk =«',j=j,n, k) = (n, ky),s =1,2,...j,and i; # i for
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some s, 1 < s < j, and functions A,, k € K, such that

@ [P A ki) 1= s < ) dy = 2k
Let

x=<2 > L,(v))*=(2 > Loo(w)°°

kEK FCmXNXN h k€K FCmXNXN
where the second sum is over all finite (including the empty set) subsets
F = {(ns, ky, is) : 1 < s <j}

of m, x N X Nwithn, # ng, ifs # s', 1 <i<2% 1<s<j,in the
w* topology. Define a subset D of X as the set of all ({(x, F)) where k €
K, F C m, X N X N such that {(x, F) = 0, =, {(x;, §) < 1, for all (x;),
a sequence of distinct elements in K,

{k, FU{(n, k + 1,2i = )} + Uk, FU{(n, k + 1, 2i)})
< Uk, FU{(n, k, 0)})

forall k € K, F U {(n, k, i)} C m, x NU {0} X N, and F is as above.
Note that in the index set for the definition of X we do not allow the tuple
(n, 0, 1) because this would be redundant, e.g.,

Ak, {(n, 0, DY = [0, 1]™ = Ak, 0).
However, in the definition of D, we want to have the relation
Uk, {(n, 1, DY + Lk, {(n, 1, 2P < {x, {(n, 0, DY) = {(x, ¢) for all n,
thus we allow the tuple (n, 0, 1) with the understanding that
{k, FUA{(@n, 0, DY = i, F).

It is easy to see that D is a w* closed, bounded and hence w* compact
subset of X. Define amap V¥V : D - L,({(x, F) : k €K, FCm, X N X
N}) by

V(d)(x, F) = |T(C(x, F))| ™" IIT(C(K, F)l {(k, F) dv.

Clearly ¥ is w* continuous.

As in Section 1 we wish to show that there is an element d € D such
that ¥(d) (k, F) = c(e) for all (x, F). Because of the w* compactness of
D and the w* continuity of ¥ it is sufficient to show that for any finite
subset {(k;, F;)} of the index set there is an element d € D such that
W(d)(k;, F;) = c(g), for all i.

Observe that for any such finite set {(x;, F;)} there is a finite set
{Ki, K3, ... Kk;} of distinct elements in K and levels {(n}, k}) : 1 < s < ji},
1 < I < j, such that the sets C(k;, F;) belong to the finite algebra generated
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by (in fact are unions of)
Cley, {(ng, K, iy 1<s<j), 1<ii<2él<s<j,l<I<j

and that these cylinder sets are disjoint. By applying Theorem A to the
sequence

x(k;, F) = |I(C(x;, F))| ™ T(Clk,, F)),
F={n Kk, 1ss<sjl1<i<2®1=<s<j,1=<I<j)}
we get disjoint sets {B(x;, F)} such that
|x(;, F) - Bk, F)|| =1 — ay(p, &),

F as above, 1 < <. Let {x;, G) = U {B(k;, F) : Clx;, F) C C(x;, G)}
and note that ({(k;, G)) € D. By lemma 1, if C(x;, G) is a union of some
of the sets C(k,;, F), F as above,

ITC(k;, G2 W(TC(k;, G)) ;s G = c(e).
Therefore there is an element ({'(x, G)) in D such that
IT(C(x, G)II7F (TC(k, GNL' (k, GHIF = c(e)

for every k € K and G C m, X N X N. Let A(kx, G) = {{’(K, G) > %}

and note that these sets satisfy (1), (2) and
@ IT(C(x, GNP NTCx, G’ (k, G = c(e)
We turn now to the construction of the functions 4,. The argument is
very similar to that used in Section 1 to construct 4. For each level
L = {(n,, k) : 1 <5 <j}of [0, 1]™
let
gk, L) = Y(TC(k, G)) * A(x, G)

G

where the sum is over all G of the form {(n,, k,, i) : 1 s s<sjl,1<i <
2% j.e., G is on level L. Let g(k) be a weak limit of a weakly convergent

subnet of (g(k, L)) if p > 1 and the absolutely continuous part of a w*
limit if p = 1.

Claim.
2747 cy(e) = |lg(k) * Ak, G| = 2747 c(e) ™!
for Gonlevel L = {(n,, k,) : 1 < s <j} where k = k; + k, + -+ + k;.
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Proof of Claim. Let L' be a level which refines L. Then

gk, L) — gk, L") - Ak, G)|
= |(TC(x, G)) - Ak, G) — 2ATC(k, H)) - A(x, H)|
H

where the sum is over all H on level L’ such that C(k, G) D C(k, H). It
follows that for such H, A(k, G) D A(k, H) and thus

(TC(k, G)) - Ak, G) — DA(TCk, H)) Alx, H)|
H

2(IC(x, H) - Ak, G) — X(TC(x, H)) Alx, H)“

H H

Ip
=

2(TC(k, H) - Ak, H)
H

i
< a(e, c,(g)) (EHTC(K, H )"p)
H

p (by Theorem B)
< a(e, c(e)IT| (2IIC(K, H )II”)
H

a(e, c(&)ITNIC(k, G|
a(e, cy(e)||T)| 27%77.

Passing to the limit over the convergent subnet (using the lower semi-
continuity of |-|), we have

lete, L) — g(x)) - Ak, G)|| < a(e, c,(e)||T]| 27*

and thus the same computation as in Section 1 yields the claim.
Next we need to adjust the modulus of g(k). Let

h(k, L) = Y|lg() - A(k, G)|? 27* Ak, G)
G

where, as before, G is on level L and ||C(k, G)| = 27/ for all G on level
L. Let h(k) be a w* limit point in L.(v) (The claim shows that A(k, L) €
L.(v).) of a convergent subnet of the subnet of (h(k, L)) having the same
directed set & for which (g(k, L)), <o converges to g(k).

Define h, = g(k) h (x)"/”. First we will check (3). Let

G = {(n,, k;, i) : 1 <5 < j}
Then
[k - At &) = [lg60lheo - 4, &)

= lim f le(lP Dllg) Ak, H)|| P 27 'A(k, H)
H
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where the limit is taken over the convergent subnet of (h(x, L)) and the
sum is over H in some level L' which refines the level of G with the measure
of the set in level L', |C(k, H)|P = 27, and A(x, H) C A(k, G). We have

f leP Dllgx) - AGe, H)| ™" 27" Ak, H)
H

= > 27" |lg(k) - Ak, H)|™” f | - Ak, H)
H

=>2"=2"% wherek = k; + k, + - + ki
H

proving (3).
Finally we estimate |T — S| where S is the isometry which satisfies
S(C(k, G)) = h, - Ak, G).
For any finite set {k;, : 1 < [l < j;} of levels of m,,

L, = {(n, Ay) : 1 <5 <jj},
and scalars {a(k;, G) : G on level L;, 1 < [ < j}, we have

2 > alk;, G)Clk;, G) — S 2, Y, alk, G)C(k,, G)
=1 G

=1 G

J J
= 2 > alk, G)TC(k;, G) — 2, Y, alky, C) by, - Al G)"

G I=1 G

I
0 M‘

=1 G

J
2 alk;, )TC(k;, G) — 2, 3, alk;, G)glk)h(x)'"? - Alk,, G)Il
G

n
)I M [

2 a(k;, G)TC(k;, G) ~ 3 X alky, G)glke) - Al G)”
G

I=1 G

+

M-~

1 G

(2 alk;, G)g(k) - A, G))([O, 1™ — h(k)"?)

]

I=1 G

Jj Jj
lim 2 2 a(k;, G)TC(k;, G) — 2, 2, alk, G)glky, Ly) - Alky, G)”

J

+ |3 > atk;, Gglk) - Ak, G)

I=1 G

max
i

([0, 1™ — h(xk,)""?) - [0, 1]

oc

where the limit is over the product of the directed sets (which is directed
in the obvious way) for the convergent subnet of (g(x;,, L)), 1 <[ < j.
Continuing our sequence of inequalities, we replace g(k;, L;) by its definition
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as a sum over H in level L, and write C(x;, G) as a union of sets from
level L;, C(x;, H) C C(k;, G) for each [ so that the inequalities continue
with

2 > a(k;, G) X, TC(x;, H)

I=1 G H

2 > alk;, G) D, TC(k;, H) - A(k,, H)N
I=1 G H

(c(e) = 1) (by (5)

Jj
2 > alk;, G)glk) - Ak, G)
G

2 > alk;, G) D, TC(k;, H) - A(k;, H)®
= G H

J 1/p
<E Dlalk;, G)Pllg(x)) - Ak, G)II”) (c(e) = 1)
G

I=1

J 1/p
im a(e, m(s))(E > EIa(K,, GITC(x;, H)u")

J 1/p
+ (E Dlatk;, G IC(k,, G)H”Cz(S)”) (ce) = 1)
I=1 G
(By Theorem B and the claim)

J 1/p
< [im ate, c.(s»nTu(Z > Slalk;, G)PICk,, H)n")
G H

=1

> > alk;, G)Clx;, G)
= G

+ ¢,(¢) (ce) = 1)

J
< [a(e, /(TN + cxe)cxle) — 1)] 2 > alk;, G)Clk;, G)||.
I=1 G

Therefore, with the previous notation, |T — S|| < 7(e) and lim,_,, () = 0.
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