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SMALL INTO ISOMORPHISMS ON L, SPACES

BY

DALE E. ALSPACH

Recently, Y. Benyamini proved that an isomorphism T of C(K), K compact
metric, into some C(S), S compact Hausdorf is close to an isometry if
IITIIIIT-II is close to one [3]. In this paper we show that a similar result
holds for isomorphisms of Lp(/x) into Lp(u). The method of proof is completely
different than that of [3]. Our argument depends heavily upon results of
Dor [5] and Schechtman [10]. In fact one easy consequence of their results
is that an isomorphism T of 1 into Lp(v) is close to an isometry if IITIIIIT-11
is close to one (see Section 1). Hence the main point of this paper is to
show how this can be extended to more complicated measure spaces.
There are a few other results in this direction. It was proved in [2] that

if there is an isomorphism T of Lp(t.l,) onto Lp(v) and Lp(/x) is separable
then if [ITIIIIT-II is small enough Lp(lz) and Lp0,) are isometric. The proof
does not explicitly construct an isometry but rather observes that it is
sufficient to show that the number of atoms in each measure space is the
same. The form of isometries of Lp(lz) into Lp(l) is well known, e.g., [1],
[6], [7], [9].

This paper is organized as follows: In Section we prove the main result
for the special case of T: tp[0, 1] "- Lp(v). This case illustrates all of the
major ideas needed to handle more general measures. In Section 2, we then
describe the proof for the general case.
We will use standard notation and facts from Banach space theory as

may be found in the books of Lindenstrauss and Tzafriri [8]. Throughout
this paper p will be restricted to the values [1, ) {2}. The case p 2,
of course, is special because there are many more isometries. This case
can be handled easily by using the polar decomposition of an operator.

1. The separable case

We first state the results of Dor and Schechtman.

THEOREM A [Dor]. Suppose {xi’i N} is a subset of Lp(v) for some
measure v, such that for any set of scalars {ai" N}, with finitely many
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non-zero,

)lip
Then if e is sufficiently small there exist disjoint measurable sets
{Ai’i N} such that IlXilagll < al(p, e), where A denotes the complement
of Ai. Moreover, al(p, e) ----> 0 as e ---> O.
This result is stated in the paper of Dor only for the case of Lp[0, 1].

However, the proof of Proposition 2.2 of [5] yields a family of functions
{dPi:i N} C L=(v) such that (])i 0, 6i a.e., and flxilPdpidv >
b(p, e) for all N. Because b(p, e) --> as e ---> 0, for e sufficiently
small there is a constant a(p, e) such that

for all N

the conclusion of Theorem A.

THEOREM B (Schechtman). Let {Xi" N} C Le(v) satisfy the hypothesis
of Theorem A and let {Ai’i N} be measurable sets such that

Then

IXilP dv > c for all N.

lip

for all sets of scalars {ai’i N} with finitely many nonzero, and a(e, c)
---> 0 as e 0 and c ---> 1.
As we noted earlier if T’l, ---> L,(v) and IITIIIIT-II is sufficiently close to

1, then xi [ITeill- Tei, 1, 2, where {ei’i N} is the usual unit
vector basis of l,, satisfies the hypothesis of Theorem A. Thus there are
disjoint measurable subsets {A’i N} such that

lXilP b(p, e) for all N

where (1 e)- IITIIIIT-111" Define an isometry S" l, --> [XilAi]iN by
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XilAi. Then

E ai(Tei- [ITeilA[I - Tei[Ai)

ai(1 -[ITeilAll -) Tei

) lip

< sup I1 IITeilA,II-llITll ,lail

+ a(, b(p, )) sup IITelll-’ lal

Thus lIT SII---’ 0 as --, Oo
Now we will prove the theorem stated in the abstract for the case of

Lp[O, 1]. Let T:Lp[O, 1] Lp(u) be an into isomorphism with

IlZllllZ-ill < (1 8)-1.
We want to choose a family (tree) of measurable sets

{Aki: l<i<2k, k 0,1,2,...}

such that

(1) Ak+l,2i-1 U m+l,2i C Aki < < 2k, k O, 1, 2,
(2) A f3 A , j,

and a function h L,(v) such that

(3) failhlp dv 2 -k, < < 2k, k O, 1, 2,

Once this is done there is a natural isometry S :Lp[0, 1] --, Lp(u) such that

S([(i- 1)2 -k,i2-k)) h Aki, < < 2, k 0,1,2,

(Here we adopt the notational convention that if A is a measurable set we
will write A rather than 1a .) The difficulty is to choose the tree of sets and
the function h so that lIT all is small.

First we will choose the tree of sets by modifying the proof of Theorem
A (Proposition 2.2 of [5]). Let

X LI(V) L(v)
k= 0 11 k 0 l

with the w* topology. (We may assume Ll(V)* L=(v); in fact, for this
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case, we may assume L(v) (L [0, 1] @ /1)h)" Let
2D {(bki)k--0 i= l" dPki L(v), dpi > O, dPo, < 1,

and $+,2_1 + b+,2 < $,i a.e., < < 2, k 0, 1, 2, ...}

It is easy to see that D is a bounded w* closed (hence w* compact) subset
of X. Define a map W :D ---> l by

W((dpk))12 ]ITIo.]] -p flTIo.l" (lj dv

where

It/= [(j- 1)2-/,j2 -) and lo l({(l,j)" l<j<2l,l 0,1,2,...}).

Clearly W is w* continuous.
We will show that there is a constant c(e), which depends on p as well,

such that for each r N there is an element d D such that

(att(d))lj > c(e) for all < r, 1 < j < 21 and lim c(e) 1.
e---0

Once this is accomplished it will follow from the w* continuity of q and
the compactness ofD that there is an element (bk) D such that W((b))12 >

c(e) foralll, j. WethenletAk {dpki>}andwehave(1),(2)and
(4) [ITIkill -p flTIkilp Aki dv > c(e) where Cl(e) 2 c(e) 1.

We will need the following lemma:

LEMMA 1. Let {Bi}i% and {Ci}7= be families of disjoint measurable sets

from measure spaces (X, B, I) and (Y, C, v), respectively, and let

T:Lp(X, B, I) ----> Lp(Y, C, v)

be an isomorphism (into) with I[TIIlIT-lll < (1 e) -. If there exists a
constant c > 0 such that II(TBi) Ci[I > c IITBill for 1, 2 n, then

II(T(UBi)) UCill > (c a(, )) IIT-’II-I[IT]I -l IIT(UBi)[I.

Proof.

(TBi) C "Jr- 2(rBi) Y’J CJ
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l/p

(the Ci’S are disjoint)

IITB;II (IITBilI-’ (TB,). C)

c llTBil{p a(e, cp) llTBillp

by Theorem B where x [ITBil[ - TBi and Ai Ci. Note that

llznil]p > liT-ill-’
liT-

> I1-ill-’ IICll -’ II:T(UBi)II

Thus

> [c a(e, c’)] IIT-’ll-’ IITII-’ IIT(U Bi)II

as claimed.
Fix r N and consider the elements xi IITI.II-’ TIri, 1, 2, 2r.

These elements satisfy the hypothesis of Theorem A and thus there are
disjoint measurable sets Ci, 1, 2, 2 such that

IX lp 1 a l(p, :).

Hence

II(TI.)" C, (1 a,(p. e))IITI.II.

Define an element () D as follows:

lq=
U{C" (j- 1)T-<i<j2r-

if/> r,

ifl<r.

By Lemma 1,

> [(1 a(p, e)) a(e, (1 a (p, e))P)] IIT-’ll-’ IITII- IIThsll
for < r.
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Therefore

IITIo.II -p flTI, l q,lj c(e)

where

c(e) [(1 a l(p, e)) a(e, (1 a l(p, ))P)FIIT-’II -p IlZll - for < r.

Clearly lim_0 c(e) and thus, as noted above, the w* compactness of
D shows that

{Aki 1< < 2k, k 0,1,.2,...}

satisfies (1), (2), and (4).
Our next tffsk is to find the function h. This will be accomplished in two

steps. For each k N let

gk (Tlki)aki
i=1

and let g be a weak limit point of (g) in the case p > 1. If p 1 we let
3’ be a w* limit point of (g) in L(v)** and let g be the part of y absolutely
continuous with respect to v. Note that in either case if h Lp(v)

IIg hll < lim Ilgk hll.
The function g is almost what we want but we must change its modulus.

Claim. There is a constant c2(e) such that

2-k/C2() -’ < IIgAkell < 2-k/Pc2(e)

for all < < 2k, k N, and lim_,0 c2(e) 1.

Proof of the claim. First observe that if k < and

,S2/ki {j" (i 1)2t-k < j < i2l-g}

then

II(g gt)" AIIp [l , TIIj. AIj Tlki" Aki
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by Theorem B. Hence

II(gg gt) aki[lP < a(e, el(e))p IITIIP(jxk,!IIIjIIP)
a(, c()) IITIIp 2 -,

Passing to the limit on (using the lower semi continuity of I1"11) we have

II(g g)" AIIp < a(, c())P,llZllp 2 -,
and thus

[ITII 2 -kIp + a(e, c(e))IITII 2 -kIp

IIg" AII + II(g gk)" Aell
> IIg" Ak, > Ilgk" ak, [l(g gk) ak,II

> C()/’ IIT-II- 2-/ a(, c())IITII 2 -/.

This establishes the claim with

c2(e) max {(a(e, c(e)) + 1) IITII, (c (e)1/p liT 111-1
Next, let

h llg" all -p 2-’A,
i=1

a(e, c (e))llTII) -}.

Note that hk - Lo(v) and that in fact the claim implies

(5) c2(e)p > hk > c2(e) -p.

Let ho be a w* limit point of (hk) for k in the subsequence (if p 1, subnet)
for which g converges to g. Define h ho/Pg. We will show that h satis-
fies (3).

limj lglp . IIgArll -p 2 -jA dv
r.ki

lim 2- IIgAjr[I -p jlgl aj dv
J rJki

lim 2 -J 2j- k

J
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It follows that the operator S’Lp[O, 1] -- Lp(v) such that SIu hAki is
an isometry. It remains only to estimate lIT SII. For any sequence
(a)2= of scalars and any k,

< lim Ill hlo/Pll

E agAki ’(cz(e)- 1)

(by the definition of gl and (5))

< lim E ai E Tllr(AlCr)
rlki

lip

(c2(e)- 1)

< lim a(e, c(e))( lalPllZllll’)rslki

1/p

(+ ,laAp 2-kc2()p (c2(e) 1)

rsdlki

l/p

(by Theorem B and the claim)

+ c2(e,)[l aiI,i[l(c2(e"--l’

Therefore

where
liT all < z()

z(e) a(e, Cl(e))IITII + c2(e)(c2(e) 1)

proving our result.

and lim z(e) O,
’-0
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2. The general case

In this section we will prove our result for an isomorphism

:(tz) --, LA), IITI[ [IT-’II < )-’
with no restriction on /x. First let us recall that any abstract Lp space
is isometric to (Y/ L.([0, 1]m’) @ l,(K)), where K, K and m are cardi-
nals (see [6, page 136]). To simplify our notation we will write /.(1)
L.([0, 1]) and thus we may assume that

where some of the summands may be one dimensional. Our argument in
the general case is very similar to that for L[0, 1]; essentially all we do
is replace sequences by appropriate nets and proceed as before.
We begin by choosing our replacements for (Ik). For each r K, let

{(n, k, i) 1 < s < j}

be a finite subset of m N t.J {0} N such that
n.,, if s s’; and define

and n

C(r, {(n, k, i) 1 < s < j}) {x [0, 1]m x(n) Ik,,i.}

where, as before, Ik,,, [(i 1)2 -’, i2-9. Let C(r, b) [0, 1]m. These
cylinder sets will be used in the same way that the dyadic intervals were
used before. Note that for r fixed the sequence {(n, k) 1 < s < j}
establishes a level of [0, 1]m and that the levels are partially ordered by
refinement, i.e.,

if

{(n,k) 1 <s<j}<{(n,k;) <t<j’}

{n: l<s<j}C{n: l < <j’}

and if n n;, then k, < k;.
Our first task is to find sets A(r, {(n,, k,, i) 1 < s < j}) for all

K, and finite sets of triples (n,, k, i) in m x (N U {0}) x N, such that

(1)

(2)

(a)
(b)

A(t, {(n, k, i) 1 < s <j} U {(n, k + 1, 2i 1)})

LI A(t, {(n, k, i) 1 < s <j} U {(n, k + 1, 2i)})

C a(t, fins, k, i) 1 < s < j} tO {(n, k, i)}),

a(r, {(n, k, i) 1 < s < j}) f3 a(r’, fin’,, k’t, i) < t < j’}) J
if t0 # to’or
if r tc’,j j’, (n., k) (n, k), s 1, 2, j, and i #- t for
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some s, 1 < s < j, and functions hK, K K, such that

(3) flh,lp A(K, {(ns, k, i) 1 s j}) dv 2-(kl+k+...+ky)

Let

309

X Ll(l,’) L(v)
FCmK xN xN II FCmK xNxN

where the second sum is over all finite (including the empty set) subsets

F {(ns, ks, is) 1 < s <j}

of inK x N x N with ns ns,, if s s’, 1 < < 2ks, 1 < s <j, in the
w* topology. Define a subset D of X as the set of all ((, F)) where
K, F C m x N x N such that g(, F) > 0, Xg=l (, fl) < 1, for all (),
a sequence of distinct elements in K,

g(, V to {(n, k + 1, 2i 1)}) + (, V U {(n, k + 1, 2i)})
< (, F to {(n, k, i)})

for all K K, F U {(n, k, i)} C m, x N U {0} x N, and F is as above.
Note that in the index set for the definition of X we do not allow the tuple
(n, 0, 1) because this would be redundant, e.g.,

A(t, {(n, 0, 1)}) [0, 11" A(t, 0).

However, in the definition of D, we want to have the relation

(t, {(n, 1, 1)}) -4- g(t, {(n, 1, 2)}) < g(, {(n, 0, 1)}) g(t, 4) for all n,

thus we allow the tuple (n, 0, 1) with the understanding that

(t, V tO {(n, 0, 1)}) (K, V).

It is easy to see that D is a w* closed, bounded and hence w* compact
subset of X. Define a map D ---> 1=({(, F) K, F C m x N x
N}) by

W(d)(t, F) IIT(C(t, F))I[ - flTc( , F))Iv (t, F) dr.

Clearly W is w* continuous.
As in Section 1 we wish to show that there is an element d D such

that W(d) (, F) > c(e) for all (to, F). Because of the w* compactness of
D and the w* continuity of W it is sufficient to show that for any finite
subset {(tq, F)} of the index set there is an element d D such that
W(d)(tq, F) > c(), for all i.
Observe that for any such finite set {(t, F)} there is a finite set

{l, tz, tg} of distinct elements in K and levels {(nt,, kts) < s < jr},
< < j, such that the sets C(t, F) belong to the finite algebra generated
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by (in fact are unions of)

C(tCl, {(ns, kls, ils) l<s<j/}), l < ts < 2ks, l < s <jl, l < <j

and that these cylinder sets are disjoint. By applying Theorem A to the
sequence

x(tcl, F) IIT(C(KI, F))I1-1 T(C(KI, F)),

2,F {(ns, kls, ils) 1 < s < j}, 1 < ts < 1 < s < Jl, 1 < < j}

we get disjoint sets {B(rl, F)} such that

IIx(,, F). B(tCl, F)ll > 1 a(p, ),

F as above, 1 < < j. Let (rl, G) U {B(r, F) C(rl, F) C C(KI, G)}
and note that (g(rl, G)) D. By lemma 1, if C(rl, G) is a union of some
of the sets C(rl, F), F as above,

IITC(l, G)II -p [l(ZC(rl, G)) (lfl, G)IIp >

Therefore there is an element (’(u, G)) in D such that

IIT(C(, G))II -p II(TC(, G))’ (, G))IIp >

foreverytcKandGCm x N x N. LetA(,G) {’(K,G)>}
and note that these sets satisfy (1), (2) and

(4) IIT(C(K, G))II -p II(TC(, G)’ (, G)II’ > c()

We turn now to the construction of the functions h. The argument is
very similar to that used in Section 1 to construct h. For each level

L {(ns,ks) I<s<j}of[0,1]m"

let

g(u, L) ’(TC(u, G))" A(r, G)
G

where the sum is over all G of the form {(ns, k, is) 1 < s < j}, 1 < i, <
2’, i.e., G is on level L. Let g(r) be a weak limit of a weakly convergent
subnet of (g(r, L)) if p > 1 and the absolutely continuous part of a w*
limit if p 1.

Claim.

2 -k/p C2(e) > IIg(t)" A(r, G)[I > 2 -k/p c2(e) -l

forGonlevelL {(ns, ks) 1 <s <j}wherek kl + k2 + +
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Proof of Claim. Let L’ be a level which refines L. Then

II(g(, L) g(, Z’)). a(, G)II
II(TC(, G)) A(K, G) (TC(K, H)) A(r, n)ll

H

where the sum is over all H on level L’ such that C(r, G) C(r, H). It
follows that for such H, A(r, G) A(r, H) and thus

[I(TC(, G)) A(r, G) (TC(r, n)) A(, n)ll
H

< ](TC(K, H) A(K, H) < a(e, c,(e)) ]IITC(K, H)II
H H

a(e, c())lllllC(, G)[I

a(e, c(e))ll/l 2 -kIp.

lip
(by Theorem B)

Passing to the limit over the convergent subnet (using the lower semi-
continuity of I1"11), we have

II(g(, L) g(r)) A(r, G)II < a(e, c(e))ll/]l 2 -k

and thus the same computation as in Section 1 yields the claim.
Next we need to adjust the modulus of g(r). Let

h(K, L) llg()" A(r, G)II -p 2 -k A(r, G)
G

where, as before, G is on level L and IIC(, a)ll 2 -k/p for all G on level
L. Let h(r) be a w* limit point in L(,) (The claim shows that h(r, L)
L(v).) of a convergent subnet of the subnet of (h(r, L)) having the same
directed set for which (g(r, L))e converges to g(r).

Define h g(r) h (r)/P. First we will check (3). Let

G {(n, k, i) 1 < s <j}.
Then

[hl. A(, G) flg(,,)l"h(,,) A(r, G)

lim lg()l ]llg()A(
H

H)II -p 2-tA(K, H)
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where the limit is taken over the convergent subnet of (h(r, L)) and the
sum is over H in some level L’ which refines the level of G with the measure
of the set in level L’, IIC(, H)IIp 2 -1, and A(, H) C A(r, G). We have

lg()l llg()" A(r
H

H)ll -’ 2 -l. A(u, H)

2-111g(K) A(K, H)II -p flg( )l" A(K, H)
H

2-/= 2 -k where k k + k2 + + ks
H

proving (3).

Finally we estimate liT Sll where S is the isometry which satisfies

S(C(r, G)) hK" A(u, G).

For any finite set {rl < < j} of levels of m,,

Ll-- {(nts, Ats): < s < jr},

and scalars {a0<, G) G on level Lt, 1 < < j}, we have

T"a(I’G’C("G)-S"a(’G’C("G’II/=IG 1=1G

I[a(l’/=lG
G)TC(ffl, G)- l=la(ffl’G G)g(rl)’A(ffl,

+ II 1=1 ( o(KI, G)g(KI)"A(KI, G))([0, 1]mt-h(KI) I/p)

where the limit is over the product of the directed sets (which is directed
in the obvious way) for the conveNent subnet of (g(, L)), j.
Continuing our sequence of inequalities, we replace g(, L) by its definition
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as a sum over H in level LI and write C(KI, G) as a union of sets from
level Lt, C(, H) C C(, G) for each so that the inequalities continue
with

J

a(,, a rc(,, m" a(,,
1=1 G H

+ l[a(t,G,g(t),=, "a(t,G,(c2(e)-1, (by(5))

li 2,=, a(t, G)n TC(t, H).A(,, H)

+ la(l, G)IIIg(K,) A(K,, G)II (c2(e) 1)
/=1 G

/=1 G H

+ a(,, G)I C(,, G)Pc() (c() 1)
/=1 G

(By Theorem B and the claim)

lim a(, c,()llrl la(,, a)lllc(,, 11
/=1 G

+ c(e) a(, G)C(, G) (c() 1)
/=1 G

Therefore, with the previous notation, T SI r(e) and lim0 r() 0.
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