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MANIFOLDS WHICH IMMERSE IN SMALL CODIMENSION

1. Introduction

The purpose of this note is to examine the possible cobordism classes
of manifolds M which immerse in Rn+k for small values of k, specifically
l<k<3.
The case k 1 was first studied by Liulevicius [11], who analyzed the

filtration of the unoriented cobordism ring N, arising from the immer-
sion codimension. This case was separated out for special attention by
R. L. W. Brown [4] to give"

PROPOSITION 1. IfMn immerses in Rn+ and is not a boundary, then M
is cobordant to a point, RP2 or RP6.

In a recent pair of papers, Kikuchi studied the case k 2 and proved"

PROPOSITION 2 [8]. If M is oriented, immerses in Rn+2, and is not an
unoriented boundary, then M is unoriented cobordant to CP2s-2 for some
s>l.

PROPOSITION 3 [9]. IfM" immerses in Rn+2 and n is odd then M bounds.

This note was largely inspired by these results, and one has the following
improvements:

PROPOSITION 2’. If M is oriented, immerses in Rn+2, and n > 0, then
M is an unoriented boundary.

PROPOSITION 3’. If M immerses in Rn+2 and does not bound, then M
is cobordant to RP2+’-2 X RP2q/ -z for some 0 < p < q.

In later work, Kikuchi proved:

PROPOSITION 4 (Kikuchi [10]). IfM immerses in Rn+3 and n is odd, then
all Stiefel-Whitney numbers ofM divisible by w are zero.
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The case of k 3 is much harder, and one has the following partial
results:

PROPOSITION 5. IfM immerses in Rn+3 with n odd and is not a boundary,
then there exist integers 0 < r < s so that M is cobordant to the Dold
manifold

P(2 1, 2 + 2) S2r- x CP2’+-2/( 1) x (conjugation).

PROPOSITION 6. IfM is oriented, immerses in Rn+3

larger than 4, then M is an unoriented boundary.
and n is even and

PROPOSITION 7. If M is a nonbounding manifold of even dimension
which immerses in Rn+3, then n (2E+l 2) + (2q+l 2) + (2r+

2) with O < p < q < r.

PROPOSITION 8. Let M be a nonbounding manifold immersed’ in Rn+3.

(1) Forn 3 2"+

Rp2 2

6, u > 0, M is cobordant to

Cp2"+-2, Rp2,+2-2 Cp2u--2

or their union.
(2) For n 3 2u/l

Rp2u+’-2.
(3) For n 3 2u/l

Rp2 2 Rp2.

4, u > 0, M is cobordant to RP2"+2-2

2, u > 1, M is cobordant to RP2"+2-2

For the remaining values of n, one has severe restrictions given for the
class of Mn, but there is some ambiguity. To describe the result in vague
terms, the classes possible for M immersed in Rn+3 with n even form a
subspace of the unoriented cobordism group [qn of dimension at most the
number of s for which 0 < 2’+2 2 < n.

In the final section, one considers the problem of finding the filtration
of indecomposable n-dimensional manifolds posed by Liulevicius [11]. In
terms of immersions, this result could be stated as follows"

PROPOSITION 9. IfM is an indecomposable n-dimensional manifold, 2
n < 2a+l, immersing in R", then

2a+l 1 for n even,
rn > 2a + for n odd.

The author is indebted to the National Science Foundation for financial
support.
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2. The case k = 1: Preliminaries

If one has a manifold M which immerses in R /, then the normal Stiefel-
Whitney class of M is 1 + 1; i.e., i 0 for > 1. The tangential
Stiefel-Whitney class of M is then

W 1 -t- 1 + 12-1- + ,
1+

and if M is not a boundary one must have

[Mn] wn[Mn] =- x(Mn) O mod2

where X is the Euler characteristic. Thus, n must be even and

WhIMn] (On/2)2[Mn] 0

where
2P-v Sq w 1 + + + + w +

is the Wu class. In particular, n 2(2" 1) 2"+ 2 for some p >
O, and there is at most one non-zero class possible for Mn, characterized
by

Wil Wir[Mn] 0 if il + + ir n,

or, equivalently,

1,
%, %[M.] 0,

jl j 1, s n,
otherwise (jl + + j, n).

For the manifold RP", n 2p+I 2, one has

1
w (1 + o)n+l (1 + x)2p+I-1

l+a

where a HI(Rpn; Z2) is the nonzero class. Since on[Rpn] O, this is
precisely the desired class. Thus, one has shown"

PROPOSITION 1 (weak). IfM immerses in Rn+ and is not a boundary,
then M is cobordant to RPzp+I-2 for some p > O.

Note. The remainder of the argument for k 1, to eliminate the pos-
sibilities p > 2, is quite difficult and is a facet of the nonexistence of
elements of Hopf invariant one. It is, of course, well known that a point,
RP2, and RP6 immerse in codimension one, to give the cases which can
actually occur. It should be noted that the above actually determined the
classes of algebraic filtration one in the sense of Liulevicius [11].
The argument for Proposition 2 is, in fact, formally identical with the

argument just given. If M is oriented and immerses in Rn+2, then
1 + 2, with w 0 by orientability and 0 for > 2 because
of the immersion. Since Sql2 3 + w2w 0, one just repeats the
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proof formally doubling the degree of every class. One also has
w(CP2p+’-2) 1/(1 + a), where a H2(Cp2"+’-2; Z2) is nonzero, to
formally double the example. (Note. For details of the formal doubling,
one should recall Milnor [12].)
To improve this result enough to get Proposition 2’ requires a bit more

work. If M immerses in R"+k, then the immersion f M -’--) Rn+k may be
deformed in Rn+k+r for some large r to give an imbedding with normal
bundle v+r v + r having r sections. (Note. Recall Hirsch [7].) If one
applies the Pontrjagin-Thom construction to the embedding one obtains an
element

[M, f] limr 71"n+k+r(ZrMOk)
in the cobordism group of immersions. Of course,

lim 7r, + + rMOk ITn +k(MOk an+k(MOk

is the stable homotopy or framed cobordism of the Thom space MOk.
(Note. This description is due to Wells [15].)

Being given a framed manifold pn+k and map

P"+ ---> MOk,

one can make h transverse to BO C MO to obtain a manifold M whose
stable normal bundle is represented by a k-plane bundle (the normal bundle
of M in P) which is immersible in Rn+ if k > 1.

Turning now to the situation of interest, let M be an oriented n-manifold
with n > 0 immersed in R"+z and let

alp" pn+2... MSO2 MUI CP

be a map of a framed manifold into MSO2 given as above so that h is
transverse to BSO2 with inverse image M. (The constructions above pull
back to S02 by orientability of v). One then has

’/2[M"] dp*(U"/2 + )[P" + 2] (mod 2)

where U H2(MSOz;Z) is the Thom class.
Now, p,+2 is a stably almost complex manifold with complex structure

coming from the framing, having Chern class and hence Todd class
Td. Further h P -* CP gives a complex bundle s over P with C l(s)
h*(U), and one has

6"(U"/2 + )[P" + 2] (:)[p, + 2]Sn/2 +

(1 tn + !ch()Td[P /].
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By the Riemann-Roch theorem [1], ch()Td[Pn+2] is an integer, and so the
integer t*(un/Z+l)[Pn+2] is divisible by (1/2 n + 1)! and, in particular, is
even (n even, n > 0). Thus, /2[M"] 0, and one has proved"

PROPOSITION 2’. /f M is oriented, immerses in Rn+2, and n > 0, then
M is an unoriented boundary.

One can, of course, go much further and actually determine the possible
classes for M in oriented cobordism (or complex cobordism).

LEMMA. The image of the Hurewicz homomorphism

h fffm(CP=) --+ HEm(CP; Z)

is precisely m!H2m(CP=; Z).

Proof. The argument above gives image (h) c m!n2m(Ce; Z) where
2m n + 2. Taking the map

(52) Cp Cp--- Cp

which classifies : () () :m, the tensor product of the Hopf bundles,
gives the opposite inclusion.

PROPOSITION 2". Let M be an oriented manifold which immerses in Rn+2.

(a) For n 0 (4), M is an oriented boundary.
(b) For n 4k, there is an integerj so that M" is cobordant as oriented

manifold to the submanifold
N4k C CP CP ((2k + 1) times),

dual to (s)J ( :2 ( () :2k+, which does immerse in codimension 2.

Proof. The class of M is determined by Stiefel-Whitney numbers (all
of which are zero for n > 0) and Pontrjagin numbers (for n 0 (4)). For
n 4k, the only nonzero normal Pontrjagin number is -k[Mnk], which is
divisible by (2k + 1)! by the above. For the manifold N described,

SO
Cl(V) jOl + 2 + + a2k+l,

giving representatives for every possible class.
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Note. One should compare with the final remarks in Atiyah-Hirzebruch
[2] giving the imbedding N4 C ($2)2/ C R4k+3 in codimension 3 with a
trivial summand in the normal bundle.

Note. In the complex case, the manifolds N2 C (Cp1)k+l dual to (:
() :2 () () :+ l, with CP S2 having the flamed structure give all
possible classes.

3. The Case k = 2

If M is a manifold which immerses in Rn+2, then the normal Stiefel-
Whitney class of M is W t + Wl + W2; i.e., Wi 0 for > 2.
From the previous section, one has the manifolds RPv/l-2 x RP2/’-2

with W (1 + a)(1 + /3), where a, fl H(Rp2’/-2; Z2) are the non-zero
classes, 0 < p < q. Provided 0 < p < q < 3, these manifolds actually
immerse in codimension 2. The goal of this section is to show that if M
does not bound, then it is cobordant to one of these manifolds. Note. If
n (2p+l 2) + (2q+l 2), then n + 4 2p+1 + 2q+l has at most two
one’s in its dyadic expansion. Thus p and q are determined uniquely by
n,

PROPOSITION 3 (Kikuchi [9]). If M" does not bound, then n is even.

Proof. If n is odd, then
--2sm2tr21s+lt[Mn] 1 "w1 W2 [MJ Sql(21st)[Mn] 0

where w Wl Vl is the Wu class, and Sq(x2) 0. Furthermore,

2j+ 22k+ [Mn] Sq2(+Wk)[Mn

Sq2(l (2Jk))[Mn]

(Sq(kz))2[Mn

Sql([Sql()]Z)[Mn]

=0

where z vz is the second Wu class. Thus, b2[Mn] 0 for all a, b,
with a + 2b n, and M bounds. 1

Note. (1)

FIX [Mn] x(Sqi)(x)[Mn] for all x Hn-i(Mn; /2),

just as vix[M"] Sqx[M"] for the Wu classes. This fact was first noted by
Brown and Peterson [3] (see 8). Here (Sq) Sq-1; i.e., X is the canonical
anti-automorphism of the Steenrod algebra.
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(2) Kikuchi’s first proof of this fact [9] is needlessly complicated. In
[10], an easier proof, similar to the above, was given.

LEMMA. IfM is nonbounding, then n (2p+

some p, q with 0 < p < q.
2) + (2q+l 2) for

Proof. By the above, n is even. If wb2[Mn] O, then a must be even
since a + 2b n. However,

--2sw2t +WI W2 [Mn] Sq2(2st)[Mn]

[Sq’(WWtz)]Z[mn]

(s + t)21s+222t[Mn].

Hence, if M has any nonzero Stiefel-Whitney number, it must have a
nonzero number of the form

--2uB2vr
W W2 [11/1 Sqn/2(W)[Mn] On W[Mn],

and so Vn/Z O. By the splitting principle, one may formally write

(1 + x)(1 + y) with dimx dimy 1,

and

(1 + x)(1 + y)
(1 +x +x + +xr- + ...)(1 +y + y + + yV- + ...)

so that v : O only for of the form (T 1) + (2 1), 0 < r < s. In
particular, there must be integers p and q with n/2 (2p 1) + (2q

1),O<p <q.

LEMMA. /fn (2p+l 2) + (2q+l

cobordant to CP2q+I- (Rp2q+,- 2)2.
2) with 0 < p q, then M is

Proof. If p q 0, n 0, and M is cobordant to a point. Thus, one
may suppose p q > 0. As above, one has

v (1 + x + X "- q" x2q+l-l)(1 "+" y + y3 + + y2q+-I)
+I 1)+ + (xy)2q-I nt- (x2q

_j_ y2q +
so that

2q--

Un/2 W2 and 0- Sql(un/2+l)
2qSql(x2q+ + y2q+,-1) Wl

since v 0 if > n/2.
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Now, suppose waW[Mn] 0 has the largest a value among zero Stiefel-
Whitney numbers. Then 2a + 2b n 2q+2- 4, b 2q+l 2- a,
and since 12a # 0, 2a < 2q+l or a < 2q 1 so b > 2q+l 2 (2q

1) 2q 1. Thus

0 t: a2btM, --2a--b-(2q-w,w: 1)Wq-tM"]

"_--..2a--b-(2q-1))2[Mn[W W2

4a’[Mn].

Since a was chosen to be maximal, 4a < 2a and so a 0. Thus, the only
nonzero Stiefel-Whitney number of M is 22q-)[Mn] and M is cobordant
to CP2q/ - 2. 1

LEMMA. If n (2p+’

cobordant to RP2+ 2.
2) + (2q+l 2) with 0 p < q, then M is

u2qi.e., WlUn/2 -- Whas

Proof. One has n 2q+ 2 and

v (1 + x + X d- q- x2q-l)(1 "+" y + y3 + + y2q-1)
1 + + (x2q-I + y2q-1) + (x2q-ly + xy2q-l) + + (xy)2q-l.

u2q-Thus w2 o 0 gives a zero Stiefel-Whitney number, and

0 Vn/2+l x2q-lY + xy2q-l, (X + y)(x2q-1 + y2q-1) + X
2q + y2q,

0 and also WVn/2 + Sq Vn/2 0. Then, for any x, one

0

0 (WOn/2 + Sqon/z)x[mn]

{Sq(x.v,/z) + x. Sqv,/z}[mn]

(Sqlx).v,,/z[Mn]

(Sqx)Z[Mn].

If one has 0 # --2a--b[mn] then a > 0 by the above. Then, with a >W W2

m2a2tr --amt
W W2 [IV1 (WIW2)On/2[Mn]-lt2(lOn/2)[Mn

--2q + lt2[MnWl

and, by iteration, if there is a number ]a[Mn] 0 with b > 0, then there
is such a number with b odd. However,

2 2a 2t--2a2t +W W2 l[Mn] Sq (1 2)[M] [Sql(t2)]2[Mn] O.
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Thus, the only nonzero number of M is 12(2q- )[M"] and M is cobordant
to RP2"+-2.

In order to study the remaining case, n (2p+I

0 < p < q, it is convenient to consider the diagram

M i_.>en+2

RP x RP - BO2 .2.> M02

2) + (2q+l 2) with

which gives
i*

H*(M; Z2) H*(P; Z2)

R,
H*

u,
H*(RP RP; Z) <-- (BO2, Z2) <-- H*(M02, Z2)

ZE[X, y]

Now, u* is monic, and has image precisely the symmetric polynomials in
x and y, by the usual splitting principle. Also, v* is monic, and in strictly
positive degrees hits the multiples of WE v*(U), so that u’v* is monic
and hits the symmetric functions in x and y which are divisible by xy.

It is also convenient to make use of the classes S,b Ha+b(BO2; Z2)
which are characterized by

xayb + Xbya, a b,
U*(Sa,b) xaya, a=b,

and if a, b > 1, Sa,b actually comes from H*(M02; Z2) with Sa,b Sa-,b-1U
(using s to denote the element in either space). Using the relation between
M and the framed manifold P, one has

Sa,b[Mn] l*(Sa,b)[Mn]

t,(Sa,bU)[en+ 2]

t*(Sa+l,b+l)[Pn+2]

So+l,b+l[Pn+2]

if a + b n, the homomorphisms v*, b* are omitted in writing charac-
teristic numbers.
Now, consider M a nonbounding manifold immersed in Rn+2 with

n (2p+- 2) + (2q+ 2), 0 < p < q.

The Wu class is given by

v (1 + x + x + + x2q+-)(1 + y + y3 + + y2q+’-l)
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and
2q ly2qW2 X

2q-
U2(2q_l) O

X
2q+l-1 y2q+--IS2q +l -+" D2q+l- 0.

For 0 < < 2q+ 1,

0 Sqis2q+-I $2q+ -l+i

and hence Sb 0 for 2q+ 1 < < n. Also Sa, a
<a.
Now, for a < b, a + b n, one has

xayb xbySa, b "+"

w Ofor2 1

and

(X 21.. ya)(xb + yb) + (xa+b "F- ya+b)
Sa Sb "F- Sa+b

Sa, b (xaya)(xb-a -F" yb-a) 22Sb_

giving Sa, b 0 if b > 2q+l 2, or a < 2v+ 2 (since Sb Sa+ b 0),
ora > 2q 1 (sinceW 0). Note. Fora b, n 2a, Sa,a W
0, and one need really only consider the case a < b.
Now, for a + b n 0 (2), a and b are either both even or both odd.

One has

S2r+l,2s+l[Mn] s2r+2,2s+2[Pn+2] Sqr+s+2(Sr+l,s+l)[Pn+2] 0

since P is framed, and hence Steenrod operations into the top dimension
are zero (the Wu class of P is 1). To be nonzero, one must have both a
and b even.
Now consider a < b, a + b n with Sa,b[Mn] 0 and such that Sa,,b,[Mn]
0 for a < a’ < b’ < b. Since a and b are even, let a 2r, b 2s.

Suppose that 2s b < 2q+l 2 (equivalently 2r a > 2p+ 2).
Recalling that s,,o 0 if u < v and u > 2q 1, one must have 2r a
<2q- 2.

Case 1. If a 2q 2, b 2q + 2p+I 2, and

Sa,b[Mn] S2q_ 1,2p+l- l[pn + 2]

Sq2p+I
S2q- 1,2q- -F- S2q- + t,2q- + (2 1_ t) [pn + 2]

t=l

2P

E S2q-2+t,2q-2+2p+l-t[Mn]
t=l

which is a sum of numbers Sa,,b,[Mn] with a < a’ < b’ < b and hence zero.
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Case 2. If a 2r < 2q 2, and, as assumed, 2s b < 2q+l 2, 2s
+ 2 2q < 2q, then

So,b[Mn] S2r+ 1,2s + 1[en + 2],

{Sq2+-2"-)s2+,2,_ + terms s2+l+,,v_+o}[P"+2]

{terms S2r+u,2q_2+v}[Mn]

which is a sum of terms Sa,,b,[Mn] with a < a’ < b’ < b and hence zero.

Note. Here, 2s + 2 2q < 2q makes the term S2r+l,2s+ occur with
nonzero coefficient in the "squared" term. Also, each u > 0, so that 2r +
+ u > a and, of course, 2q 2 + v > 2q 2 > a, to guarantee a’ > a.
Thus, Sa,b[Mn] 0 implies a 2p+I 2, b 2q+l 2 if a < b. Now,

consider

Rp2p+-2 Rp2q+-2,

with the nonzero classes

ot HI(RP2+’-2", Z2), fl f (Rp2q+’-2; Z2)

giving

= (1 + a)(1 + fl),

and s..b[RP2+’-2 X RPv+’-21 aab[Rpv+’-2 x RP2q+’-2] if a < b (for
ab 0), which is nonzero only for a 2p+ 2, b 2q+l 2. Thus
M is cobordant to

Rp2+’-2 Rp2q+-2.

This gives the final case, and completes the proof of the following result.

PROPOSITION 3’. If+M immerses in Rn+2 and is not a boundary, then M
is cobordant to RP2 1-2 )< RP2q+-2 for some 0 < p < q.

Note. (1) One has actually proved a bit more, in that the conclusion
of Proposition 3’ will hold if you assume only that all Stiefel-Whitney
numbers of M divisible by classes with > 2 are zero; i.e., if M has
algebraic filtration 2 in the sense of Liulevicius [11]. Proposition 1 (weak)
actually worked for manifolds of algebraic filtration 1. To prove this is just
formalism based upon the methods of [14].
Given M with numbers involving 0 for > k one has

v* H*(BO; Z2) Z2 X x(v)[Mn]

which can be realized as a homomorphism v* H*(BOk; Z2) Z2o One
can find a Poincar6 algebra M’ in which the classes are actually zero
for > k and have the same characteristic, number homomorphism v*.
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Further, there is a homomorphism b* H*(MO; Z2) --9, 22 defined by
cb*(xU) v*(x), which is induced as the characteristic number homo-
morphism for a Poincar6 algebra P’ of dimension n / k with homomorphism
H*(MOk; Z2) ---> P’ so that w(P’) 1. The calculations performed in H*(M;
Z2) and H*(P; Z2) could instead have been done in M’ and P’ which depend
only on the homomorphism u*.

(2) Propositions (weak) and 3’ are equivalent to the assertions that

*(MO Z2) B*(RP=; Z2)

is generated as module over the Steenrod algebra M by the classes X
2s-1

and that It*(MO;Z) is generated over M by the classes

$2 1,2 82 2,2 2U, 1 < s < t.

4. The Case k = 3, n Odd

PROPOSITION 4 (Kikuchi [10]). IfM immerses in R+3 and n is odd, then
all Stiefel-Whitney numbers ofM divisible by 1 are zero.

Note. Because Kikuchi’s paper appears in a relatively inaccessible jour-
nal, a proof will be given.

Proof. Consider a Stiefel-Whitney number--a--b--cWlWEWa[M with a + 2b +
3c n-- 1 (2). Thena / c-- 1(2). Then

"21P+lqr[mn] Sql(21P’Pr)[mn] O,

21’2q+’[M"] x(Sq)(21P22qr)[Mn] O,

since Sql(x2) x(Sqa)(y2) O, so that for b even, the number is zero.
Now

2p+,q+l.r[M Sq2{,.

Wl{Sql --p--q--r(WlW2W3)}2[m]

Sq(x2)[M] 0

and so the only possibly nonzero numbers are those with a 0, b c
=- (2). Let

(1 / x)(1 / y)(1 + z)

via the splitting principle; then

v (1 + x + x + ...)(1 + y + y3 / ...)(1 / z + z + "")

so

v4 x3(y / Z) / y3(x / Z) / Z3(x / y) 212 / WlW3.
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For p > 0, one has

.p.q+ lr+ l[Mn 13(12P lq+lr)[Mn

{’2 P-lq+lr + Sq4(p-lq+lr)}[Mn],
where the first term has to an odd power, so is zero, and

Pq+lwr+ltMn

Sq(w(w--zw: w ))[M]
ww{SqZ(W-’W)}z[Mn] + SqZ(WWz) {Sq’(Wq-1W)}[M].

Expanding either term, {Sq(Wq-wW)} gives a sum of monomials in
which W appears to an even power because it is a square and ww and

Sq(w) ( +) +

give only one term with to an even power; so

.q+,jr+ ,[mn] (Sq’(q-’))[mn]

x(Sq3)(W,Sq’(q ’))[mn]

0.

Thus the only possible Stiefel-Whitney numbers--- "WIW2W3[M are those for
whicha 0andb c 1(2).

Hypothesis. Let Mn, n odd, be a nonbounding manifold which immerses
in Rn+3. Then there are integers a, b with W[Mn] 4 0 so that if
’’[Mn] 4 0, then b’ b. By Kikuchi’s result, a is odd and may be
written as

a 2+o + (T 1) witho0.

Note. Using Kikuchi’s result, all numbers divisible by are zero, and
applying [14] one may replace M by a Poincar6 algebra having
w+ 0.

La. For all with O a,

Proof. One has

Sqw-w) w: + w + w)"-{ + w + )}

3(W + W3 + )a-i(1 + 2 + W3)b

--bma + bW3w2-i(1 -t- 2)
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for w3o+ O, so

Sq2i(w_iw)[Mn] (a + b

Now, modulo terms involving W, W 1 + Wz and

v Sq
1

1 ++ + + w + mode3,
1 +

SO

2
O" 3 3(1 + 2 + 2 + + w2 + "").

Thus,
0, i2- 1,

Sq:"(W’-W)[Mn] v2-’W3[M"] WW3[M"], i= 2- 1.

COROLLARY. b 2rx + (2’ 1) with x > O.

Proof. 2’ 1 < a, so

which implies that 2, 21, 2r- all appear in the 2-adic expansion of b.
Thus b Tx + (T 1) for some x > 0.

Peering into the future to the cases desired, one has the following results.

COROLLARY. If b (2 1), i.e., x 0, then a 2s+ 2r+l + (2
1)for some s > r.

Proof. If v 0, there is nothing to prove since one takes s r. If v
> 0, write a 2 + 2’ + + 2sq + (2 1)with s > s > > Sq >
r + 1. Then2 1 < a, and

a + b (2 1) a + (2 2sl) (2 1)1
(2- 1) 1

(2’+’’" +2"+T+(2"-1))2-so that 2 2-2 2"+ must all occur in the set 2’ 2’q Thus,

a 2 + 2s- + + 2+ + (2"- 1) 2’+ 2r+l + (2"- 1). ]

COROLLARY. /f a 2r+lo + (2 1) with v > 0, then b 2"x + (2
l) with x even.
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Proof. Since v > O, a > 2r+ 1 2 + (T 1), and

1--(a + bT-+(T + (2r- 1)))=(2r- 1) (2+v+2rx-2r+(2r-1))2+ (T-- 1)

and in order that 2 appear in the 2-adic expansion of 2r+ v + 2rX
one must have 2v / x 1 odd, so x is even.

Throughout the remainder of the arguments, considerable use will be
made of the framed manifold P pn+3 in which M is imbedded and which
satisfies

"]’J2"k3[Mn] w]wkzwJ3 U [en+ 3] vvi"’J"’klw2W +1 [el

where one considers H*(M03; Zz) C H*(BO3; Z2) as being the multiples
of w3. In P, one may also work modulo classes which give zero in all
numbers, and hence consider w and wb+z as being zero.

LEMMA. Irl the expression b 2rx + (T 1), X is even.

Proof. Suppose, to the contrary, that x is odd. Then, by the previous
corollary, one has v 0 and a 2 1.

Since P is a framed manifold,

Sq2(w"+- lw23x)[P] 0
and

Sq(w+’-’w,x) w’(1 + wz + w)Z’x(w2 + w3 + w2)2+’-

where the lowest degree term is 2rx 2r+’-
W W2 and one seeks the term of degree

2 above that. Since (1 + w2 + wa)2x = 1 + terms of degree at least T+1,
this reduces to

where

to give

2rx 2r+l_ W3 W3
w3 w2 1 + + w2 1 + + w2

W2 W2

l+m+W2 =1+ w3
W2 \W2/

/ terms of higher degree

)2W3-2rx+Er- 2r-I 2rx 2r+I-1 + + WEw3 WE + terms in w3 w2
WE

wwb+ + terms in w/ 1 + 1423
i=0 WE/

b+ 2 wX+2r-2iwr- +3i
w2w3 + T- 2ii=0
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NOW,

2r- 2i

the coefficient of z2-2i in (1 + z)2-- (1 4- z2)/(1 + z)i+1, is

+ 2r-2i)= (2r- i)T- 2i

and is nonzero mod 2 only for 2 with 0 < t < r 1. Noting that the
term with 20 1 gives an even power of WE, one obtains

r-1

Z 2r+2t+l+2t-lwrx+2r-2t+l[P]W’wb3 + l[P] W2
t=l

Notice that this implies r > 1; i.e., r is impossible.

For0 < t < r 1,
t+2z 2r+2t-lw23rx+2r-2t+l)[P O,q w2

and

Sq(wr+2t-lwrx+2r-2t+’)

wr+2t--lwrx+2r--2t+l(1 + W2 "1- W3)2t+l(dd)( W3 t2r+

l++w2
W2

2

giving

]&r+ 2t+ + 2t- t,12rx + 2r- 2t+ + terms in wz+ 2,- lW’rx +

W3 W3+--+ w2 +--+ w2
W2 W2

Now

+ W--- + w 1 + terms of degree at least 2 > 2t+ 2,

while (1 + w3/w2 + w2)2’- has highest term of degree 2/+ 2 < 2t+2.
Thus one has

0 ift<r- 2,
w22r+2t+1+2t-lwrx+2r-lt+’[P]-" Wr-2-1W+I+2r-’[P] if/ r- 2,

with the latter being zero since w3
b+2 0.

Thus, in the formula for W’wb3 + [P], only the term with r 1 > 0
is nonzero, giving

2r+ + 2W’wb3 +’[P] W2 -’wX[P].
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For x > 1,

sq2r(w ,+ 2,’+ 2 -1w,’(x-1))[p] 0,

and

Sq(wZ3+ +z+ 2- l- lwt,- l))

with

W3 )2r+ + 2r+ 2

w’r(x-1)W+l+2r+Er-l-l(1 + WE + W3)2r(x-1)
"1t- " WE

W2

I-

W3 )2r+(1 + WE + W3)2r(x-l) 1 /--+ WE
W2

1 + terms of degree at least 2 + 1,

W3 W31 +--/ WE 1 / + higher terms
W2 \1422/

and all terms in (1 + w3/w2 / w2)2r-1-1 of degree less than 2r. Thus, the
only term is

2r+*+2r-l-lw"(x-1)+2r[e] O.w2

Notice that this implies x 1.
Now consider the numbers

wr+ 2’- 2q- lw’q[p]
2+’+ 2r-1-- Wz3r[p] whichfor 1 < q < r, recalling r > 1. For q r, this is w2

is b+
WzW3 [P], since x 1. For q 1, this is zero since w2 occurs to an

even power.
One has (for q > 2)

1. 2r+ 2_ 2 lw230 Sq2q-
(w -l)[p]

since P is framed, and

Sq(w22r+2_ 20__ w32q--1)

/
2q- 2 2q-- /

w3 w2 1 + w2 + w3)2-1
W t2r+l++W2
W2

+...+2q+l +2q- +... +

with

(1 + W2 / W3)2q-1 1 / terms of degree at least 2q,

and

)2r+W3l+m/W2
W2

I+...+2q+1+2q-1

=1+ / higher terms,
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to give

2q- 2 2q {
14’2"2r+2-Eq-2q-t-l142 "" terms in w3 w3

Now the term of degree 2q-1 in

W3 )2q-l++w2

(1 +re+W2 W 1+
W2 0 W2/

I-

2q -1 2 w3E 1’12t2 -1 2i \wz/i=0

1-2i

and

(2q-1 1 i)2q-1 2i 6 0 mod 2

if and only if 2t, 0 < t < q 2. Thus

2 2 W2r+2 2q__ 2q--I 1wq[p + w20 W2 -l[p]
q-3

2 2q 2 + 2 + 2 2 2-+- W W3
t=l

[P].

Note. The term with 0 for the sum has w2 occurring to an even
power and so is zero. The term q 2 is separately written. Further,
for small values of q, the final summation does not occur.

In order to analyze the terms
2 2q 2 + 2 + 2 2 2

w2 w3 [P] forl<t<q- 3,

consider

0 Sq2’+(w,+z- 2,,- 2,,- + 2,- ’w"- 2,+ t)[p].

One has

Sq(wr+z-2q-2q-1+2t-1W32q- 2t 1) w32q-2’+ W22r+2-2q-2q-l+2t-1
\2 2q 2q + 2

’2 l(odd) W3 )(1 + w2 + w3) 1 + + w2
W2

and seeks the term of degree 2t/2 above the initial point. Now,

)2t+ l(odd 2t+(1 + w2 + w3 + w2 + higher terms

and

1 + + W2 1 + w3 + higher terms
W2 \W2/
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withq 1 > / 2, which contributes only forq- / 2. Finally,
2the term of highest degree in (1 + B,’3/1422 / 1422)2t-1 is w2 of degree less

2t/2. Thus, the expansion gives

(-2r+z-2q+’+2q-2+2q-3-1W23q(1 / W / W3)2q 1 + + 14’2W2
W2

Now, considering

one has

Sq2,,-’(w22 -v+’+2++2q-3- lW23q)[e] 0

and

Sq(w r+2--2q+l+2q-Z+2q-3--1W )"--

2r+2--2q+l+2q-2+Zq-3--1142q(1 / 1422 / 1423)2q(W2

where

)2r+142
(1 / 1422 / W3)2q 1 + + WE

W2

2--2q+1

+2 _2q+ + 2q-2 + 2q-3

1423 2r+2_2q+ + 2q-2 / 2q-3_

l//W2)W2

+ terms of degree,at least 2q/’,

+--+ W2 + w + higher terms,
W2 \W2//

and (1 + W3/W2 / W2)2q-3-1 has largest term of degree 2(2q-3

Thus,

W22r+2-2q+l+2q-3-1W23q+2q-z[P O.

Hence, the numbers

2+-v-v-’-w[P] for < q < rW2

are all equal, so

1) < 2q-2.

Proof. Assume, to the contrary, that x 0. By the previous lemma,
one may then let x 2u with u > 0.

LEMMA. In the expression b 2rx + (T 1), x 0.

0 W’b3[Mn] b+
w2w3 [P] forq =r

equals the number for q which is zero, since w2 occurs to an even
power. This contradicts the assumption that x is odd.
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Consider the numbers

Sq2j(w +2w3 + 2J)[p]
One has

Sq(w’ + 2Jw+l-V)

and

with 0 < j < r.

W32r+lu+2r-2J(1 .+. W2 + W3)2r+u+2r-2 a + 2J

i=0
wi3(w2 +

2 lu+2r--2J(1 + w2 + w3 1 + terms of degree at least

while terms in the sum with > U give powers of W exceeding b + 1.
Now

a+2J={
so the coefficients

are

+ + 2J-I + 2 + 2r+l

+ + 2 + 2r+lv
ifj < r,

ifj r,

odd for < 2J 1; if 2J the coefficient is odd only when j r. Thus,
the Sq-expression reduces to

j-

2r+ +2r+u+2r-2J+iw+2J-i(1 + w2)a+2J-i + ,W3 2r(W + W). w3
i=0

where e 0 for j < r and e for j r. In this, the term of the correct
degree is

a+2J-i

i=0 2

Here, the binomial coefficient is considered zero unless 2J is even, and
then it is the same as

(2a + 2+1 2/)2J-

Note. For j 0, the sum has the term 0 only, and j r so the entire
expression is zero. Thus, only j > actually occurs, and 2J is even
only for even. Now letting q 2J i, the binomial coefficient is

(2a+2q) withl<q<2j<2rq
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and is

(2r+"" +2+2q)q

which is nonzero only when q is a power of 2; i.e., 2j 2p with
p > 1 give the only nonzero terms. Thus,

J
ewwb+ [P] E W+ 3.2p-Iw3Z,+,u + z’- Zp[p],

p=2

noting that the term with p gives an even power of wz, so is zero.
Adding the above forj r andj r 1, one has

b+l +3"2r-t 2
w2w3 [P] w w3

Note. For r j, the right side is zero, and this is just the previous
expression, with the term for j r being identically zero. For r
2, this is the equation for j r, and the equation forj r 1 is identically
zero.

Notice that when r 1, this gives the contradiction w2w3""a"b+[p] 0, SO
x 0. Thus, one must have r > 1.
Now, consider

0 Sq2(w +2+’+2r-tW32+’u- 2r)[P]

with

Sq(w+v+’+v-’w3
2r+lu--2rwt+2r+l+2r-t(1 + W + W3)2r+lu-2r(W

where

w3 )l+m+W2
W2

(1 + W2 + W3)2r+lu-2r + terms of degree at least T+,
and

a + T+l + T-1

+2r+l +2r-1

with

2r+l(o + 1) + (T-- 1) + 2r-l=

T+ l(o + 1) + 2 + (2r-1 1),

W )2r+(1 +m+w
W2

(v + 1)

+ terms of degree at least 2r+l

W3 W3+ + w2 1 + + higher terms,
W2



MANIFOLDS WHICH IMMERSE IN SMALL CODIMENSION 203

and (1 + w3/w2 + w2)2r-l-1 has all terms of degree less than 2’. Thus

W+ 2r+ 2r- 2
w3 [P] 0.

Hence, one has Ww3b[M] W2w3a,b+l[p]
Thus x 0.

0, which is a contradiction.

Applying the corollary which analyzed the case x 0, one now has"

Conclusion. There are integers 0 < r < s with

a 2s+l 2r- 1 and b 2r- 1.

PROPOSITION 5. IfM immerses in Rn+ with n odd, and is not a boundary,
then there exist integers 0 < r < s so that M is cobordant to the Dold
manifold

P(2 l, 2 + 2) S2r- Cp2s+l-2/(_ 1) (conjugation).

Proof. Recalling the facts about Dold manifolds [6], one lets

P(m, n) S" CPn/(-1) (conjugation).

H*(P(m, n); Z2) is Z2[c, d] modulo the relations cm+ dn+l 0, where
dim c 1 and dim d 2. The Stiefel-Whitney class of P(m, n) is

(1 + c)m(1 + C + d)n+l.

Taking rn 2 1, n 2s+ 2, with 0 < r < s, one has

w. (1 + c)(1 + c + d) (1 + c)2(1 + c + d)2’+= 1

SO

W (1 + c)(1 + c + d) 1 + (d + c2) + cd,

and the largest power of 3 which is nonzero is - c2r-ld2"- . Multi-
plying by

2 2
W2 d2s -2 + terms divisible by c,

one has

2s+l--2r--l23r-I 2s+l2 [P(2r- l, 2)] O,

and this is the nonzero number having the largest power of 3.
Now, let M immerse in Rn+3 with n odd and M not a boundary, and

choose a, b so that WWab[M] 0, with b maximal. From the conclusion
of the analysis, there are integers 0 < r < s with a 2+ 2 1 and
b 2"- l, so that n 2a + 3b 2s+2 + 2r- 5.
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Consider the manifold M’ M e(2 1, 2+ 2). This is an odd-
dimensional manifold with all numbers divisible by (i > 3) zero, which
was the only fact used in the analysis (note that P exists as a Poincar6
algebra with w(P) 1). If M’ is not a boundary, there are integers a’, b’
with

and so that

W’w3b’[M’] 0

Ww3d[M’] - 0 only for d < b’.

Since 3d[M’] 0 for d > b, one has b’ < b. Now for some 0 < r’ <
St

a’ 2s’+l 2r’- 1 and b’= 2’- 1,

so n 2’/2 + 2r’- 5. Since n + 5 2+2 + 2= 2’/2 + 2’ give two
2-adic expansions ofn + 5, one must haver= r’, sob 2 1 2’

1 b’. Thus, M’ must be a boundary, and M is cobordant to P(2
1,2+ 2).

Note. The Dold manifold P(m, n) is cobordant to S x Re X gen/
(-1) x twist. For m 1 with n 2 or 6 (r 1 and s 1 or 2) and for
rn 3 with n 6 (r 2 and s 2), these manifolds actually immerse
in codimension 3, having dimensions 5, 13, and 15. To illustrate, S x Re6

X Rp6/ immerses in S x R7 R7/’ which is the total space of the
bundle 7 / 7 over RP3. This total space imbeds in that of 8 + 7 15-
dimensional trivial bundle, and RP R imbeds in R8 by imbedding RP
with trivial normal bundle. The composite immerses S RP6 Rp6/’-"
in RTM.

Note. The Dold manifold P(m, n) is indecomposable in the unoriented
cobordism ring if and only if

(m + n- 1) (n +

is odd. In particular,

(2r- 2++12+’-2-1)-2 (2s+2-4)22

is always even ifr > 1 and the manifoldsP(2 1, 2+ 2) with 1 <
r < s are decomposable. They are not, however, decomposable in terms
of classes of smaller filtration in the sense of Liulevicius [11], since any
odd-dimensional manifold of lesser filtration is a boundary. This gives ad-
ditional examples for the fact that this is not a nice filtration multiplicatively
(i.e., a sum of monomials in generators has smaller filtration than any
individual monomial).
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Note. Kikuchi [10] actually contains more than Proposition 4. He shows
that if M" immerses in R"+3 with n odd and WJEWak[M] 0, then j 1 (mod
4) and k 1 or j =- k 3 (mod 4). This is exactly the sort of phenomenon
exploited to completely determine a and b, where b is the maximal such
k. He also shows that for n -= 1 mod 8, M bounds.

5. The Case k = 3, n even

PROPOSITION 6. IfM is oriented, immerses in Rn+3, and n is even and
larger than 4, then M is an unoriented boundary.

Proof. If Wab[Mn] :/: 0, 2a + 3b n, then b must be even. Now,

SqZ(WPP)[P]

{Sq -,-q(W2W3)}2[Mn],

Sq’{(" )" Sq’()}[Mn],

=0

since Sq into the top dimension of M is zero. Also, if q > O,

wzPwZ3q[M"1 3 3 {PWq-z}[M"I,

SqZSql{w3 (W2W3-1)2}[Mn],

=0

for Sq w3w 0 and Sq{(w-)2} 0. Note. x(Sq3) SqZSq.
Thus, the only possibly nonzero Stiefel-Whitney number of M is
’/2[Mn]. If M" is not an unoriented boundary, then exactly as in the case
k 2, M must be cobordant to CP2’+’-2 for some s > 0, and in particular,
n 2(2+ 2)-- 0mod4.
Letting n 4m, one has -1 reducing to w, where - + - is the

Pontrjagin class of the normal bundle v3, and hence W/2[Mn] m[mn] is
the mod 2 reduction of the integer ’[M"].
The argument now proceeds following the lines of Atiyah-Hirzebruch

[2], as modified for immersions by Sanderson and Schwarzenberger [13],
Theorem 2(b). One takes X M which has dimension 4m, and M immerses
inRn+3 hence also inRn+5 so thatXC 4m + 2k + withk 2. Also
4m 2(22+ 2)so

2m + k 2+l 2 + 2 2+

which is divisible by 4 if n > 4. Taking z to be the Chern character of the
trivial quaternionic line bundle over X (i.e., z 2), one has

22m+2-1 ,(X, 0, z(1/2)) Z.
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With the given choice of z, (X, O, z/2)) 2*(X), and so 22m+2,(M) is
integral.
Now 24m A and Am 22m/(2m + 1)! from [2, 5], so

22m /2A(M) A(M) 22m’[M] 4-’[M]22m+2(m) 24m 22m-2 22m-2(2m + 1)! (2m + 1)!

Sincen > 4, 2m + 1 > 5 so that(2m + 1) is divisible by S and hence
by 8. Hence ’[M] is even and M is an unoriented boundary.

COROLLARY. If M immerses in Rn+3 and all Stiefel-Whitney numbers
divisible by w are zero, then M bounds or M is cobordant to P(T 1,
2/1 2)for some 0 < r < s.

Proof. For n odd, this is Proposition 5. For n even, the above argument
started by proving M bounds or M is cobordant to

Cp2,+-2 p(20 1, 2 + 2).

PROPOSITION 7. /f M is a nonbounding manifold of even dimension
which immerses inRn+3, then n (2p+ 2) + (2q+l 2) + (2r+

2) with 0 < p < q < r.

Proof. For a nonzero characteristic number--a--.b....cww2w3[M O, one has
a + 2b + 3c n, soa + c--0mod2.
With a c 0 mod 2, one has

vv2 rv3 On

or

p-22q+ lr[Mn q...2,rr;2p2q2ra[Mnt ,n,’l vv2 vv3

On (Sql(w’Wr))[Mn].

With a ----c 1 mod 2, one has

12P + l2q-;2r+
,v2 ,’3 [Mn] SqZSq’(2p+q)[Mn]

Sq2(21p + 2rrZqa-Tx2rl iinl
2 I UL

v,,/2 {Sq(+l)}[Mn],

or

p+lq+ 132r+ [mn

(12){ (2v-q-9}[M"]

( + Sq’W){W(Wvwz2Wz9}[M"]
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(21Pqr)[Mn / SqZSq’{(Sq’wz) (21P22qr)}[Mn

Vn/2" (+I)[Mn]

since the other term is zero.
Since some characteristic number having one of these forms is nonzero,

one must have v,/z O. Using the splitting principle to write w (1 +
x)(1 + y)(1 + z),onehas

v (1 + x + X / + X
2s-1 / "")(1 + y + y3 / "")(1 + z + z / "")

and so oi # 0only for/ (2p 1) / (2q 1) + (2 1), giving the
desired form for n/2.

LEMMA. Let M be a nonbounding even-dimensional manifold which
immerses in gn+3. There are integers a, b, c with W’w2b’[Mn] - 0, so that
if

’’’[Mn] 0

then a’ < a, and further if a’ a, then c’ < c. Then a is even and c
O,b 2+ 2forsomes>O.

Proof. That a, b, c exist follows by taking the nonzero monomial which
is largest in lexicographic order. Now let Qn-a C M be the submanifold
of M dual to a copies of the line bundle det(v(M)), i.e., dual to w, so that

i*(x)[On-a] x. [Mn]

where is the inclusion and

i*w(M)
w(Q) or w(Q) i*{(1 + Wl + w2 + 3)(1 / l)a}.

(1 + i*W)

Now, since any number of M involving W]’+ is zero, any monomial

i*(,)i*(2)Yi*(3)Z[Q]

with x > 0 is zero. In characteristic numbers, i*() is then zero, and (Q)
behaves as if it were + i*(2) + i*(3). Q is then a manifold with j
giving zero numbers for j > 3 or j 1 and

wwY3[On-a] (i,2)(i,3 )y[Q] 7WY3[Mn].

If a is even, one then has Qn-a cobordant to CP2’+’-2 for some s, so that
2s+1-2 -a].the only nonzero number of Q is w2 [Q Thus for a even, c 0

and b 2’+ 2 for some s > 0. If a is odd, one has Qn-a cobordant
toP(2 1, 2+ 2) for some0 < u < s, and thenc 2 1, b
2s+l 2" 1.
Now consider the case a 2p + 1, b 2’+ 2- 1, c 2" 1,

withp > 0,0 < u < s.



208 R.E. STONG

Claim. "2P’iT2u’iTx’Y’ A/I
,v3 VVEVV31,, 0 implies x z O.

To see this, x 0 by the choice of a and c. Since n is even, z must then
be even. For y odd, let z 2z’, y 2y’ / l, and then

2p’772u + 2Z"22y’+ I[Mvv3

Sq2(]p’23"+zz"y’)[M]

{Sql(Wu-’+z’Wy2’)}2[M],

{yt’rrTP’’;2u- + z’ + l’Y2’ 2 z’ y’ +"-VVlVV + (p + + + ) ’+z’w’}[M]
1,,,-;2pr7;2 + +2y’ 2 2LY "Vl vv3 + (p + + Z + y )P+E23"+z22y’}[M]

,=2,=2.,-+2[My ,Vl ,3 ,v2

reduces to the case y even. Now, for z > 0, z is even and 2" is even so

w2p2"+z.q[M .p+ 122q+ l.u+z-I[Mvv3

as in the last calculation for Proposition 7, and this last is zero by the
choice of a and c.

--2 --2Claim. O2u+l+2u_ 2 WIW + WI S2u-1,2,-1.

To see this, 2u+l + 2 2 + 3 2"+l + 2" + and since r > 0,

2u+l + 2" 2 (2u+l 1) + (2" 1) + (20- 1)

is the unique expression as the sum of three integers of the form 2 1.
Then by the splitting principle

O2u+l+2u-2 E x2u+I-ly2u-1

--(EX2"-ly2"-I)(EX2") + x2"y2"-lz2"-1

2 2
$2 1,2 Wl "Jr" WlW

with the notation indicating the sum of the distinct monomials of the
given form by permuting x, y, and z.
Now,

__a__b__c[Mn] .21p + 122s+I_ 2,+ I+ 2"- 132"- l[Mn],WlW2W3
_...2 $.7.r2p.Tv2s 2u+ 1+ 2 [Mn],(O2u+l+2u_ 2 + w s2u-l,2U-llVVl vv2

Sq2.+, + 2.- 2[.;2p77;2
vvz

2.+ I+ 2.- l)[Mn

since "21P+2" is zero in numbers. Applying any Sq to 2p will multiply by
a power of ] which gives zero in numbers if > 0 and Sqi(+1-2"+1)



MANIFOLDS WHICH IMMERSE IN SMALL CODIMENSION 209

0 for 0 (2+ 1), SO

--a--b--c
WlW2W3[M

21PSq2"+’+ 2--2(,s+l- 2 1+ 2 1)[M,]
--2 2 + 2 2WP{SqZ.+(W+l-z.+t)Sq2 2. + w2 ’Sq2" }[M"],

2u-1 2u+l 2u+lwith the second summand being zero since dim w2 2 <
+ 2" 2 and, of course, the first summand is only present for s > u, and,
when s > u,

.21PSq2.+ --2+,-2(Wl ’)Sq2"- l[mn]

12P(3 + 2l)2U+l-zs+l-2u+2Sq2U-222U- l[m2

which is zero since Wl2p+2"+’ and 7772PrT;2u+
l -.3 always give zero in characteristic

numbers.
Thus, a must be even.

Observation. With this lemma one has a reduction of the problem to
very specific terms. For an integer n of the form (2p+ 2) + (2q+l

2) + (T+ 2), 0 < p < q < r, one considers the set , of integers s
with 0 < 2s+2 4 < n and lets a n (2s+2 4).

Let S, C , be the set of s for which there is a manifold M having the
following properties"

(a) All Stiefel-Whitney numbers of M divisible by the classes , >
3, and wT+l are zero.

(b) 7W22+-2[Msn] 4 0.

Let L C S be the subset of those s for which there is a manifold M
which also immerses in R+.

Claim. If M is a nonbounding manifold of even dimension which im-
merses in R+3 (or has all numbers involving Wg, > 3, zero), then M is
cobordant to a sum of manifolds M’ for s I (respectively s ).
To see this, one may induct on the integer a for which w,+l is zero in

numbers of M but ’ is not, assuming that any M’ with smaller a’ is
cobordant to a sum of MT, with s’ In (or ,) with .n (2’+2 4) < a’.
Then by the lemma, there is an s with a n (2s+2 4), SO that
waZ’+-2[Mn]2 0, and s In (OrEn), andM’ M t_J MT has a’ < a.
Letting M’ be cobordant to M’, tO t_J MT,, one has M cobordant to
MT U MT, U U MT.
Thus any choice of manifolds M’ with s I, or , provides a base in

the unoriented cobordism ring for the set of classes one is seeking to
determine.

LEMMA. IfM is an even-dimensional manifold immersing in Rn+3 and
W[Mn] O, then n has the form 2t+l 2 or 2’+2 4 for some integer
t>O.
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Proof. Let X be the canonical anti-automorphism of the Steenrod al-
gebra, so that x(Sq) Sq- with degree term x(Sqi). Then for dim x

1, one has

x(Sqi)xJ (2ii + J) xi+J
+j

NOW,

n + [Mn] + (n ]+(n_i)[Mn]
n "+(n-i

x(Sqi)-i[Mn]

W7-[M]

by [3], and thus

NOW,

n + i) 0mod2 for > 3, with 0 < < n.

i>o(n + xi l/(l + X)n+l

and, for2t> n + 1 > 2t-,thisis

(1 + x)Zt-(n+l)/(1 "+- x)2‘= (1 + x)2t-(n+l) mod terms x2t,
so 2’ (n + 1) < 3, since the top degree term isx2’n+ ) with2 (n
+ 1) < 2t-1 < n. Thus2 4 < n < 2 1, and n being even gives the
result.

LEMMA. (a) RP2’+2-4 has all numbers divisible by i zero for > 3 and
satisfies 2,+2-4[Rp2,+2-4] :/: 0.

(b) For M" RP2+’-2 RP2’+I-2 RP2r+’-2, 0 < p < q < r,

2r+l-2q+l+2p+l-2"q+l-2[mn] 0

and is the largest monomial which is nonzero.

Note. Rp2,+2-4 and RP2’+I-2 (0 p q < r t) have ]’[M"] :/: 0 and
provide examples with WT’+’-2[M"] as largest nonzero monomial in the
cases s 0 completely determining when 0 ,. For case (b), one has

2examples having largest nonzero monomial ww2 2[M] with s q, i.e.,
q.

Proof. From w(RP2’+2-4) (1 + a)2’+2-3, W(Rp2,+2-4) (1 + a)
+ a + + a3, so i 0 for > 3. Since 1 ,
]’+2-4[Rp2’+2-41 0.
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For M RP2p+-2 RP2q+-2 x RP2r+-2, (1 + a)(1 + /3)(1 + y),
where a, /3, 3’ belong to corresponding factors p, q, and r. Now 1 a

2 2+ /3 + y so thatw =3, ifr > t > q + 1, and is zero for > r. In
__2r+ 2q+ 2r+ 2q+particular, w =y and taking Q c M dual to (2r+

2q+2q+ )det(v), or, equivalently, to )t
2+ one obtains the manifold

Q RP2’+1-2 x RP2q+I-2 x RP2q+-2

which is cobordant to Q’ RP2p/’-2 CP2q+-2, which has

(1 + a)(1 + O) 1 + a + 0 + aO, dim0 2.

Then,

zr+’-v+’+x[M [Q] [Q’] aOy[Q’]

and is nonzero for x 2’+ 2, y 2q+ 2 and is zero otherwise.

LEMMA. Let M", n even, be a manifold with all numbers divisible by
i, > 3, equal to zero. Consider the characteristic number b2[Mn] with
a and b even and with a having a gap at 2 in its dyadic expansion, i.e.,

a a’ + 2t+l + a"

with a’ =- 0 (2t+2), a" < 2t. Equivalently,

Then, ’[M] 0 provided that

(1) 2t> a"+ 2b + 3,

or

(2) 2 > a" + 2b and > 1.

Proof.

One has

Let en+3 be the manifold associated to M and consider

0 Sq2t(-2t2b3)[e].

+ 2Sq2t(w +2t+a"w2bw3) W2 "q- Sq (W"zW3)

since Sqi( + 2’)
(-7"22W3) then

0 for 0 mod 2t. If 2 > a" + 2b + 3

W’W2[M] W’W2W3[P] O.

dim

If > 1, and 2 > a" + 2b, then
2 ma"--b-- 2 a"bSq (Wl W2W3) Sq (wl W2)W3 "+" Sq

Sq2’- 2(W"W2b)w2w3
2 2(Wl"W2ab )Sq2W3
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for a" b’ 0 mod 2 gives Sqi("b2) 0 if is odd. Then,

[Mn] ct3[en+ 3]
2W + 2’q 2(W"2b)3[Pn + 3]

2t__ 2=+ w23q 2("2)[Mn]

Sq2{W’+ 2tSq2’-2("2b)}[Mn]

’+2’Sq2Sq2’- 2(],"2b )[Mn]

for Sqi(’+2’) 0, unless =- 0 mod 2t. Now Sq2Sq2’-2 SqlSq2t-2Sq
and since a" -= b 0 mod 2, Sql(w’"w2b) 0. Thus w[Mn] O. 1

Note. This gives another more unpleasant proof characterizing those
n with W’[Mn] =/= O. Taking b 0, one always has 2 > a" and so n a
cannot have a gap at any 2 with > 1. One should also note that condition
(1) implies 2 > 3 and so really implies condition (2).

If n + 6 2t/s, t > 0, i.e. n + 6 has only one power of 2 in its dyadic
expansion, then

(1) In Xn {t} for t 0 or 1,
(2) {t} C X C {S 0 < S < t} for t > 1.

Proof. 2 + 2 4 < 2 + 6 implies s < t, and n + 6 2 + 2 + 2 +

+ 2/+l is expressed in the form 2p+l + 2q+l + 2r+l, 0 < p < q < r, only
ifr + 1, p q t;hence s q tbelongston. For > 1, n

2t+3 6 is not of the form 2s+ 2 or 2+2 4 so 0 q n. Finally,
RP2 and RP2 x RP2 Re6 immerse in codimension 3 to give In Zn

{t}forn 2and 10. ]

Note. The test case for improving this result is s 1, t 2; i.e.,
--22m2r ,26"
W w2tm is unsettled in dimension n 26.
Suppose n + 6 2t+2 + 2u+l with > u > 0, i.e., n + 6 has precisely

two powers of 2 in its dyadic expansion.

(1)

(2)
(3)

{u 1, t}C

and ift 2, u 1, then

If u 0, then {0, t} C X C {S 0 < S < /}, and

(a) ift 0or 1, thenIn En {SI0<X< t},
(b) if 2, then E12 {s[0 < s < 2}.

Ift u > 0, thenEn {t, 1},andift 1, thenIn En.
Ift > U > 0, then

XnC{SIU 1 <s<t},

Z14 {sIO -< S < 2}.
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Proof. 2s+2 4 < n gives 2s+2 + 2 < 2t+2 + 2+ so s < t. If u
0, thenn 2t+2 4, so 0 X, andn (2+ 2) + (2t+ 2) +
(2TM 2) so that t q X. Since a point, RP and RP2 x RP2 immerse
in codimension 3, I0 E0 and I E4. For the case t 2, E2 C {s 0
< s < 2} and Table 2.3 of Liulevicius [11] shows three classes of filtration
less than or equal to 3, so 2 must contain 3 elements.

Ift > u > 0, onehas

n + 6 2t+2 + 2u+l 2t+ + 2t+l + 2u+l 2t+2 + 2(u-l)+1 + 2(u-l)+1

providing expansions n (2p+I 2) + (2q+ 2) + (2r+l 2)in which
q tandq u 1. Thus{t, u 1} C ,.
Fors < u 1, onehas

a 2t+2 + 2u+l -2 2s+2= 2t+2 + (2 + + 2) 2s+2

withs + 2 > u.

Thus a has a gap at 2t+l with + 1 > 1, and b 2s+l 2 gives

2t+ > a" + 2b 2 + 6.

ThusXn C {s u 1< s < t}.
If t u > 0, n is completely determined, and if t 1, RP6 and RP2

x RP2 x RP2 immerse in codimension 3 giving 16 6 {0, 1}. For the
case t 2, u 1, El4 c {s 0 < s < 2} while Table 2.3 of Liulevicius
[11] shows three classes of filtration less than or equal to 3, so that El4
must contain 3 elements.

Note. The least unsettled case is 3, u 0 in dimension 28.
Suppose n + 6 2p+I + 2q+l + 2r+l with 0 < p < q < r, i.e., n +

6 has precisely three powers of 2 in its dyadic expansion.

(1) If r q + 1, p 0 or 1, then , {q}, and if p O, q 1,
r 2, then I E8.

(2) Ifr q + 1, p > 2, then{q} C Zn C{slP 1 < S < q}.
(3) If r> q + 1, then{q} CZn C{slq< s < r 1}

Proof. 2 + 2 4 < n gives 2 + 2 -F" 2 < 2p + ._ 2q +
__

2r+ SO S < r
1, and when r q + 1, s < q. One always has {q} C n by considering

products of projective spaces, and since RP2 x RP6 immerses in codi-
mension 3, {1} C 18.

Considering b 2+ 2, a T+1 + 2q+ + 2p+I 2- 2’+z, with
s < q, s + 2 < q + 1, a will have a gap at 2rprovidedr > q + 1 orr

q + 1 ands + 2 > p. Sincere> q + 1 > q>p > O,r> 1, and

2r> a" + 2b 2q+l + 2p+I 2- 4 for r > q + 1,

while for p O, 1,

2q+l + 2p+I 2 4 < 2q+l 2 < 2q+l if r q + 1.
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Forr q + 1, p > 2, ands <p 1, ahasagapat2qwith
2 and 2q > a" + 2b 2p+l- 6.

Note. The first cases in which n is not determined is p 2, q 3,
r 4givingn 50 for the case r q + 1;andforr > q + 1 one has
p 0, q 1, r 3 giving n 16. The next case is p 0, q l, r
4 for which n 3. For n 16, the question is whether 2 X6, i.e., the
number WW[M6]. Having made several errors in trying to decide this
case, I believe 2 El6 but would not want to swear to it.
Combining the cases in which Xn is completely determined one has the

following result.

PROPOSITION 8. Let M be a nonbounding manifold immersed in Rn+3.

(1) If n 3 2+

Rp2. 2

or their union,

6, u > 0, M is cobordant to

Rp2,,+2_2X CP2"+t-2 or Cp2.--2

(2) Ifn 3 2"+
Rp2.+ 2

(3) If n 3 2"+

RP2"+I-2 X RP2.

4, u > 0, M is cobordant to Rp2"+2-2

2, u > 1, M is cobordant to RP2"/-

6. Immersion of Indecomposables

DEFINITION (Liulevicius [11]). A manifold M has algebraic filtration k
if M has some nonzero Stiefel-Whitney number divisible by k and every
Stiefel-Whitney number involving a class i with > k is zero.

Note. This is equivalent to the assertion that the normal map

M BO

is cobordant to a map M’ -- BOk but not to a map into BO_.
The major result of this section is"

PROPOSITION 9’. Let M be an indecomposable n manifold with n
2 + b, 0 < b < 2a. Then the algebraic filtration ofM is at least n
2b 1. Furthermore, if n is odd, then the algebraic filtration ofM is at
least n 2b.

Note. n- 2b 2a+ n.
If n is even or n -= 1 (mod 4) this result is best possible:
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Observation. If n 2 + b, 0 < b < 2a, n even, the projective space
RPnhas algebraic filtrationn 2b 1. Ifn 4k + 1 2 + b, 0 <
b < 2a, the Dold manifold P(1, 2k) has algebraic filtration n 2b.

This verifies the conjecture of Liulevicius [11, 2].

Note. Forn 11 8 + 3, n 2b 5, and theindecomposablevl
of [11, Table 2.3] has filtration 5. Additional remarks will give information
on the best possible filtration.
To verify the observation, one has w(RPn) (1 + ct)n+, and since

(1 + a)2a+’ 1,

W(RP) (1 + a)2a+l- (1 + Ol)2a- b- (1 + a) 2b-

so that i 0 for > n 2b 1 and W’n_Eb_Wb+l[Rp] O. Also,

w(P(1, 2k)) (1 + c)(1 + c + d)2k+1

with (1 + c)2 1 and (1 + c / d)2a= 1,

since 4k < 2a+lgives 2 < 2k < 2a, and so(P(1, 2k)) (1 + c)(1 +
c / d)2a-(Ek+1). Thus 0 for

i> 212 (2k + 1)] + 1 2a+l 4k 1 2 b n 2b.

Further,

W--n_2b cd (2a-b-I)/2 and W2 d + XC
2

SO W 2bWEb[p(1, 2k)] :fi 0.
The proof of the proposition will proceed in a sequence of lemmas.

LEMMA. Let M be an indecomposable n manifold with n 2 / b,
0 < b < 2a. Then the algebraic filtration ofM is at least n 2b 1.

Proof. By the splitting principle, W(Mn) I17=(1 + xi) with dim x
1. Let s X.= be the usual primitive class, so thatM is indecomposable

if and only if Sn[Mn] O. Recalling that

x(Sqi)xi= (2i+j)+ j

one has

x(Sq’,s= (2ii _l_+j) Si +j
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Then

W’--n-2b-1S2b+ 1[Mn] x(gqn-zb- 1)S2b+ [M"]

(2a+’-2b-2+2b- 1)n

sn[Mn],
n

which is nonzero.

The following makes use of certain standard characteristic classes defined
via the splitting principle. If

then

1-[ (1 + xi), dim X 1
i=1

is the symmetric function of the x which is the sum of all distinct monomials
in the x’s. In particular, si is the primitive class used in the previous lemma,
andw s withiones.

LEMMA. IfM is an n-dimensional manifold, then

sj [Mn] (2n-j+l)sn[Mnn+l
n-j

In particular, if n 2 + b, O < b < 2a.

Proof.

sj, I[M"] 0 ifj<2b + 2.
n-j

One has

n-j+

Z x -lx + Z
+

-j+ -j

ifj 1 > 1, and so

S.i,1 I[Mn] + sj_ , [M"] sj_ s [M"]
-j -j + -j+

(Sq"-+ )sj_ I[Mn]

(2n-j+ 1)
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For the case j n, one has

s.[M"] (2n-n+ 1)n + s.[M"],

and inducting downward on j, 2 < j < n, one has

sj_,, ’[M"] {(2n-j+ 1) + (2n-j+ 1)}n+ 1

(2n-(J- 1)+ 1)s.[M.n+l

giving the result forj > 1. For the casej 1, s I[M"]
is always zero (since M" immerses in R2n-l, for example) and

+1

is even except for n 2 1, and then s[M] 0 since every manifold
is decomposable. Note. For j 0,

is also even except for n 2 1, if one considers that case.
Forn 2 + b, withb 2 1, Sn[Mn] 0, and if0 < b < 2

1,

(2n-j+1)n+j (2a+l+2b-j+ 1)2a+b+ 1

which is odd only for2b j + < 0. To see this, note that if2b j
+ 1 > 0, 2" occurs in the dyadic expansion of 2" + b + 1, so must appear
in2b -j + 1, sob 2a-l + b’ with0< b’ < 2a- 1;then

2 + b + 2 + 2 + b’ +

(22L 2b’-j+ 1)+b’+l
which has the same form. Thuss., [Mn] 0if2b -j +

LEMMA. If n 2 + (2j 1), 0 < 2j < 2a, then

Szj,zj, [M"] 0
n-4j

if M" is decomposable.

Proof. By additivity of the characteristic number, one may suppose M
PP Qq with n p + q, p < q (p < q by choice, but n is odd, so
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p < q). One has the general formula

s[P x O] s,[P].soo,,[Q]

for characteristic numbers of a product, and since

s I[NI 0,
k

one has

S2j,2j,1 I[Mn] S2j,1 I[PP] s2j, I[Q].
4j p 2j q 2j

for this to be nonzero, one must have p > 2j and since n 2" + (2j
1), q < 2a. One then has q > 2a-1 since q > p, and so may write q 2a-1

+ b with 0 < b < 2a-1. In order that s:s, [Q] 4 0, one must have 2j
< 2b + 2 by the previous lemma and hence q 2a- + b < 2a- + (j

1). But then p n q > 2 + j > q, contradicting the choice p
<q.

LEMMA.
2a, then

If M is indecomposable, n 2 + (2j 1), 0 < 2j 1 <

S2j,2j, I[Mn] 0.
n-4j

Proof. It is sufficient to exhibit some n manifold for which the given
number is nonzero, for if the number is nonzero on N" then N" must be
indecomposable, and then the number will have the same value on M" and
N since Mn N is decomposable.

Since M is indecomposable, one may suppose n is not of the form 2
1. Hence one may write

2j- 2"(2x + 1)-

with x > 0 and 2 > 2r(2x + 1) 2j, and r > 0.
Consider the manifold N" H(2", 2 + 2r+ X) contained in RP2" x

RP2+2"+x dual to h @ h2, i.e., to the class a + /3. Then

SO

w(N)
(1 + )2r+1(1 + [)2a+2r+’x+l

(1 + a + ])

(1 + c + 1)(1 + )2r-1(1 + /)

and one wishes to compute the number S2r/’x+2r,2r+x+2’,...[Nn] with 2
2r+l X 2 1 ones.

Since is already in the form l-I’(1 + x) one may compute the number
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s.,zj, readily as the top degree term in

2s {(1 + x)... (1 + xp) (1 + xq) (1 + Xm)}XpXq
p<q

where a flex denotes that the given factor is omitted. One then begins by
choosing x from the list

+ ..., ...,/3}
2 2 2+ Ix

giving the possible pairs {a, a}, {a, a + fl}, {a, fl}, {a + fl, fl}, and {fl,/3}.
The pair {a, a} always contributes zero. For r 1, only one a occurs in

the list, so no such pair can be chosen. For r > 1,
2r+

Ol
2r 2x + 2rol2r lx + 2r

Ol
2r 2x + O.

For x > 0, ar++2 0, and so the pairs {a, a + B}, {a,/3} contribute
zero if x > 0. For x 0, the contribution is

(2r- 1)ct2r(cz + fl)2r{(1 + O)2r--2(1 + fl)2a-l}
+ (2r- 1)(2a- 1)tx2r2r{(1 + X + /3)(1 + a)v-2(1 + )2a-2}

where the integer coefficients are the number of pairs {a, a + /3} and
fl}, respectively. Since O

2r+l 0, the leading factor av kills all remaining
a’s to give

2r" ]2r{(1 + /)2a-l} -F" X2r/2r{(1 -F" /3)(1 +
which is zero.
Then, the remaining terms {a + fl,/3} and {/3, fl} give

(2 2r+lx- 1)({ + [3)2r+Ix+2r[32r+lx+2r{(1 + 1)2r--1(1 + [3)2a-2r+IX-2}

+ (2a-- 2r+l --1) [2r+tx+2rfl2r+tx+2r{(l + O + fl)(l + OO2r-l(l +

in which the coefficients are the number of pairs. Since r > 0, both coef-
ficients are odd. Also, (c +/3)2’+’x+v (av+ By)v+,x since av+ 0.
The value of this characteristic class on N" is obtained by multiplying by
(a + /3) and evaluating on RPv x Rpza+z’+’x; i.e., szj,zj, [Nn] is the coef-
ficient of Olzr2a + 2r lx in

(2r "F" 2r)2r+ 2X +2r[(1 + a)r- 1(1 + 1)2a- 2r+ IX-2](
__
)

+/32r+x + 2r+’[(1 + a + /3)(1 + a)2r- 1(1 + /3)2- 2r+’- 3](a + /3).

The term involving av is

ot2r[2r+2x+2r[( 1 + x)2r--l(1 + )2a--2r+’x--2](tX +
X2r2r+2X+2r+l(1 + )2-2r+x-2

in which/3 occurs only to odd powers, so contributes zero. The remainder
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is

[32r+2x+2r+l(o / fl)[(1 + c02-1(1 +

i2r+2x+2r+l(o + /3)(1 + ct)2-l(1 + fl)2’-2+x-3[1 + fl + + a + fl]

[2r+2x+2r+l(o[.2 / aft)(1 + a)r-(1 + )2a-2r+x-3

in which the coefficient of tX
2r is

2r+Ix-2r+l(1 + )2a-2+x-3 / 2+2x+2+1+1(1 + )2a-2+’x-3

flZr+Zx+Zr+(1 / fl)Za-2r+x-3(1 /

2r+2X+2r+’(1 + )2a-2r+lX-2

Taking the coefficient of 2o +2r+,
l[gn] k2 -z.,r+lx 2r+l 2r+l 2

Now, 2+ 2 2 + + 2and2"- T/x- 2 2- + + 2
2/xdeletingonlyterms2withb > r + from2- + + 2, so

this binomial coefficient is odd.

Finally, to complete the proof of the proposition one has"

LEMMA. If M has filtration less than n 2b with n 2 + b, 0 <
b < 2aandb 2j 1, then

S2j,2j, [Mn] 0.
n-4j

Proof. Since M has filtration less than n 2b n 4j + 2, all
Stiefel-Whitney numbers of M involving a class Wi with > n 4j / 2
are zero. Then, all classes in the ideal generated by wi, > n 4j / 2
in H*(BO; Z2) ZE[W] give zero in normal characteristic numbers of M.
This ideal is, however, the kernel of the homomorphism

i* H*(BO; Z2) H*(BOn-4j+ 1; Z2)

induced by inclusion, and that kernel contains all s,,h j with s > n
4j + 1 (by the splitting principle w 1-[]’-4J+(1 + xi) for BOn-4j+). Thus
s2j,2j,1 with n 4j ones gives a zero normal Stiefel-Whitney number for
/14".

The following provides an easy, but crude, bound on filtration.
Observation. For n T(2s + 1) 1, r, s > 0, the Dold manifold

P(T 1, Ts)

has algebraic filtration n 2b + (T 2), where n 2 / b, 0 < b <
2a; i.e., the best possible filtration for an indecomposable M lies between
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n 2b and n 2b + (2 2), where T is the power of 2 dividing n
+ 1.

Proof. Let n 2 + 2r+lx + T- 1. For P(T- 1, T x + 2a-1),
W (1 + c)(1 + c + d)2a-’-2rx-1

so 0 for > 2 2r+lx 1 n 2b + (2 2). Finally, note
that

2r+ T 2W2a_ 2r+ 1’2 x’2,.[p(2r 1 x + 1)] 0.

Observation. For n 2s+3 + 3, s > 0, the cobordism classes of

P(3,4) + P(1,2) RP2 RP4 + P(1,2) RP2 RP2 RP2

(s 0)
and

P(3, 2s+2) + P(1, 2s+l) RP2 Rp2S/2+ P(1, 2’)
RP RP2s+l x RP2’+2 (s >0)

are indecomposables with filtration n 2b n 6.

To see this, one computes the characteristic numbers involving with
> n 2b 2s+3 3. For P(3, 2+2), the only such numbers which are

nonzero are
2s+3-14 2s+3-25 "2s+3-2W3W2 O.

For P(1, 2+ 1) Rp2 Rp2+, the only such numbers which are nonzero
are

2s+3-14 2s+3-241 2s+3-2WaW2 O.

The third summand has nonzero numbers precisely cancelling these, but
for s 0, P(1, 20 bounds and the third term must be chosen differently.
Finally the classes are indecomposable, so there is a nonzero number in-
volving n-2b.

LEMMA. Let [’(Mn) S M x M"/(-1) twist.

(a) IfM is indecomposable, so is l"(Mn),
(b) If M immerses in Rn+k, then F(M") immerses in R2n+l+2k for n +

k even and in R2n+2+2k for n + k odd.
(C) If M has algebraic filtration k, then F(M") has algebraic filtration

less than or equal to 2k if n + k is even or 2k + 1 if n + k is odd.

Proof. According to R. L. W. Brown [5], Proposition 4.1, I’(Mn) is
indecomposable since

(1 +n-1)n ()



222 R.E. STOr6

is odd and M is indecomposable, giving (a). If
f

M -- R/is an immersion,

r(f) r(M") S x M" x M"/---, S’ x R"+t’ x Rn+k/’" F(R"+k)
induced by 1 x f x f is an immersion in the total space of the bundle

(n + k)X + (n + k)

over RP S. Now, 2h 2, so E(rh + r) imbeds in R2+ for r even,
or in E((r + 1)h + r), hence in Rz+z, for r odd. Note. The normal bundle
of this immersion is F(u) for n + k even or X F(uz) for n + k odd,
where, for

E --. M

a vector bundle,

F(E) , F(M)
is the corresponding bundle, and h is the line bundle over F(M) pulled back
from RP.

If M" has algebraic filtration k with v M "") BOj, the normal bundle
of an immersion, cobordant to M’ BO, i.e., to : + (j k) M’-- BOj, then the bundle F(v) over F(M) is bordant to

F(s (j k)) F(:) ( (j k)h () (j k)

over F(M’). (To see this, note that E(v) x E(v) - M x M and

E(: + (j- k)) x E(: + (j- k))-- M’ x M’,

with each space given the twist involution, are equivariantly cobordant
bundles, since they have cobordant fixed point data. Forming the product
with S and dividing out the involution on the cobordism gives the desired
cobordism.) With no loss, one may choose j above so that n + j is even,
so that the normal bundle of F(M) is F(v) which is cobordant to F(:) )
(j k)h + (j k) over F(M’). Since 2}, 2, this bundle reduces to F(:)
or h ( F(:) as j k -- n + k (rood 2) is even or odd, giving fiber dimension
2kor2k / 1.

Observation. Forn 3 mod8(n 3) or forn 7 + 2’+4, there is
an indecomposable n-dimensional manifold of algebraic filtration at most
n-2b+ 1.

Proof. Since (n 1)/2 is congruent to 1 mod 4 and is not of the form
2 1 or is 3 + 2+, there is an indecomposable manifold N(n-l)/2 of
algebraic filtration 2 (n 1)/2, where 2a- < (n 1)/2 < 2 and M
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1-’(N(n-l)/2) has algebraic filtration at most 2(2 (n 1)/2) 2+

+ 1 n n- 2b + 1.

Note.
filtration.

(n 1)/2 + (2 (n 1)/2) 2 is even, so F doubles the

Note. One might hope that the manifold M" 1-’(N(n-l)/2) just con-
structed actually had algebraic filtration n 2b. In fact, it has filtration
precisely n 2b + 1 and the hope is forlorn. In fact,

W1Wzil 2ir[mn] i ir[N(n-l)/2]
One may iterate this construction to obtain improved bounds for the best

possible algebraic filtration of an indecomposable. For example, if n 7
mod 16 there is an indecomposable of algebraic filtration n 2b + 4.
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