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ON THE QUADRATIC VARIATION PROCESS OF A
CONTINUOUS MARTINGALE

BY

RAJEEVA L. KA,RANDIKAR

In this article we give a simple proof of the existence of the quadratic
variation process of a continuous local martingale by providing an explicit
expression for it.

Let (l, 3) be a fixed measurable space and let 3 ((t)t>o be an
increasing family of sub o--fields of 3. Let M be a continuous 3 adapted
process such that M(0) 0.

Let Kn(t, w) j, if there exists ti such that

and,

Let

0 to < tl < < tj < < tj+l,

[M(ti) M(ti+l)l 2 -n, 0 < < j,

IM(ti) M(s)] < 2 if s [ti, ti+l), 0 < < j.

Kn(t, w)
X’(t, w) lim sup 22

U(w) inf{t > 0 X’(t-, w) X’(t +

X"(t, w) X’(t-, w), and
X(t, w) X"(t / U(w), w).

w)}

THEOREM. X is a continuous (g adapted increasing process. Further, for
all P such that (M(t), cgt, P) is a local martingale,

(M2(t) X(t), (4t, P)

is also a local martingale.

Proof. Fix a P such that M is a P-local Martingale.
Let {T’ > 1}, n > 1, be defined by

T 0, T’+ inf{t > TT’IM(t) M(TT)I > 2-"}.
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Let

X(t, .) (M(t /k T’+,) M(t /k T/ ))2,
i=0

Y(t, .) M2(t) X(t).

Observe that K(t, w) j iff T7 < < T+ , so that

K(t, w) K(t, w) +
22 X(t, w) < 22

and hence X’(t, w) lim sup, X,(t, w).
It is easy to see that X’(t, ) is an increasing process and hence

X’(t-, ) and X’(t +, ) are well defined. Thus U is well defined. Also, it
follows easily that X(t, ) is a continuous process.

Let (t)to be defined by fit t+. Then T7 are stop times and
hence Xn is adapted for all n, so that X’ is -adapted. Right continuity
of (,) implies that U is an -stop time so that X is also adapted. Since
X is a continuous process, this implies that X is -adapted.

In order to show that M2 X is a local maingale, it suffices to show
that

(1) Yn converges a.s. to a continuous local martingale Y (in the u.c.c.
topology on C[0, )).

This will imply that X’ is continuous a.s. so that X X’ a.s. and hence
that Y M2 X.
To prove (1) suffices to consider the special case when M is bounded.

Since in general we can get stop times S such that Ms" (defined by
MSn(t) M(t S,)) is bounded, the general case will follow.
Now, if M is bounded (by K say), then (M(t), t, P) is a martingale.

Writing

we get

M2(t) (M2(t/ T’]+ ) M2(t / T’ ))
i=0

Yn(t) , 2M(t / T’/)(M(t / T’+l M(t / T’/)).
i=0

EZn,i(t) (say).
i=0

(Observe that for each (t, w), these are actually finite sums.) The fact that
(M(t), cgt, P) is a bounded martingale implies (Zn,(t), cgt, P) is a martingale
for all n, i.

Also, for fixed t, n, {Z,,(t) > 1} is a centered sequence, so that
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E Z,i(t) E Z2,t(t)
i=r

< 4K2 E(M(t /k T+ ,) M(t /k 77 ))2
i=r

4K E(ME(t/k T+,) ME(t/k Tr ))-- 0 as r, s --> o.

Thus Ei%0 Zn,M) converges in L2 so that, for all n, (Yn(t), 3t, P) is a
martingale.
For each n, let Mn be the process defined by

Mn(t) M(TT) if T’ < t < Tin+l
It is not difficult to verify that for all w, n

{TT(w) > 1} C {Ty +l(w) "j > 1}.

Thus

Yn-l(t) E 2 M_,(t /k T’j )(M(t /k T’j+ M(t /k T)).
j--0

Hence

E(Y(t)- Yn_l(t))2

E 2 (M(t/h T] M_,(t/k T))(M(t/ T+I M(t/h T))
j=O

< 4 E(M(t /h T2) Mn_,(t /h T))2(M(t /k T]+l) M(t /h T;))2

j=0

(as the summands form a centered sequence)
4 E(M2(t/ T’j+, M2(t/ T))22(n l)

j=0

16
2-- E M(t).

Now by Doob’s maximal inequality,

64
E sup[ Y(s) Y_ (s )l " E M2(t).

s<t

By Borel-cantelli lemma, this implies that Y,(.) converges a.s in the u.c.c.
topology to some process Y (say). Further Y,(t) converges to Y(t) in L2 for
each t. Thus (Y(t), 3, P) is a continuous martingale.
As remarked earlier, this completes the proof.

Remark 1. If M is a continuous process of bounded variation and M(O)
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0 then observe that

1
[X(t, w)l Var(M(u, w) 0 < u < t)

so that X 0. If moreover M is a P-local martingale then, by the theorem,
M2 is also a P-local martingale so that M 0 a.s.P.

Remark 2. The quadratic variation process X is usually denoted by
(M). If A is a continuous increasing process such that M and M2 A are
P-local martingales, then A (M) is a P-Local Martingale and hence (by
Remark 1) A (M) a.s.P. Existence and uniqueness of (M), for right
continuous martingales M, was first proved by P. A. Meyer [3], [4].

Remark 3. Kunita Watanabe proved in Theorem 1.3 of [2] that if
{T’, > 1} is a 1/2 partition for M, (M), t and if moreover these partitions
form a chain then X, defined as above converges a.s. to (M). Thus the
existence of (M) is assumed in their proof.

Remark 4. In [1] we had arrived at exactly the same (pathwise) formula
for (M) as given here, but again that proof assumed the existence of (M).

Remark 5. Observe that we have defined X(t, w) explicitly in terms
of {M(u, w) 0 < u < t} so that (M) neither depends upon the underlying
probability measure P nor on the underlying o- fields .
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