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POSITIVE WEIGHT HOMOTOPY TYPES

BY

RoY DOUGLAS

Introduction

Automorphism groups of minimal models in various algebraic categories
are investigated in this paper, in order to apply the observation that all
notions of "positive weight" for a rational homotopy type (RHT) coincide.
This equivalence contrasts with the distinction between the set of "formal"
RHT’s and the set of "coformal" RHT’s. However, both of these sets are
proper subsets of the set A, consisting of the positive weight RHT’s. The
notions of formal and coformal are dual to one another, in the sense of
Eckmann-Hilton duality [8], while the notion of positive weight is self-
dual. A is closed under the formation of products, coproducts (i.e., one-
point-unions), retracts, and Postnikov sections; moreover, the elements of
A decompose uniquely as products, and also as coproducts.

Essentially, the positive weight property (for an object of an "algebraic"
category) can be understood to mean that the "zero" (or basepoint) en-
domorphism lies in the Zariski closure of the group of automorphisms
(within the monoid of all endomorphisms). However, this paper will apply
several other interesting characterizations of "positive weight" for RHT’s.
We observe the behavior of the "positive weight" property under a field

extension. If K is an arbitrary field of characteristic zero, then "K-positive
weight" may be defined similarly for "K-homotopy types"; however, the
concept of positive weight is independent of the (characteristic zero) field
of definition, in the sense that the K-homotopy type of a RHT is K-positive
weight, if and only if the RHT itself is positive weight.
The general discussion of positive weight in section one of this paper is

applied in section two to obtain a simpler proof of the uniqueness of coproduct
decompositions for positive weight RHT’s. The proof for products in [3]
(using minimal associative algebras) is dualized here to give a proof of
uniqueness for coproducts which is significantly easier than that given in
[7], by working in the category of minimal Lie algebras, rather than the
homotopy category of minimal associative algebras. This illustrates the way

Research partially supported by a grant from N.S.E.R.C. of Canada.

Received September 2, 1981.

(C) 1983 by the Board of Trustees of the University of Illinois
Manufactured in the United States of America

597



598 ROY DOUGLAS

in which the differences between these two types of minimal models may
be exploited, in spite of the equivalence of their homotopy categories.

In the proofs contained in this paper we consider only finitely generated,
minimal models of simply-connected RHT’s; however, the "finitely generated"
hypothesis will have two different geometric meanings (depending on the
choice of category, to which the minimal model belongs), and in any case,
can be replaced by the much more general assumption that the Hurewicz
homomorphism of the RHT has a finite dimensional image. The techniques
required for this more general hypothesis are developed in section 3 of [7],
in the context of limits of inverse systems of algebraic groups. As explained
in the introduction to [7], the question of coproduct decompositions for
nilpotent RHT’s reduces at once to the simply-connected case. For this
reason, and also for simplicity, we restrict ourselves to simply-connected
RHT’s and their associated minimal models, throughout this paper, unless
the more general hypothesis, "nilpotent" is explicitly mentioned.

Finally, in section three, "weight criteria" equivalent to formality (re-
spectively, coformality) are given, which complement those in [9], and
clarify the relationship between formal, coformal, and positive weight.

1. Positive Weight Generalities

Let K be an arbitrary field of characteristic zero, and let Q denote the
field of rational numbers. Soon we shall need to refer to "positive weight"
objects in many distinct types of categories (and with respect to various
fields K). For this reason, our discussion will require the following general
definitions.
Let 1 be a category with zero-object (i.e., an object which is both terminal

and coterminal). Suppose that the objects of f are K-vector spaces with
an "algebraic structure", where an algebraic structure on K-vector space
M (underlying an object, also denoted M, in the category 12), is a set of
homomorphisms, whose domains and ranges are elements of the set {K,
M, M ( M, M () M ) M, ...}. Here, "(" is the tensor product of vector
spaces, over K. For example, a "grading" may be considered as a sequence
of orthogonal idempotent endomorphisms of M; a "product" (for a K-
algebra structure on M) is a homomorphism: M ( M M; a "coproduct"
(for a coalgebra) is a homomorphism: M M (R) M; of course, a differential
is a homomorphism: M M.

Suppose further that E(M), the set of endomorphisms of an object M,
is the set of K-rational points of an affine variety, defined over Q (see [4]
for definitions), and the composition of endomorphisms is a morphism of
varieties. We shall refer to such a category as an algebraic category.

If M is an object of an algebraic category 1, then (loosely speaking,
omitting reference to "K-rational points") it follows that E(M) is an algebraic
monoid, and G(M), the algebraic group of automorphisms of M in fl, is
an open subset of E(M). Let F(M) be a Zariski closure of G(M) in E(M).
Of course, if M is not the zero-object, then 0, the basepoint morphism in



POSITIVE WEIGHT HOMOTOPY TYPES 599

E(M), is never in G(M). We shall say that M is a positive weight object
of II, if 0 is in F(M).

Recall that E(M), G(M), and F(M) are actually "functors of rational
points", in the sense that their values for K (a field of characteristic zero)
will be their respective sets of K-rational points, which may be viewed as
subsets of some affine spaces. Moreover, for each such field K, there is a
topology (and closure operator) on each affine space, called the K-Zariski
topology (and the K-Zariski closure, respectively). Notice that (in spite of
these options) the definition of positive weight is not ambiguous, because
of the following.

LEMMA O. /f 0 is in some Zariski closure of some set of rational points
of G(M), then 0 is in all such closures of each of the sets of rational points
of G(M).

Of course, it suffices to show (for K, an arbitrary field of characteristic
zero) that 0 is in the K-Zariski closure of the set of Q-rational points of
G(M), if 0 is in the Q-Zariski closure of the set of K-rational points of
G(M). This is easily seen by using condition (b) in Proposition 1 (below),
together with an argument similar to that given in the last two paragraphs
of the proof of Lemma 3 in [2].
Proposition 1 gives four equivalent characterizations of positive weight;

the first of these is our definition, the second is used to prove Lemma 0,
and the third is required for an elementary proof of Theorem 2 (and is the
definition of positive weight in [7]). The fourth characterization is included
primarily for perspective. However, before stating this proposition, we must
define the general concept of a "weight splitting" on an object in an arbitrary
algebraic category.
A "weight splitting" of object M in algebraic category II is a direct sum

decomposition (indexed by the group of all integers) of the underlying K-
vector space (also denoted M), which is "compatible" with the algebraic
structure supported by M. Of course, it remains to explain the meaning of
"compatible".

Compatibility of a grading with another algebraic structure means that
the homomorphisms (which constitute that structure) preserve grading degrees
(i.e., form certain obvious commutative diagrams with the idempotent en-
domorphisms of the appropriate gradings), where it is understood that a
grading on M induces the usual (summed) grading on a tensor product of
copies of M. If an integer-indexed grading of M is compatible with every
structure of category II on object M, then the grading is said to be a weight
splitting of M. If all the non-positive components of a weight splitting lie
in the image of the (unique) morphism from the zero-object to M, then we
say that the weight splitting is a positive weight splitting.

PROPOSITION 1. If M is an object of an algebraic category, then the
following are equivalent:
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(a) I) is in F(M) (definition.of positive weight).
(b) There exists a I-parameter subgroup in G(M), which converges to

l) in E(M).
(c) M possesses a positive weight splitting.
(d) All irreducible components of the (affine) algebraic variety E(M)

contain

The remarks in sections (3.1) and (3.2) in [7] are easily generalized to
give a proof of the equivalence of (a), (b), and (c).

(b) implies (d). For an arbitrary irreducible component E’ of E(M), there
is an element x in E’ which is not in any other component. The closure of
the 1-parameter subgroup obtained from (b) is an irreducible subset ofE(M),
as is J, its image under translation by x. Since x is in J, it follows that J
is a subset of E’. Of course, 0 is in J, and so 0 is in E’.

(d) implies (a). Let 1 be the unit of G(M), and suppose both 11 and 1
are in the same component, E’. Then E’ is the closure of the component
of G(M) containing 1. Thus, 11 is in F(M).
The equivalent definitions of positive weight in Proposition 1, are general

enough to be applicable in the following categories"

1. Simply-connected minimal differential graded K-algebras, and their
morphisms.

2. Simply-connected minimal differential graded K-coalgebras, and their
morphisms.

3. Connected minimal differential graded Lie K-algebras, and their
morphisms.

4. Connected minimal differential graded Lie K-coalgebras, and their
morphisms.

5. Simply-connected "zero-local" spaces, and homotopy classes of maps
(the rational homotopy category).

6. Non-negatively graded K-vector spaces with some (specific) degree-
preserving, "pointed" algebraic structure, and their morphisms.

Descriptions of categories one, two, three, and five (with K Q), and
several of the constructions and results required here, may be found in
[11]. In each of these six "algebraic categories", it is of interest to know
which objects are "positive weight".

In the case of category six, all objects are positive weight, by condition
(c) in Proposition 1. Of course, "pointed" means that category six has a
zero-object; however, there can be no differentials (or other structure
morphisms) which change degree. In [2] (for perfect fields), and more generally
in [6] (for arbitrary fields), there are uniqueness theorems for coproduct
decompositions of algebras. These are in the context of a category of
algebras over a field; moreover, these results are generalized by the "Remark"
at the end of Section 2.
The first five categories have equivalent "homotopy categories" (see
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[11]); moreover, the positive weight property is preserved by this corre-
spondence of objects, as can be seen from the following result.

THEOREM 2. All four types of minimal models for an arbitrary specific
RHT will be positive weight, if any one of them is.

Proof. Objects of category one (respectively, three) are strictly dual to
objects of category two (respectively, four). Moreover, it is clear that
condition (c) in Proposition 1 is preserved by both of these bijective cor-
respondences. Preservation of the "positive weight" conditions by the
correspondence between categories one and five, may be found (implicitly)
in [12]. Related to this is the equivalence between the two properties,
"positive weight" and "p-Universal" (see [7], p. 169, Remark 2.2). His-
torically, the earliest of these equivalent properties is "p-Universal", which
is studied in [10]. Thus, it remains only to check that condition (c) is
preserved under the bijective correspondence between the sets of isomorphism
classes of the objects of categories two and three; however, this is clear
from the construction of the bijection from (isomorphism classes of) minimal
coalgebras to (isomorphism classes of) minimal Lie algebras (see
[11]). Q.E.D.

Let M and N be two minimal algebra models over Q (objects of category
one, with field Q), representing two RHT’s, and let K be an arbitrary field
of characteristic zero. Just as we may refer to M as the RHT which it
uniquely represents, so we may define M (R) K to be the K-homotopy-type
of the RHT M (with all structure homomorphisms extended in the obvious
manner). We shall say that M and N share the same K-homotopy-type if
M () K and N () K are isomorphic objects.

Recall that the endomorphisms of M, E(M) is the set of Q-rational points
in E(M K), and G(M) is the set of Q-rational points in G(M (R) K). Now
we see that Lemma 0 also implies the following.

PROPOSITION 3. The K-homotopy type, M (R) K (of the minimal model,
M, of a RHT) is positive weight, if and only ifM is positive weight.

Thus, there is no ambiguity in referring to a RHT as being "positive
weight".

2. Unique Decomposition Results

One aim of this section is to simplify the proof of a result (recorded here
as Theorem 5), which appears in [7]. This is accomplished by dualizing an
earlier proof (in [3]) of the dual result (whose generalization in [7] is recorded
here as Theorem 4).
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THEOREM 4. Positive weight RHT’s (which are spherically finite dimen-
sional and nilpotent) decompose uniquely as categorical products (of ir-
reducible factors).

THEOREM 5. Positive weight RHT’s (which are spherically finite dimen-
sional and nilpotent) decompose uniquely as categorical coproducts (of
irreducible factors).

It is only for the class of positive weight RHT’s that uniqueness of product
and coproduct decomposition has been proved; however, we conjecture (in
[7]) that the positive weight hypothesis is not necessary.
As pointed out in the introduction, Theorem 4 is proved for "finitary"

positive weight RHT’s in [3]. This proof, extended by the limit techniques
of [7], proves Theorem 4 without passing to the homotopy category. The
very same procedure just outlined in category one (Sullivan minimal models),
can be used in category three (minimal Lie algebras) to prove Theorem 5
without passing to the homotopy category.
The coproduct (i.e., the graded tensor product) of objects in category

one, corresponds to the product of corresponding RHT’s (objects of category
five). "Dually", the coproduct of minimal Lie algebras (category three
objects) corresponds to the coproduct (one-point-union) of corresponding
RHT’s (see Lemmas 8.5 and 8.6 in [11]). Thus, Theorems 4 and 5 both
follow from Proposition 6 (below), for RHT’s whose minimal models are
finitely generated; moreover, this line of argument provides proofs for both
Theorems 4 and 5, when extended by the inverse limit results of [7].

Recall from Section 1 of [7], that a category is said to be I-split (for
coproduct (resp., products)), if the following three conditions are satisfied:

(i) there exists a zero-object;
(ii) idempotent endomorphisms "split" (i.e., if e2 e, then morphisms

p and h exist, such that hp e and ph 1);
(iii) the category is closed under formation of finite coproducts (resp.,

products), and contains no infinite coproducts (resp., products).

For example, all six algebraic categories in the preceding section are/-split
(categories one, three, and six for coproducts; categories two and four for
products; and category five for both).

Recall further that coproduct decompositions of objects in/-split categories
correspond to "splittings", bijectively. Now the (overworked)term "splitting"
refers (as in [7]) to the set of idempotent endomorphisms, categorically
determining (as well as determined by) the corresponding coproduct de-
composition. Of course, similar remarks hold for products.

PROPOSITION 6. Each positive weight object in an I-split, algebraic category
has an unique irreducible decomposition as a coproduct (resp., product).
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Proof. Given a splitting of positive weight object M, each coproduct
(respectively, product) factor is positive weight (as it is a retract of M, and
the proof of Lemma 3 in [3] shows that retraction preserves positive weight).
By using condition (c) of Proposition 1 on each factor of the coproduct
(respectively, product) decomposition, it is easy to directly construct a Q-
split torus T in G(M), such that the Zariski closure of T contains the
endomorphisms of the splitting (see [1] for the explicit construction of T).
Of course, without loss of generality, we can assume that T is a maximal
Q-split torus in G(M).
Any two maximal Q-split tori are conjugate, by a Q-rational point of

G(M) (i.e., an automorphism of M). Moreover, any closure of a commutative
set of endomorphisms (such as T) is again commutative. Of course, G(M)
acts by conjugation on (the endomorphisms of) the splittings of M. Thus,
given any two splittings of M, there is an automorphism of M, such that
this automorphism’s conjugates of the endomorphisms in one splitting and
the endomorphisms of the other splitting, all lie in the closure of the same
maximal Q-split toms; hence the endomorphisms of these splittings commute.
Now, an appeal to the elementary Corollary 1.10 in [7] completes the proof
of Proposition 6, over the field Q.

Remark. Proposition 6 can be proved for algebraic categories defined
over an arbitrary field (of arbitrary characteristic), using the method of [6].
This approach is based on recent, very general conjugacy results due to
Borel and Tits [5]. (When [6] was published, the only available reference
for these conjugacy theorems was a private letter from Borel to the author.)

3. Formality and Weight Splittings

We recall from [9] the "dual" concepts of "formal" and "coformal"
RHT’s. A minimal model M in category one (resp., L in category three)
is referred to as a formal minimal algebra (resp., coformal minimal Lie
algebra), if it models its own homology. Moreover, it is proved in [9] that
these dual properties are independent of arbitrary (characteristic zero) field
extensions.

Explicitly, M is formal, if and only if the canonical projection of cocycles
onto cohomology, ZM HM extends to a morphism of algebras, M
HM. (Such an extension is then, of necessity, a weak equivalence.)

Similarly, L is coformal, if and only if the canonical projection of cycles
onto homology, ZL --. HL extends to a morphism of Lie algebras, L
HL. (Such an extension is then, of necessity, a weak equivalence.)
These dual (but distinct) properties are characterized in four different

ways (each) in Propositions 3.2 and 3.3 of [9]. One purpose of this section
is to supply two more characterizations for each; one in terms of weight
splittings, and another in terms of automorphism groups.
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If an object in an algebraic category has a differential, and a weight
splitting, then the homology of this object is naturally bigraded (by degree
and weight). Such a weight splitting is called a diagonal splitting, if the
weight and degree are equal, for all non-zero components of the homology
of the object.

PROPOSITION 7.
are equivalent.

IfM is a minimal (associative) algebra, then the following

(A)
(B)

M possesses a diagonal splitting.
Algebraic group morphism (i.e., cohomology functor)

H: Aut(M) Aut(HM)

is surjective.
(C) M is formal.

Moreover, for diagonal splittings, the weight can not be less than the
degree, for a non-zero bigraded component of M.

PROPOSmON 8.
are equivalent.

IfL is a connected minimal Lie algebra, then the following

(A)
(B)

L possesses a diagonal splitting.
Algebraic group morphism (i.e., homology functor)

H Aut(L) Aut(HL)

is surjective.
(C) L is coformal.

Moreover, for diagonal splittings, the weight is a positive integer, which
can not be greater than the degree, for a non-zero bigraded component
of L.

The proofs of these two propositions are quite similar, and Proposition
7 appears in [1] (as Lemma 6, on p. 335), together with its proof. Thus,
only a sketch of the proof of Proposition 8 will be given.

(A) implies (C). Let L(p, n) (resp., ZL(p, n), HL(p, n)) denote the
bigraded (degree p, weight n)-component of a weight splitting of minimal
Lie algebra L (resp., the cycles of L, the homology of L). Such a weight
splitting is a diagonal splitting, if HL(p, n) 0, unless n p. Moreover,
this implies that L(p, n) 0, unless 0 < n < p + 1, by an easy induction
argument. Let D be the direct sum of all L(p, p), for p > 0. The projections,
L D and D HL are then Lie algebra morphisms, and their composition
is a weak equivalence. Thus, L is coformal.

(C) implies (B). If L is coformal, then the morphism of algebraic groups,
H Aut(L) Aut(HL) is surjective. This follows from two facts" (1) L is
a cofibrant object in a closed model category, and (2) L HL is both a



POSITIVE WEIGHT HOMOTOPY TYPES 60

fibration and a weak equivalence. Now, an appeal to axiom "CM 4" implies
the above surjectivity. (See [11], Section 5.)

(B) implies (A). Consider the "grading automorphism" a HL HL,
which multiplies an element of degree p, by the p-fold power of 2. (Of
course, this argument is valid, using the powers of t, for any rational number
t not equal to 1, 0, or -1.) By hypothesis, there is an automorphism, f:
L L, which induces the grading automorphism on homology. Without
loss of generality, f may be chosen to be a semisimple element of Aut(L).
An induction argument (on the maximum degree of indecomposables,
QL L/[L, L]) shows that f can be diagonalized, with eigenvalues equal
to positive integer powers of 2. Let L(p, n) denote the eigenspace consisting
of all degree p elements of L, on which f acts by multiplication by the n-
fold power of 2. Now HL(p, n) 0, unless n p, and we have the
desired diagonal splitting of L.

Remark. Observe that diagonal splittings are positive weight splittings
(for both associative algebra minimal models and Lie algebra minimal models).
Thus, "coformal" implies "positive weight" (Proposition 8), as does "formal"
(Proposition 7).

Possession of a diagonal splitting is dual to possession of a differential
with "zero perturbation" (see [9]), where "zero perturbation" simply means
that the value of the differential (on a generator) can be expressed as a
linear combination of quadratic terms, for some choice of algebra generators.
To understand this duality, first notice that a formal (resp., coformal) minimal
Lie algebra (resp., minimal associative algebra) has a weight splitting, induced
by the diagonal splitting on the corresponding dual minimal associative
algebra (resp., minimal Lie algebra). This induced weight splitting concentrates
the minimal model’s algebra generators in components with weight degree
+ 1 (resp., weight degree 1). However, the existence of such a weight
splitting is clearly equivalent to a differential with "zero perturbation".
Thus, weight splittings offer an elementary proof of the equivalence of
conditions (a) and (d), both in Proposition 3.2 and in Proposition 3.3 of [9].
Explicitly, weight splittings can be used to observe the following corollaries
of Propositions 7 and 8, respectively.

COROLLARY 9. A minimal Lie algebra isformal ifand only ifit is isomorphic
to a minimal Lie algebra whose differential has "zero perturbation".

COROLLARY 10. A minimal associative algebra is coformal if and only
if it is isomorphic to a minimal algebra whose differential has "zero
perturbation".
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