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ON THE HOMOTOPY TYPE OF DIFFEOMORPHISM GROUPS

BY

WILLIAM G. DWYER AND ROBERT H. SZCZARBA

Introduction

Let M be a closed smooth manifold and Diffo(M) the identity component
of the group of C diffeomorphisms of M. We are concerned here with the
way in which the homotopy type of Diffo(M) depends on the smooth structure
of M. Our principal result along these lines states that, if M and M2 are
homeomorphic smooth manifolds, then, for suitable subrings A of the rationals
Q (obtained from the integers Z by inverting a finite set of primes), Diffo(M)
and Diffo(M2) have the same A-homotopy type. (Recall that two nilpotent
spaces X and Y are said to have the same A-homotopy type if there is a
space W and mappings X --> W and Y --> W inducing isomorphisms

7rq(X) (R) A rq(W) (R) A, rq(Y) (R) A 7rq(W) (R) A

for all q > 0. See [1].) In particular, we define an integer v v(M, M2)
in Section 1 depending only on bundle data associated to M and M2 such
that the following holds:

THEOREM. Let M1 and M2 be homeomorphic smooth n-manifolds,
n 4, and let A be the subring of Q obtained from Z by inverting v(M1,
ME). Then Diffo(M) and Diffo(M2) have the same A-homotopy type.

We prove an analogous result for the (simplicial) group PL(M) of PL-
homeomorphisms of a PL-manifold (Theorem 1.3). We also prove a similar
result regarding the discrete group homology (with coefficients in A) of
Diffo(Ml) and Diffo(M2) (Theorem 1.2).

Another type of result that we investigate involves the mapping of the
diffeomorphism group of a smooth manifold onto its frame bundle. Let M
be a smooth closed n-manifold and let P(M) be the frame bundle of M;
that is, the principal GL(n, R) bundle associated with the tangent bundle
of M. Then Diffo(M) acts on P(M) and we can define a mapping tr:Diffo(M)
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P(M) by

r(g) d(f0)

wherefo is a fixed frame in P(M) and dg is the differential of g. Our theorem
here states that, for suitable subrings of the rationals, the A-homotopy type
of this mapping does not depend on the smooth structure of M. (See Theorem
1.4 for a precise statement.) This result relates to the work of Schultz [11].

1. Statement of results

Let M be a closed topological n-manifold. A smoothing of M is a pair
(N, h) where N is a smooth manifold and h:N ---> M is a homeomorphism.
Two smoothings (N, h) and (N’, h’) are said to be equivalent if there is a
diffeomorphism g’N ---> N’ such that the diagram

N
h

g

commutes up to topological isotopy. We denote the set of all equivalence
classes of smoothings of M by 5e(M) and write M for the manifold M with
the smooth structure defined by a 5e(M).

Let Top(n) denote the group of homeomorphisms of R fixing the origin,
GL(n) the subgroup of invertible linear transformations, and Top and GL
the limits (in n) of these groups. Suppose that z:M ---> BTop(n) is a classifying
map for the topological tangent bundle of M. Then any smoothing a defines
a lift rt of z to BGL(n). If

so BTop(n ---> BTop

s BGL(n ---> BGL

are the stabilization mappings, we have the commutative diagram

s
BGL(n BGL

M lBTPop(n sol p

)--.BTop

If /3 is a second smoothing for M with lift p:M BGL(n), then the
composites

s o’o, s p M--. BGL

both cover So ’:M --> BTop. Now, p:BGL BTop can be taken to be
a fibration of infinite loop spaces with fibre the infinite loop space Top/GL.
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It follows that there is a mapping

A A(a, fl):M --, Top/GL

such that

(1.1) s(q(x)) A(x)s(p(x))

for all x M. In fact, A(a, /3) 0 if and only if a and/3 represent the
same element of 6e(M). (For example, see [6] or [7].)

Remark. Using standard techniques, p BGL BTop can be taken
to be a principalfibration with topological group as fibre. Thus the two
sides of equation (1.1) are equal and not just homotopic.

Let [M, Top/GL] denote the group of homotopy classes of mappings
M Top/GL. This group is finite since the homotopy groups of Top/GL
are finite. In fact, 7rq(Top/GL) q, the group of q-homotopy spheres if
q > 4 and 7rq(Top/GL) 7rq(Top/PL) if q < 6. (See [5].) We denote the
order of [A(a,/3)] in [M, Top/GL] by v(a, fl) and let A(a,/3) be the subring
of the rational numbers Q obtained from the ring of integers by inverting
(,/).
For any smooth structure a on M, let Diff’(M) denote the subgroup of

Diff(M) which maps into the identity component Topo(M) of Top(M) under
the natural mapping. Thus Diff’(M) consists of those diffeomorphisms of
M which are topologically isotopic to the identity. We can now state our
main result.

THEOREM 1.1. Let a and fl be smoothings of the closed n-manifold M,
n 4. Then the classifying spaces BDiff’(M) and BDiff’(M) have the
same A(a, fl) homotopy type.

Remark. It follows from Propositions 2.2, 2.3, and 2.4 of Section 2 that
BDiff’(M) and BDiff’(M) are nilpotent spaces.

The proof of this theorem is given in Section 2.

COROLLARY 1. If a and fl are smoothings of the n-manifold M, n 4,
then BDiffo(M) has the same A(a, fl) homotopy type as BDiffo(M) and
Diffo(M) has the same A(a, fl) homotopy type as Diffo(M).

The first assertion follows from the observation that BDiffo(M) is the
universal covering space of BDiff’(M,,); the second follows from the fact
that Diffo(M,) has the same homotopy type as the loop space of BDiffo(M).

Let A(n) denote the subring of Q obtained by inverting the orders of the
groups of homotopy spheres Zrq(Top/GL), q < n. Then

A(a,/3) C A(n)
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for any smoothings ct,/3 of the n-manifold M. Thus we have"

COROLLARY 2. Let a and fl be two smoothings of the n-manifold M,
n 4. Then BDiff’(M) and BDiff’(Ma) have the same A(n)-homotopy
type.

This result was announced in [3].
We now turn to the PL (piecewise linear) category. A PL structure on

a topological n-manifold M is a pair (N, h) where N is a PL manifold and
h:N --> M is a homeomorphism. We say that two PL structures (N, h)
and (N’, h’) on M are equivalent if there is a PL homeomorphism g’N
--> N’ such that the diagram

commutes up to topological isotopy. We denote the set of all equivalence
classes of PL structures on M by (M) and write M for the manifold M
with PL structure defined by (M).
For any (M), we let PL(M) be the simplicial group whose

q-simplices are PL homeomorphisms f: Aq x M Aq X M such that
the diagram

f
Aq x M,, ; Aq x M,

commutes. Here Aq is the standard q-simplex and r’Aq x M -* Aq is
projection onto the first factor. (The face and degeneracy mappings are
defined in the obvious way.) Let PL(M) denote the identity component
of PL(M,) and BPL(M,) the simplicial classifying set for PLo(M).

THEOREM 1.2. Let a and fl be PL structures on the closed n-manifold
M, n 4. Then BPL0(M) and BPLo(Ma) have the same Z[1/2]-homotopy
type.

The proof of this theorem is given in Section 3.

COROLLARY. Let a and fl be PL structures on the closed n-manifold M,
n 4. Then the simplicial groups PL0(M) and PL0(Ma) have the same
Z[1/2]-homotopy type.

Remark. If M is a compact manifold with boundary, then Theorem 1.1
and its corollaries also hold for the group Diff’(M; OM) of diffeomorphism
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leaving the boundary fixed. Similarly, Theorem 1.2 holds for the group
PL(M; OM) of PL-homeomorphisms leaving the boundary fixed.

Our next result concerns the group Dif(M); this is the group Diffo(M)
topologized in the discrete topology.

THEOREM 1.3. Let a and fl be smoothings of the closed n-manifold M,
n 4. Then there is a space Z and maps

BOiffg(M,) Z BOiffg(Mo)
which induce isomorphisms on homology with coefficients in A(a,/3).

The proof of this result is similar to the proofs of Theorems 1.1 and 1.2.
We sketch it at the end of Section 3.

In order to state our next result, we need the category of spaces over
M. A space over M is a pair (A, a) where A is a space and a’A -- M is
a continuous mapping. For example, if a b(M) and P(M) is the frame
bundle of Ms, then P(M) is a space over M. A mapping f:(A, a) --(B, b) of spaces over M is simply a continuous mapping f:A -- B such
that the diagram

A

is commutative. If A is a subring of Q, then f: (A, a) (B, b) is called a
A-equivalence over M if the homotopy fibres F(a) and F(b) of a and b
respectively are nilpotent spaces and the mapping F(a) F(b) induced
by f is a A-equivalence.
For any a 5(M) define r:Diffo(M)- P(M,) by

tr(g) dg(fo)

where dg: TM--TM as the differential of g and fo is a fixed flame in
P(M,)

THEOREM 1.4. Let M be an n-manifold, n 4. Pick a,fl SO(M) and
let

(r:Diffo(M) -- P(M) and (r’:Diffo(Mt) -. P(M)
be the mappings defined above. Then there are spaces X and Y and a
commutative diagram of mappings

Diffo M, X Diffo.M

P(M,) :, Y ,, P(M)
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such that:

(i) the mappings in the upper row are A(a, fl)-equivalences;
(ii) Y is a space over M in a natural way;

(iii) the mappings in the bottom row are A(a,/3) equivalences ofspaces
over M.

The proof of this result is given in Section 4.
As an application of Theorem 1.4, we suppose that M S and Msxn where S is the standard sphere and Xn is a homotopy sphere. In this

case, v v(a,/3) is simply the order of xn in On. Furthermore, the mapping

0", TrqDiffo(Sn) 7rqP(Sn)

is a split epimorphism since P(Sn) has the homotopy type of SO(n + 1)
and SO(n + 1) C Diffo(Sn). We therefore have the following.

COROLLARY. Let ,n be a homotopy n-sphere, n 4, and A the subring
of Q obtained from Z by inverting the order of ,n in On. Then

q(Diffo(Xn)) ( A -- 7l’q(e(Xn)) ( A

is a split epimorphism.

This corollary is in contrast with results of Schultz [11].

2. The Proof of Theorem 1.1

The proof of Theorem 1.1 proceeds in three steps (see [3]). We first recall
that the space BDiff’(M,) is determined by the quotient Topo(M)/Diff’(M,)
as a Topo(M)-space, where Topo(M) is the identity component of the space
of homeomorphisms of M. (We work largely in the simplicial category, but
will supress the fact in this paragraph.) Next, we use an equivariant form
of the result of Morlet [10] and Burghelea-Lashof [2] to conclude that
Topo(M)/Diff’(M,) has the same Topo(M)-homotopy type as the space
of lifts r/:M BGL(n) of the classifying map z:M BTop(n) of the
topological tangent bundle of M:

BGL(n)

M" . BTop(n

Finally, we form the fibrewise localization p"E’ - BTop(n) relative to
A(a, fl) of the fibration BGL(n) -- BTop(n) and map into the space ’of lifts ’ "M --) E’ in this localized fibration. Our hypotheses insure that
both

Topo(M)/Diff’(M) and Topo(M)/Diff’(M)
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map equivariantly by A(a,/3)-equivalences into the same component of ’and the result follows.
The rest of this section provides the details of the above sketch. To avoid

technical difficulties we will work from now on either in the category of
simplicial sets or (when necessary) in the category of compactly generated
spaces.
Let T be the singular complex of the space of homeomorphisms of M;

T is a simplicial set whose k-simplices correspond to commutative diagrams

h
Ak x M Ak x M

in which h is a homeomorphism. Similarly, let l)‘, be the smooth singular
complex of the space of diffeomorphisms of M‘,. Composition gives T and
D the structure of simplicial groups; forgetting smoothness gives a simplicial
subgroup inclusion D -- T.
Let E be a contractible simplicial set on which T acts freely from the

right. Let T act from the right on the product E x (T/D‘,) by the rule

(x, y )g (xg, g- ly )

We will denote the quotient (E x (T/D‘,))/T by E x T(T/D).

PROPOSITION 2.1. The simplicial sets E/D,, and E r(T/D‘,) are isomorphic.

This is a straightforward calculation which we leave to the reader.
Note that the geometric realization IE/D‘,I has the homotopy type of the

classifying space BDiff(M‘,). This gives the following.

COROLLARY. The space BDiff(M,) is determined up to homotopy by the
simplicial set T/D and the action ofthe simplicial group T on this simplicial
set.

Let To be the singular complex of the identity component of Top(M) and
let D’ D‘, N To. Replacing T and D by To and D’ respectively in the
above statement gives the following.

PROPOSITION 2.2. The simplicial sets E/D’ and E r0(T0/D’) are
isomorphic.

COROLLARY. The space BDiff’(M) is determined up to homotopy by
the simplicial set T0/D’ and the action of the simplicial group To on this
simplicial set.
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The geometric realization IT[ is a topological group which acts on M (from
the left) and on IEI (from the right). The natural projection

IEI Irl M IE/TI
is a topological fibre bundle with fiber M. Let

sr:lE[ ITIM BTop(n)

be a classifying map for the corresponding topological R-microbundle of
tangents along the fibre. This is the bundle TeE associated to E with fibre
M x M (a homeomorphism of M induces a homeomorphism of M M
via the diagonal action); the projection of M x M onto the first factor
makes TeE into a microbundle over E. The composite

:IEI x M IEI x irlM BTop(n)

is then equivariant with respect to the right action of ITI on IEI x M (and
the trivial action on Btop(n)) and classifies a topological bundle on IEI
x M that can be identified in a natural way with the topological tangent
bundle of M.
On the other hand, the geometric realization IDol is a topological group

which acts on M (from the left, by diffeomohisms) and on IEI (from the
right). The natural projection

[El x IM IE/DI
is a smooth fibre bundle with M as the fibre. Let

:IEI IDM,--, BGL(n)

classify the corresponding linear bundle of tangents along the fibre, and let

: IEI M BGL(n)

denote the composite

IEI x M---> IEI x IDIM ,BGL(n).

Then % is equivariant with respect to the right action of ]D[ on ]El x M
(and the trivial action on BGL(n)) and classifies a bundle on IEI M that
can be identified in a natural way with the linear tangent bundle of M.
Replace the natural map BGL(n) --, BTop(n) with an equivalent Serre

fibration. To avoid introducing more notation, we will denote this fibration
by p :BGL(n) -- BTop(n). It is clearly possible to choose : and : so that
the diagram

BTop(n)

commutes.
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Let be the space of maps

I. IEI M Bat(n)

such that the diagram

BGL(n)

i:l x /, [P
q" BTop(n )

commutes. Recall that ITI acts on the right on IEI x M and that, for any
x in IEI M, g in ITI,

(xg) z(x).

It follows that composition gives a left action on IT[ on 5f. Since z is a
distinguished point of which is fixed by the action of the subgroup
of ITI, the action of IT[ on the orbit of z induces a map IT/DI e, The
adjoint of this is a T-equivariant simplicial map T/D S(-). (Here
is the singular complex of .)

PROPOSITION 2.3. The T-equivariant simplicial map T/D -- S(&v) defined
above induces a homotopy equivalence between T0/D’ and the component
of S(Le) containing

Proof. This follows directly from [2]. Let R be the simplicial group of
germs of topological microbundle automorphisms of the tangent bundle of
M which cover the identity map of M and R the simplicial group of such
automorphisms that cover arbitrary homeomorphisms of M. The simplicial
groups R and R are defined similarly, but the bundle automorphisms in
question are required to be linear automorphisms of the smooth tangent
bundle of M. (In the notation of [2], page 11, these would be written

Rt(M, M), t(M, M), Rd(Ma, M), and d(Ma, M)

respectively.)
In [2], Burghelea and Lashof consider the diagram of simplicial groups

O ---o R , Ro,

T R -" R

in which the vertical maps are subgroup inclusions, and prove that the
induced coset diagram

T/Do --> R/an < R/R
is a diagram of IHE mappings. (See Proposition 1.4 and 4.3 of [2]; an IHE
mapping is injective on the set of components and a homotopy equivalence
on each component.)
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Since T is a simplicial subgroup of R, we can assume without loss of
generality that the simplicial set E chosen above is a contractible simplicial
set on which R acts freely. From the definitions it is clear that the topological
groups [l and act on M and M respectively and that there is a natural
topological microbundle over IEI i1M which, when pulled back to [El
IIM,, has a distinguished linear structure. Classifying these bundles gives
a commutative diagram

IEI M , BGL(n)
$

IEI xIIM > BTop(n)

and subsequently, by the process described above, a map

R/ ---> S().

Proceeding in the same way with R and R replaced by R and R" gives a
map

R/R s(e).

It is straightforward to fit these maps into a commutative diagram

T/D. ---> R/R, <-- R/R,

s()

The map R/R S() is a homotopy equivalence by the argument given
on the bottom of page 29 of [2] and Proposition 2.3 follows.
We now need the notion of the fibrewise localization of a fibration. (The

book of Bousfield-Kan [1] should serve as a general reference here.) Let
p’E B be a fibration with the nilpotent space X as fibre and let A be
any subring of rationals. We can then form the fibration p’ "A=E ---> B, the
fibrewise localization of p’E --> B relative to A. (See [1], page 40 for
example.) This fibration has fibre A=X where

(2.1) 7rq(S, x0) () A 7rq(AX, x)

for all q > 0. In fact, there is a natural fibre preserving mapping o" E ---->

A=E which induces the isomorphism (2.1) as fibres.
Let Y be any space and g" Y---> B a continuous mapping. We then have

the diagram

E
q
-> AE

Y >B ) B
g id

Let w W(p; g) be the space of lifts of g over p and ’ (p’, g) the
space of lifts of g over p’. Then w and ’ are nilpotent spaces and we
have the following:
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PROPOSITION 2.4. For every map f ., p induces isomorphisms

A Q 7/’i(o, f) ’7’/’i(,Qg’ f)

This result is an analogue of Proposition 5.1 of [1], p. 141. The proof of
Proposition 2.4 follows the same lines as the proof of this proposition and
is left to the interested reader.
Now let ct and /3 be smoothings of M and let A A(a, /3) be as in

Theorem 1.1. Let %, ’a:ETopo(M) M BGL(n) be lifts of

z ETopo(M) M BTop(n

defined by a, /3 respectively as in the definition of :T/D --* L given
earlier. We then have the following diagram:

BGL(n) BGL(n)

ETopo(M) x M > BTop(n) BTop(n)
’r id

PROPOSITION 2.5.
(as lifts).

The lifts o o and o of z over p’ are homotopic

Before giving the proof of this proposition, we complete the proof of
Theorem 1.1.

Let L’ be the singular complex of the space ’ of lifts of z over p’. The
simplicial group T acts on L’ (in the same way that it acts on L) and the
mapping "L L’ induced by is T-equivariant. Let L and La be the
components of L containing z and za respectively and :T/D, L,
O"T/D La the homotopy equivalences which exist by Proposition 2.4.
Consider now the composites

0"T/D’ > L, L’,

0’ "T/D ’> Lt ----> L’

These mappings are T-equivariant and both map into the same component
L of L’ since , z and , z, are homotopic lifts (by Proposition 2.5).
Thus, according to Proposition 2.4,

0#" 7rq(T/D’) () A -- 7rq(L0), and 0," zrq(T/D) () A -o 7r(Lo)
are isomorphisms for q > 0.

Finally, let SBDiff’(M) and SBDiff’(Ma) be the singular complexes of
BDiff’(M) and BDiff’(M). Then

SBDiff’(M) S(ETopo(M)/Diff’(M))" ET/D’,

SnDiff’ S e opo M /Diff’
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since the action of Diff’(M,) and Diff’(Ma) on ETopo(M) is a principal
action. Using Proposition 2.2, the 5-1emma, and the results above, we see
that the composites

ET/D’- ET x T(T/D)---> ET x TL-"-> ET x TL,

ET/D- ST x T(T/D/)--> ST x TL/3--> ST x TL
induce isomorphisms

7r,(ET/D’) () A 7r,(ET x TL),

zr(ET/D) () A Try(ST x TL)

for q > 0. This completes the proof of Theorem 1.1.
We now prove Proposition 2.5. Consider the commutative diagram

_......BGL ’) AooBGL
s I,

BG,L(n 9 ’|’ "AooqGLfn ) |

ETop(M) x M > BTo’p(n ) -BTop(n)" 0o

Note first of all that ooBGL ooBTop is a fibration of infinite loop spaces
with fibre A(Top/GL). It follows that

(,s.,,(x )) a(x )(,cs.r(x))

where A’M Aoo(Top/GL) is the composite of A (defined in Section 1)
and the restriction of to Top/GL. However, -I(Top/GL) defines an
isomorphism

-#" [M, Top/GL] ( A --> [M, A(Top/GL)].

It follows that A 0 so Cs- and sz, are fibrewise homotopic. Since the
diagram above is commutative, we see that s’,z and s’,z are fibrewise
homotopic. Now the fibre of p’ is A(Top/GL) and the fibre of p’ is
A(Top(n)/GL(n)). Furthermore,

rq(Top/GL, Top(n)/GL(n)) 0

for q < n + 2, n > 5. (See [5], Essay 4.) Thus

rq(A(Top/GL), A(Top(n), GL(n))) 0

for q < n + 2, n > 5 and it follows that Cz and ’, are fibrewise homotopic.
This proves Proposition 2.5.

3. The proof of Theorems 1.2 and 1.3

The proof of Theorem 1.2 follows the same lines as that of Theorem 1.1.
We give an outline of it here providing details only when the difference
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between the two proofs is significant. This occurs in the material preceeding
the statement of Lemma 3.2.
We begin by stating an analogue of Proposition 2.1. Note that we can

consider PL PL(M) as a subgroup ofT (the singular complex of Top(M))
so PL acts on T/PL and on ET.

PROPOSITION 3.1.
isomorphic.

The simplicial sets ET/PL and ET T(T/PL) are

Note that, as a consequence of Lemma 3.1, the simplicial set ET/PL is
determined by T/PL together with the action of T on T/PLy.
Let PLn be the simplicial group whose q-simplices are PL-isomorphism

germs .n(Aq) "-’> n(Aq) where n(Aq) is the trivial R microbundle over Aq.
Thus, a q-simplex of PLn is a germ of a PL-homeomorphism h’Aq )< R
--> A R with h(t, 0) (t, 0) for all t Aq and 7rlh h where r:Aq

R --> A is projection onto the first factor.
Let denote the tangent PL-microbundle of Ms and S(M) the singular

complex of M. Following Milnor [9], Section 5, we associate to a simplicial
principal PL bundle E over S(M) as follows. A q-simplex of E is a pair
(f, F) where f S(M) and F:n(Aq) ----> f*’t’ is a PL-homomorphism germ;
the map 7r:E S(M) is given by zr(f, F) f. Equivalently, F is the
germ at mq X 0 of a PL-embedding F’ :Aq x R ----> M M taking mq

0 into the diagonal such that

Aq )< R "--’-> M M

fAq > M

commutes. The group PL acts on E, by

(f, F)h (f, F h-).
In addition, the group PL, PL(M,) acts on S(M) by

(gf)(t) g-l(t, f(t))

and on E by

g(f, F) (gf, gF)

where gF is the germ at mq X 0 of the mapping gF" Aq X R ---> M x M;

(gF’)(t, v) (g- (t, f(t)), g-(t, F2(t, v)))

where F’(t, v) (f(t), F2(t, v)). It is immediate that 7r is PL-equivariant
and that the action of PL on E commutes with the action of PLn.

Let T be the simplicial group of germs of homeomorphisms (Rn, O) --.
(R", 0). Then just as above, we can construct a simplicial principal bundle
rr:E --> S(M) from the topological tangent bundle of M with group T
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Again as above, the simplicial group T acts on both E and S(M) and 7r is
T-equivariant. Finally, there is a commutative diagram

G
E > E

where G is PL equivariant.
Let BPLn be a classifying simplicial set for PLn, BT a classifying simplicial

set for T and p:BPL --> BT the simplicial fibre bundle with fibre Tn/PL.
We can then choose a classifying map

z’ :ET x T S(M) ---> BT
for the simplicial T-bundle ET T E --* ET TS(M) and a classifying map

r/’ :ET PL,. S(M) --> BPL

for the simplicial PLn bundle ET PLa E "-> ET PL,x S(M) such that

ET PLoS(M) > BPL
(3.1) [ ,I, P

ET T S(M) BT
commutes. Define ag:ET S(M) ---> BPLn to be the composite

ET x S(M)--> ET PL S(M)--> BPLn

and -:ET S(M) --> BT. to be the composite

ET x S(M)---> ET T S(M)---> BT.
Then r/ classifies "PL-tangents along fibres" in the trivial bundle ET
S(M) --> ET and - classifies "topological tangents along fibres" in this same
trivial bundle. Furthermore, "0 is a lift of z (from diagram (3.1)),

(3.2) ((x, f)g l(x, f)

for g PL,,, and

(3.3) ’r((x, f)g) 7"(x, f)

forgET.
Now let L be the simplicial set of lifts of z into BPLn. Then T acts on

L by

(gv)(x, f) v((x, f)g)

Note that gv L by (3.3). Define $:T/PL --> L by $([g]) g. This is
well defined by (3.2) and clearly T equivariant.
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PROPOSITION 3.2. The mapping q is a homotopy equivalence of T/PL
onto the component of L containing .
The proof of this proposition follows from the results of [2] in essentially

the same way that Proposition 2.3 did. We leave the details to the reader.
Let A Z[1/2] and p’ "*BPL, --, BT, the fibrewise localization of the

fibration p" BPL, -- BTn. Thus we have a commutative diagram

BPL
, .BPL

BT BT
Now, forj< n, n > 5,

rj(T./PL.) 0 forj 3

-Z2 forj= 3

(see [5], Essay 4) so the fibre of p’ is n-connected. It follows that the

simplicial set L’ of lifts of " into *ooBPLn is connected and Theorem 1.2
now follows from Proposition 2.4.

We now give a rough sketch of the proof of Theorem 1.3, ignoring
technical details.

Let F be the homotopy fibre of the mapping

BDiffg(M,) BDiffo(M,)

Then F can be thought of as Diffo(M,)/Diff(M,) so that BDiff(M,) is
determined up to homotopy by the space F together with the action of
Diffo(M) on this space Oust as in Proposition 2.1).
Now let BF. be the classifying space for "Haefliger Structures" [4] and

let be the space of lifts l’E M BF, of "E M BGL(n):

E x M BGL(n)

(We write E for ETop(M) here.) It follows from the results of [12] (see
also [81) that there is an equivariant mapping ’F inducing an
isomohism on integral homology. (Note that is connected since the
fibre of ’BF BGL is (n + 1)-connected; see [4].) Let 1 be the space
of lifts l’E x M BGL(n) of the classifying map ’E x M BTop(n)
for the bundle of topological tangents along fibres" and the space of
lifts l’E x M BF of ’E x M BTop(n);



THE HOMOTOPY TYPE OF DIFFEOMORPHISM GROUPS 593

.BFn.,
BGL(n

..,/ !

E M BTop(n)

We then have a fibration 2 with fibre . Theorem 1.3 now follows
from the techniques of Section 2 and the result of [12] referred to above.

4. The proof of Theorem 1.4

Let be the space of lifts of ,:EToPo(M) x M BTop(n) into BGL(n).
We begin by constructing a bundle over the space ETopo(M) x ropo(M) 0
with the property that the fibre over a point [x, v] is the total space of the
GL(n)-bundle defined by v:ETogo(M) x M ---> BGL(n).
Let W be the space

W EToPo(M) 2 x EToPo(M) M

and define 0: W --> BGL(n) by

O(x, v, y, Z) v(y, Z).

Let E be the total space of the bundle over W induced by 0 from the
universal bundle q :EGL(n) ---> BGL(n):

E {(w, v) W x EGL(n): O(w) q(v)}.

If p :E ---> ETopo(M) - is given by

pl(X, V, y, Z, v) (x, v)

then Pl :E ---> ETopo(M) x is a fibre bundle and the fibre over the point
(x, v) is the total space of v*EGL(n). Now Topo(M) acts on ETopo(M) x

(diagonally) and on E by

(x, v, y, z, o)g (xg, g-v, yg, g-lz, v).

Since Pl is clearly equivariant, we have a fibre bundle

p:E E/Topo(M) --> B ETopo(M) rop0(M .
Suppose that a and fl are smoothings of the manifold M, A A(a, fl)

is the subring of the rational numbers defined in Section l, and L’ the
space of lifts of z into the total space AGL(n) of the fibrewise localization
of the fibre bundle BGL(n) --> BTop(n). (See Section 2.) Let W’ be the
space

W’ ETopo(M) ’ x ETopo(M) x M

and define 0" W’ -, AooBGL(n) by O’(x, v’, y, z) v’(y, z). If E is the
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total space of the bundle over W’ induced by 0’ from the path fibration
P’ ---> AooBGL(n), then, just as above, we have a fibration

p’ E’ E’i/Topo(M) B’ ETopo(M) ropot)

Furthermore, we have a commutative diagram

E -----E’(4.1) p $ p’.
B )B’

This follows from the fact that the natural mapping of into ’ is Topo(M)
equivariant and the fact that the mapping BGL(n) AGL(n) can be
covered by a fibre preserving map EGL(n) P’.
We now need to describe the smooth frame bundle of any smoothing of

M in a particularly convenient way.
Let a be any smoothing of M and r "ETopo(M) x M BGL(n) a lift

of r defined by a satisfying

(4.2) z(yg, g-z) r(y, z)

for any g Diff’(M). (See Section 2.) IfP is the total space of the bundle
%EGL(n),

P, {(y, z, v) ETopo(M) x M x EGL(n)" %(y, z) qo},

then Diff’(M) acts on P by (y, z, v)g (yg, g-z, v) (using (4.2)). Thus,
we can form the bundle

E ETopo(M) x oy,m)P BDiff’(M) ETopo(M)/Diff’(M).

LEMMA 4.1. Let a be any smoothing of M, the component of ’containing the image of ’ under the mapping -- ’, and E the part
of the bundle E’ -- B’ over B ETopo(M) ropot) ’o. Then there are
mappings

h E Eo, h BDiff (M) B;

such that

(4.3)

BDiff (M,, B;

is commutative.

Proof. Let 5f be the component of w containing and E0 the part of
the bundle E B over B0 ETopo(M) x ropoM)Sf. We define mappings

"l’E Eo, h "BDiff(M) -- Bo
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such that

BDiff(M) Bo
is commutative. Lemma 4.1 will then follow from diagram (4.1).
The mappings 1 and hi are defined by

hi(Ix, y, z, v]) [x, %, y, z, v], hl([x]) [x,

The diagram (4.3) clearly commutes; we need only show that these mappings
are well defined.
Given g Diff’(M), then

"([xg, yg, g-lz, v]) [xg, ’, yg, g-z, v]

[xg, g-l., yg, g-Z, v] since g-- % by (4.2)

[x, z, y, z, v]

hi[x, Y, Z, v].

The same reasoning shows h is well defined and Lemma 4.1 is proved.

Remark. If z :Etopo(M) M --. BGL(n) is a lift of z defined by /3
satisfying gz, -, for g Diff’(M), then according to Lemma 2.4, the
image of ’a under the natural mapping ’ is contained in 20. Thus
just as above, we can construct mappings

such that

is commutative.

k" E/ ---> Eo, k" BDiff’(M) --> Bo

BDiff(M: B;

Consider now homotopy fibre F of the inclusion P C E and let j’F
---> P be the inclusion. Up to homotopy, the inclusion P C E is the
fibration

ETopo(M) x E, --> ETopo(M) x oiff’() E,

whose fibre is Diff’(M). It follows that the mapping

tr:Diff’(M) P,
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is, up to homotopy, the mapping j’F, P.. Similarly for

o-’ :Oiff’(M )

Now let X be the homotopy fibre of the inclusion Y C E6 of the fibre Y
of the bundle E’0 B6. We then have from the discussion above a com-
mutative diagram of mappings

Diff’(M,) X <- Diff’(Mt)

P Y <

The fact that this diagram has the properties stated in Theorem 1.4 is now
a straightforward consequence of the discussion above and is left to the
reader.
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