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A RATIO ERGODIC THEOREM FOR GROUPS OF MEASURE-
PRESERVING TRANSFORMATIONS

BY
Maria E. BECKER

Introduction

In this paper we use the method introduced in ergodic theory by A. P.
Calderén [1] combined with a covering lemma due to Besicovich to obtain
the pointwise convergence of averages formed with n-parameter groups of
measure-preserving transformations.

Let (X, &, u) be a o-finite measure space. By an n-parameter group
of measure-preserving transformations we mean a system of mappings
(6,, t € R™) of X into itself having the following properties:

(i) 6.0,x) = 6,,,x; 6,x = x for every t and s in R" and every x in X.
(i) for every measurable subset E of X, 6,(E) is measurable and its
measure equals the measure of E, for any ¢ in R".
(iii) For any function f measurable on X, the function f(,x) is measurable
on the product space R” X X, where the euclidean space R" is endowed
with Lebesgue measure.

Let p be a non-negative function in L'(u). For each function f integrable
over X, we consider the ratios

j B f(8,x)dt
Rf, P)x) = — if , pOx)dt >0,
j p(0,x)dt ‘

Ba

R.(f, p)(x) = 0 otherwise, where B, is the ball in R" of radius « and center
at the origin.

In what follows we give sufficient conditions for the almost everywhere
convergence of R, (f, p), as a — «, in the set where the denominators
eventually become positive and therefore it arises a continuous version of
the Chacon and Ornstein theorem [2].

If f is integrable over X, we denote [y f du by [ f(x)dx.
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1. A Maximal Ergodic Inequality

For each f € L'(u) we define the maximal operator S associated to
R.(f, p) by the formula

S(f, Px) = sup R(f], P)).

In this section we prove that S satisfies an inequality of weak type (1.1).
We will need the following lemmas.

Lemma 1.1. Let T = {B,(t,)}ic; be a family of balls in R" with bounded
radius, where, for each i, B,(t;) is the ball of radius r; with center at t;.
There exists a subfamily I, = {B,(t,)}ie; such that, if A denotes the set of
centers of the balls in I and x; is the characteristic function of B,(t;), then

XAsZXi$C,

ieJ

where C is a constant depending only on the dimension n.
For the proof of this lemma we refer to de Guzman [4].

LemMA 1.2. Let q(t) = 0 be integrable over each subset of R" with finite
measure. For each g € L'(R") we define

L g(s + bdt

a

T.(g, q)(s) = —
L q(s + t)dt

if the denominator is positive, T (g, q)(s) = 0 otherwise.
If we write

T*(g, q)(s) = sup Tgl, 9)(s)

then there exists a constant C > 0 such that

(&
J‘{T*(g,q)>)\} q(t)dt = X ”g”Ll(R") for any X > 0_

Proof. For each positive integer k, we define
T¥(g, q)(s) = sup T,(gl, 9)(s),
o<ask
so that T¥(g, q)(s) < T¥.i(g, q)(s) and lim,_... T¥(g, q)(s) = T*(g, q)(s).

For a given A > 0 let us consider E = {s:T}#(g, q)(s) > A}. If s belongs to
E there exists @ = a(s) < k such that T,(g|, g)(s) > \; then
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1
J;a q(s + tdt = fs . q(dt < X L B lg(®)|dt.

By virtue of Lemma 1.1, if 7 = {s + B, };cr then there exists a subfamily
T, = {s; + Bushes and a constant C > 0 such that

Xe< 2 xi<C,

ieJ

where x; stands for the characteristic function of s; + B,.
Therefore

f q)dt < f (2 x,(t))q(t)dt ) f 5, 9O

ieJ ieJ

2 lg()ldt = Y I (2 x,) |g(o)|dt

si+ Basi) ieJ

Q

K ”g"L‘(R")’

and Lemma 1.2 follows by letting k — o,
We can now state and prove the following theorem.

THEOREM 1.1. Let p be a nonnegative function in L'(w). For each
f € L\(w) we define

j f(8,x)dt
R(f, P)x) =

b

La p(6,x)dt

if the denominator is positive, R (f, p)(x) = 0 otherwise.

If
S(f, P)x) = sup RAf], P)),

then there exists a constant C > 0, depending only on the dimension n,
such that for each A > 0,

C
= —
J;S(f,p)»\} p (X)dx N "f ”Ll(,,,)

Proof. For each positive integer k, we write

_Jfex) ifld =2k
F("x)‘{ 0 if]>2k

It follows from Fubini’s theorem that F(¢, x) is an integrable function of
t for almost all x.
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Let P(¢, x) denote the function p(6,x) defined over the product space
R" x X.
With the notation of Lemma 1.2, we have

J' F(s + t, x)dt

3

TF, P)s,x) = )
L P(s + t, x)dt

if the denominator is positive, T,(F, P)(s, x) = 0 otherwise.
Let us define

sup T,(F|, P)(s, x) if |s| < k
Si(F, P)(s, x) = ===
0

if |s| > k,
and
S(F, P)(s, x) = sup T,(|F|, P)s, x),
a>0
So that
Sk(F’ P)(s’ x) = Sk+l(F, P)(S, x)
and

lim S(F, P)s, x) = S(F, P)(s, x).
k—o0

For a given A > 0 let us consider
E = {(s, x):Si(F, P)(s, x) > \}
and its sections
E, = {x:(s, x) € E}; E* = {s:(s, x) € E}.

We observe that for |s| < k,
Sk(F’ P)(S, x) = Sk(F’ P)(O, osx)’
and therefore E, = 6 '(E,) for |s| < k while E, = @if |s| > k. Then

f P(s, x)ds dx = ds j P(s, x)dx
E E;

|s|=<k

ek ds f 6, '(E,) p(0,x)dx

w, k" L_ p(x)dx,

where w, is the measure of the unit ball in R".
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On the other hand, by virtue of Lemma 1.2, we have
L P(s, x)ds dx = f dx L_x P(s, x)ds
N
< f dx X Msyjf (0,x)|ds

C
= -}:(2k)n wn”f”L'(#)‘

Therefore

2"C
)\ “flll.'(p,)’

and theorem 1.1 follows from the last inequality by letting k — . If we
set

on px)dx <

wB) = | piyar,

for any measurable set E of X, then we can express the inequality of
Theorem 1.1 by

C
H’p({s(f’ P) > )\}) = K”f"L‘(p«)‘

We will say that a function / measurable on X is invariant if for every
t, I(6,x) = Il(x) for almost all x. A measurable subset E of X will be called
invariant if its characteristic function is invariant. The invariant subsets of
X form a o-field that we shall denote by . It is easily seen that a measurable
function is invariant if and only if it is measurable with respect to $.

In what follows we shall assume that the group (6,, ¢+ € R") and the
function p satisfy the following condition:
(A) For almost all x

f p(0,x)dt
BaAGs+Ba)
lim ——— =0,

La p(6,x)dt

for every s in R", where A denotes the symmetric difference.
At the end of the next section we will prove that (A) is unnecessary for
the almost everywhere convergence of R (f, p) if u(X) < worif n = 1.

2. Convergence and identification of the limit when p > 0 a.e.
THEOREM 2.1. If (6,, t € R") and p > 0 a.e. satisfy (A) then for any f in
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L'(w) the ratios

La f(6,x)dt

R.(f, Px) =
J’Ba p(0,x)dt

converge almost everywhere in X as o — «,

Proof. Let us consider the set of all function & which can be represented
in the form

h(x) = (p - &)%) — (p - 8)(6,x),

where g is a bounded function and s is any point in R". For any function
h of this form we have

fBa h(G,x)dt = 'IBD‘{(P . g)(0;x) - (p . g)(0!+sx)}dt
) HL'* B £+B¢}(p - 8)(0,x)dt
= )I(P ) g)(e,x)ldt.

ByA(s+Ba

Since g(0,x) is a bounded function of ¢ for almost all x, we see by virtue
of (A) that R, (h, p) tends to zero for almost all x as o — o,
If I(x) in L™(w) is invariant, for almost all x we have l(8,x) = Il(x) for

almost all ¢. Then for any function g(x) of the form g(x) = I(x) p(x), we
have

Ra(qa P)(x) = I(X) a.c.

We conclude that the ratios R, (f, p) converge almost everywhere if f is
in the linear span V of the functions 4 and g. Our second step in the proof
is to show that V is dense in L'(u). For this purpose, let us assume that
a certain function ky(x) in L™(u) is orthogonal to all functions of V. Therefore

f ko(x)h(x)dx = f ko) {(p - 8)x) — (p -+ g)(6,x)}dx

= f gx)p(x) {ko(x) — ko(0_x)}dx
=0

for any bounded function g and for any s in R". Since p > 0 a.e. we deduce
that k, is invariant which implies that k, - p € V. Therefore [ k3(x)p(x)dx =
0. Then k, = 0 a.e., which proves the density in L'(u) of the linear span
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V. By virtue of the inequality

C
wl{SCF, P) > N) < XWf i

Theorem 2.1 follows from a standard argument.
Let f be of the form

(1) f(x) = l(x)p(x) + h(x),

where [ and h are as in the last theorem, and define

_[ 1 ifim=0
X(")”{—l if I(x) < 0.

Then y is invariant and we have [ x(x)h(x)dx = 0. Therefore

f llx)| p(x)dx = f S)xx)dx < f |f(x)|dx.

We deduce that for any given f € L'(u) there can be at most one ! (up
to equivalence) for which (1) can hold for some h. Therefore, the mapping
f— 1 - pis well defined on V, and it is linear and bounded in the L' norm.
We can thus conclude that this mapping has a unique extension to a bounded
li?ear operator H of L' into itself such that [|Hfldx < [|fldx, for all f €
L (w).

Following the method used by A. Garsia [3] for the identification of the
limit in the Chacon-Ornstein theorem, we can now prove the following
result.

THEOREM 2.2. If for each f in L'(w),
R(f, p)(x) = lim R, (f, p)x),

a—>©

then R(f, p) is invariant, and, for any E € 9,

| Rt pwpax = | fax

Proof. 1If fis of the form (1), then

_ oy - H)
R(f, p)(x) = Ux) = 00

Therefore R(f, p) = Hf/p for any fE V.
Let now f, f, € L'(n) with ||f — £, < & and assume that f, € V. Then

Hf, H(ﬂ—f)‘,
p p ’

Ra(.ﬁ;’ P) - +

RS, p) - %f <IRF - £, p)| +
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thus

LSy P) - %f <S(f-f., p)+ |H(fp—fe)l_

lim sup|R

a—»0

For a given A > 0, we have

A8 = fov 1) > 2D < SIF = flr

and

H(f - f. 2
,L({‘(f—pf-)—' > x/z}) <21 - o,

which implies that
RS, p) - f })

p.p({lim sup

By letting ¢ — 0 we deduce that R(f, p) = Hf/p a.e.. Since R(f,, p)
is invariant for £, in V, it follows that R(f, p) is invariant for all fin L'(w).
Finally, we note that for any set E € 4,

IIL‘(/-t) .

[ Rtop pax = fiax.

and Theorem 2.2 follows by letting ¢ — 0.

Remarks. (i) Convergence when w(X) < . For any fin L'(u) we
consider the averages

RS = 5= |, foat,

where the vertical bars stand for Lebesgue measure. Since the function
x(x) = 1 a.e. satisfies (A) we deduce from the preceding the almost everywhere
convergence of R.(f, 1). If p > 0 a.e. is in L'(ux) we have

|B.|
J;a p(6,x)dt

sup
a>0

= 51, p)x) <o a.e.;

therefore

>
il.ﬁ 1B f p6,x)dt >0 a.e.,

from which we deduce that R (f, p) converges almost everywhere for any
f € L'(w).
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_ (i) Convergence when n = 1. Let us consider the set of all functions
h which can be represented in the form

h(x) = g(x) — g(6,x),

where g is a bounded function having support of finite measure. _
It is not difficult to prove that, for any function A of this form, R (h, p)
tends to zero almost everywhere although p does not satisfy (A). It is also

easily seen that Theorem 2.1 follows by replacing & by &

3. Convergence in the General Case

Let us consider p = 0 and for any « in R" let us define p,(x) = p(6,x).
It is easily seen that if p satisfies (A) then p, also does so. Thus, by virtue
of Theorems 1.1 and 2.1 we conclude that R, (f, p,)(x) converges almost
everywhere in {p, > 0}. Since

I . p.0,x)dt
lim ———=1 ae.,

o f 5, PO:x)dt

by virtue of (A), the relation R, (f, p.) = R.f, p) - R.(p, p,) shows that
R.(f, p) converges for almost all x in {p, > 0} to a finite limit R(f, p). If
we call E the set where R, (f, p) does not converge then we have

L dx L., p0,x)dt = Lﬁ dt L px)dx = 0,

for every a > 0, and from this it follows that R(f, p) converges almost
everywhere in the set where the denominators eventually become positive.
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