
ILLINOIS JOURNAL OF MATHEMATICS
Volume 27, Number 4, Winter 1983

A RATIO ERGODIC THEOREM FOR GROUPS OF MEASURE-
PRESERVING TRANSFORMATIONS

BY

MARIA E. BECKER

Introduction

In this paper we use the method introduced in ergodic theory by A. P.
Calder6n [I] combined with a covering lemma due to Besicovich to obtain
the pointwise convergence of averages formed with n-parameter groups of
measure-preserving transformations.

Let (X, , /) be a tr-finite measure space. By an n-parameter group
of measure-preserving transformations we mean a system of mappings
(0t, t Rn) of X into itself having the following properties:

(i) Ot(Osx) Ot+sx; Oox x for every and s in R and every x in X.
(ii) for every measurable subset E of X, 0t(E) is measurable and its

measure equals the measure of E, for any in Rn.
(iii) For any function f measurable on X, the function f(Ox) is measurable

on the product space R X, where the euclidean space R is endowed
with Lebesgue measure.

Let p be a non-negative function in L1(/). For each function f integrable
over X, we consider the ratios

f(Otx)dt

if I_ p(Otx)dt > O,R(f, p)(x)

JI-p(Otx)dt
R(f, p)(x) 0 otherwise, where B is the ball in R of radius a and center
at the origin.

In what follows we give sufficient conditions for the almost everywhere
convergence of R(f, p), as a - , in the set where the denominators
eventually become positive and therefore it arises a continuous version of
the Chacon and Ornstein theorem [2].

Iff is integrable over X, we denote fx f dl by f f(x)dx.
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1. A Maximal Ergodic Inequality

For each f Ll(/x) we define the maximal operator S associated to
R(f, p) by the formula

S(f, p)(x) sup R(Ifl, p)(x).
a>0

In this section we prove that S satisfies an inequality of weak type (1.1).
We will need the following lemmas.

LEMMA 1.1. Let " {nri(ti)}iel be a family of balls in R with bounded
radius, where, for each i, Br,(ti) is the ball of radius ri with center at t.
There exists a subfamily {nri(ti)}iej such that, ifA denotes the set of
centers of the balls in ff and Xi is the characteristic function ofBr(ti), then

XA Xi C,
iJ

where C is a constant depending only on the dimension n.

For the proof of this lemma we refer to de Guzmin [4].

LEMMA 1.2. Let q(t) > 0 be integrable over each subset ofR with finite
measure. For each g LI(Rn) we define

f g(s + t)dt
T(g q)(s)

IB q(s + t)dt

if the denominator is positive, T(g, q)(.s) 0 otherwise.
If we write

Z*(g, q)(s) sup Z=(Igl, q)(s)
c>0

then there exists a constant C > 0 such that

c
q(t)dt < Ilgll,, for any h > 0

T*(g, q)>X} "
Proof. For each positive integer k, we define

T(g, q)(s) sup T(Igl, q)(s),
0<t<k

so that T(g, q)(s)< T/(g, q)(s) and lim__, T(g, q)(s) T*(g, q)(s).
For a given h > 0 let us consider E {s’T(g, q)(s) > h}. If s belongs to
E there exists c a(s) < k such that Z(Igl, q)(s) > X; then
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q(s + t)dt q(t)dt < Ig(t)ldt.
+B, - +Ba

By virtue of Lemma 1.1, if {s + B(,)},e then there exists a subfamily
{sg + B(,)}s and a constant C > 0 such that

Xe < Xi < C,
iJ

where g stands for the characteristic function of sg + B(,,).
Therefore

feq(t’dt<f(x’(t))q(t)dt=’f/s,,,,
lfs lf( )<

,+n (,,)[g(t)ldt Xi [g(t)ldt
iJ

C

and Lemma 1.2 follows by letting k .
We can now state and prove the following theorem.

THEOREM 1.1.
f L(Ix) we define

dt
g(f, p)(x)

Jsp(Otx)dt

Let p be a nonnegative function in L(tz). For each

if the denominator is positive, R(f, p)(x) 0 otherwise.
if

S(f, p)(x) sup R(lf,I, p)(x),

then there exists a constant C > 0, depending only on the dimension n,
such that for each h > O,

Proof. For each positive integer k, we write

F(t,x)= {f(x) ifltl<2k
if It[ > 2k.

It follows from Fubini’s theorem that F(t, x) is an integrable function of
t for almost all x.
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Let P(t, x) denote the function P(OtX) defined over the product space
RnXS.
With the notation of Lemma 1.2, we have

fn F(s + t, x)dt
T,(F, P)(s, x)

f P(s + t, x)dt

if the denominator is positive, T(F, P)(s, x) 0 otherwise.
Let us define

f sup Z(IFI, e)(s, x) if Isl < k

iflsl k,

and

So that

and

S(F, e)(s, x) sup T(IFI, p)(s, x),
c>O

Sk(F, P)(s, x) < Sk+ I(F, P)(s, x)

lira Sk(F, P)(s, x) S(F, P)(s, x).
k--->

For a given h > 0 let us consider

E {(s, x):Sk(F, P)(s, x) > X}

and its sections

E {x:(s, x) E}; E {s:(s, x) E}.

We observe that for Is] < k,

Sk(F, P)(s, x) S,(F, P)(O, Ox),

and therefore E, O;(Eo) for Isl < k while E, if Is[ > k. Then

e P(s, x)ds dx =I,l’k dse,P(s’x)dx
f,d
oo. Id o p(x)dx,

where (.O is the measure of the unit ball in Rn.
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On the other hand, by virtue of Lemma 1.2, we have

fe P(s, x)ds dx f dx fex P(s, x)ds

C
< f dx- flsl<2klf(Osx)[ds

Therefore

2nc
p(x)dx --II/11,),

and theorem 1.1 follows from the last inequality by letting k ---> . If we
set

tzp(E fe p(x)dx

for any measurable set E of X, then we can express the inequality of
Theorem 1.1 by

C

We will say that a function measurable on X is invariant if for every
t, l(Otx) I(X) for almost all x. A measurable subset E of X will be called
invariant if its characteristic function is invariant. The invariant subsets of
X form a -field that we shall denote by . It is easily seen that a measurable
function is invariant if and only if it is measurable with respect to .

In what follows we shall assume that the group (Or, Rn) and the
function p satisfy the following condition:
(A) For almost all x

f. . p(O,x)dt
lim O,

for every s in R, where denotes the symmetric difference.
At the end of the next section we will prove that (A) is unnecessary for

the Nmost everywhere conveNence of R(f, p) if (X) < or if n 1.

2. Convergence and identification of the limit when p > 0 a.e.

THEOREM 2.1. If (0, t Rn) and p > 0 a.e. satisfy (A) then for any f in
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Ll() the ratios

R,(f, p)(x)
fnf(Otx)dt

converge almost everywhere in X as ot .
Proof. Let us consider the set of all function h which can be represented

in the form

h(x) (p. g)(x) (p. g)(Ox),

where g is a bounded function and s is any point in Rn. For any function
h of this form we have

anf. h(Otx)d, anl,{(P" g)(Otx) (p" g)(Ot+x)}dt

< fn I(P" g)(Otx)ldt.
aA(s Ba)

Since g(Otx) is a bounded function of for almost all x, we see by virtue
of (A) that R,,(h, p) tends to zero for almost all x as

If l(x) in L(/z) is invariant, for almost all x we have l(Otx) l(x) for
almost all t. Then for any function q(x) of the form q(x) l(x) p(x), we
have

R(q, p)(x) l(x) a.e.

We conclude that the ratios R(f, p) converge almost everywhere iff is
in the linear span V of the functions h and q. Our second step in the proof
is to show that V is dense in L(). For this puose, let us assume that
a certain function ko(x) in L() is orthogonal to all functions of V. Therefore

f ko(x)h(x)dx f ko(x){(p" g)(x) (p" g)(Ox)}dx

J- g(x)p(x) {k0(x) ko(O_,x)}dx

=0

for any bounded function g and for any s in R". Since p > 0 a.e. we deduce
that ko is invariant which implies that k0 p V. Therefore f k(x)p(x)dx
O. Then ko 0 a.e., which proves the density in L() of the linear span
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V. By virtue of the inequality

C
Ip({S(f, p) > h}) <

Theorem 2.1 follows from a standard argument.
Let f be of the form

(1) f(x) l(x)p(x) + h(x),

where and h are as in the last theorem, and define

j 1 ifl(x)>0
X(X) -1 ifl(x)<0.

Then X is invariant and we have f (x)h(x)dx 0. Therefore

fll(x)lp(x)dx ff(x)x(x)dx flf(x)ldx.

We deduce that for any given f L(/x) there can be at most one (up
to equivalence) for which (1) can hold for some h. Therefore, the mapping
f p is well defined on V, and it is linear and bounded in the L norm.
We can thus conclude that this mapping has a unique extension to a bounded
linear operator H of L into itself such that flnfldx < f[fldx, for all f

Following the method used by A. Garsia [3] for the identification of the
limit in the Chacon-Ornstein theorem, we can now prove the following
result.

THEOREM 2.2. Iffor each f in Ll(iz),

R(f, p)(x) lim R(f, p)(x),

then R(f, p) is invariant, and, for any E ,
feR(f, p)p dx Yefdx.

Proof. Iff is of the form (1), then

R(f, p)(x) l(x)
Hf(x)
p(x)

aoe.

Therefore R(f, p) Hf/p for any f V.
Let now f, f Ll(/x) with I[f- fll < e and assume that f V. Then

p)
p

IR(f- L, p)l + R(f., p)
P

H(f f)
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thus

lim sup R,(f, p) --"
P

< s(f L, p) + IH(f f)l

For a given h > 0, we have

C
p({S(f f, p) > X/2}) < llf-

and

which implies that

R,,(f, p)
P ) C+2

By letting e -- 0 we deduce that R(f, p) Hf/p a.e.. Since R(fs, p)
is invariant for f8 in V, it follows that R(f, p) is invariant for all f in L (/x).
Finally, we note that for any set E

feR(f, p). p dx fe,f dx,

and Theorem 2.2 follows by letting e -- 0.

Remarks. (i) Convergence when Ix(X)
consider the averages

For any f in L(/z) we

f(Otx)dt,

where the vertical bars stand for Lebesgue measure. Since the function
X(x) 1 a.e. satisfies (A) we deduce from the preceding the almost everywhere
convergence of R,(f, 1). If p > 0 a.e. is in L(/z) we have

In=l s(1, p)(x) < a.e.;sup

fo>o p(Ox)dt

therefore

lim
1 fn,__,oo

p(Otx)dt > 0 a.e.,

from which we deduce that R,(f, p) converges almost everywhere for any
f L’(/).



(ii) Convergence when n 1. Let us consider the set of all functions
h which can be represented in the form

h(x) g(x) g(Osx),

where g is a bounded function having support of finite measure.
It is not difficult to prove that, for any function h of this form, R(h, p)

tends to zero almost everywhere although p does not satisfy (A). It is also
easily seen that Theorem 2.1 follows by replacing h by h.

3. Convergence in the General Case

Let us consider p > 0 and for any u in R let us define p(x) p(OuX).
It is easily seen that if p satisfies (A) then p also does so. Thus, by virtue
of Theorems 1.1 and 2.1 we conclude that R(f, p)(x) converges almost
everywhbre in {p > 0}. Since

ft pu(0tx)dt
lim 1 a.e.,- f p(Otx)dt

by virtue of (A), the relation R(f, p) R(f, p) R(p, p) shows that
R(f, p) converges for almost all x in (p O to a finite limit R(f, p). If
we call E the set where R(f, p) does not converge then we have

fe dx p(Otx)dt= dt fe pt(x)dx=O’
for every c > 0, and from this it follows that R(f, p) converges almost
everywhere in the set where the denominators eventually become positive.
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