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ON THE CLASSIFICATION OF GENERIC BRANCHED
COVERINGS OF SURFACES

BY

ISRAEL BERSTEIN AND ALLAN L. EDMONDS

1. Introduction

Almost a century ago, A. Hurwitz showed, in principle, how to classify the
branched coverings between two surfaces [4]. In this paper we pursue his ap-
proach and prove a new uniqueness theorem for a wide class of "generic"
branched coverings. Among all branched coverings between two given sur-
faces the simple ones are generic: A branched covering M--Nof degree d is
simple if # -l(y) _> d- for all yEN; any branched covering between sur-
faces can be approximated by a simple branched covering; and any branched
covering close enough to a simple branched covering is itself simple. See [1] for
an indication of proofs of these facts. Two branched coverings , /: M--N
are said to be equivalent if there are homeomorphisms f:M--M and
g N--N such that go C/of.
The classical function-theorist Clebsch [2], extending work of Luroth [6],

proved that simple branched coverings of the sphere S are uniquely deter-
mined up to equivalence by their domain and degree. See also [4]. A proof is
sketched in [1]. We shall also reprove this result in Section 4, for the sake of
completeness.
The theory of ordinary covering spaces intervenes in the classification of

branched coverings of surfaces of higher genus which do not induce surjec-
tions between fundamental groups. Therefore we single out for study here the
primitive branched coverings which do induce surjections between fundamen-
tal groups, and hence cannot be factored as a branched covering followed by
an ordinary covering.

(1.1) UNIQUENESS CONJECTURE. Any two primitive, simple branched cov-
erings of degree d between closed, orientable, connected surfaces are equiv-
alent.

At this time (1.1) has not been proved in complete generality. Nonetheless
we prove it in several significant cases here. In Section 5 we prove (1.1) for all
primitive, simple branched coverings of the torus.
We say that a simple branched covering M--N of degree d is metastable

if d x (N)- x (M) > d/2, or, equivalently, if has more than d/2 branch
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points. Note, for example, that a primitive, simple branched covering of de-
gree <_3 is metastable. (For the notion of a stable branched covering, see
(4.6).) In Section 6 we prove (1.1) for metastable branched coverings. See Sec-
tion 6 for other cases in which we can prove (1.1).
As further supporting evidence for (1.1) we prove in Section 8 a uniqueness

result for "primitive, symplectic maps of degree d" between nonsingular sym-
plectic inner product spaces over the integers. In particular, (1.1) holds on the
level of homology.
The remaining Section 7 is devoted to applications of the main uniqueness

results. These applications are all based upon the results of [3] characterizing
those maps of surfaces which are homotopic to branched coverings. One such
consequence of (1.1) is that up to equivalence there is at most one primitive
map of given nonzero degree between two given surfaces. Another is an af-
firmative solution of the following, modulo a proof of a weaker version of
(1.1).

(1.2) SIMPLE LOOP CONJECTURE. If f: M--N is a map of closed surfaces
such that f. r(M)--rt(N) is not injective, then there is a nontrivial simple
loop C C M such that fl C is nullhomotopic.

This problem was first brought to our attention in 1977 by T. Tucker and
was partially answered in [3]. We note fhat the analog of (1.2) for bounded
planar surfaces is known to be false.
As a final application we are able to characterize those primitive maps of

prime degree between surfaces which are homotopic to regular branched cov-
erings, that is, to orbit maps for Z/p actions.

In the preliminary Sections 2 and 3 we develop the basic techniques for deal-
ing with branched coverings for application in the remainder of the paper.

2. The Hurwitz classification of branched coverings

For the purposes of this paper a branched covering is a finite-to-one, open
map " M--N between compact, orientable surfaces which is an ordinary
covering over the complement of a finite set in int N. The singular set of is
the set 2;, of points x E M near which fails to be a local homeomorphism.
The branch set is B, ,. The degree of c is given by

deg max{# 4-(y): y E NI,

which is easily seen to be the absolute value of the homological degree of
with respect to chosen orientations of M and N.
A branched covering M--Nof degree d is uniquely determined as the ex-

tension to end compactifications of the associated unbranched covering
o Mo--No, where No N- B, and Mo M- ’IB,. Alternatively think of
"coning off" the ideal boundary components of Mo and No. The covering pro-
jection o is determined by a homomorphism 0()" wl(No,*)--, where
* No is a base point and denotes the symmetric group on d symbols. The
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representation 0 is determined up to an inner automorphism of by choosing
a one-to-one correspondence between -(.) and 1,2,..., dl and assigning to a
loop 3’ in No, based at., the permutation of 11,2,... ,dl induced by transport-
ing 4-1(.) around 3’ using the path lifting property.

In this modern terminology we have the following two interpretations of
fundamental results of Hurwitz [4].

(2.1) CLASSIFICATION THEOREM. Two branched coverings of degree d,

d M--N and d M2"-’N,

over a compact, connected, orientable surface N, are equivalent if and only if
there exist a homeomorphism

h (N,B,, ,)--(N,B,, ,)

and an inner automorphism Iz S- such that

#o0(b,) O(4)oh,.

(2.2) EXISTENCE THEOREM. For any compact, connected orientable surface
N, finite set B C int IV, and representation

0 r(N- B, .)-,
such that 0 is nontrivial on each class represented by a small loop about any
single point of B, there is a branched covering d M-N with B, B and

Of course (2.1) and (2.2) are virtually immediate consequences of the clas-
sification of ordinary coverings via the fundamental group. They were orig-
inally explained by Hurwitz using "cut and paste" techniques. Their utility is
that they reduce questions of existence and uniqueness to virtually combina-
torial problems, in a way which we now formulate.

Fix an orientation of the compact, connected, orientable surface N, let
B C int Nbe a finite set of cardinality n, and let E N- B be a base point. Let
D C int N- B be a small disk centered at .. The orientation ofN induces one
on N- D, and hence one on 0D, using the convention that the orientation of a
boundary component, followed by an inward normal, should coincide with the
given orientation of N. Similarly each component of ON is oriented. Let
c ,c2 ck denote the oriented boundary components.

Let al,b .a,b be a maximal family of simple closed curves in int Nsuch
that a, N a b, tq b a, tq b I if j, and a, f bl is a single point of
transverse intersection for each i. Orient each of these curves so that the orien-
tation of ai followed by that of b corresponds to the orientation of N at
a tq b,, and so that the induced orientation on a curve representing the com-
mutator ab,azb7 is the same as that induced by N- a t2 bi using our preced-
ing convention.
Now choose n + g + k simple arcs r with disjoint interiors running from to
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the points of B, to the points al bl,... ,as ( be, and to the boundary com-
ponents ct, c,,..., ck, in order. We choose and index [ri} so that in the disk D
about they correspond to distinct radii, indexed cyclically, consistent with
the orientation of OD. We choose each arc rj to a, N b, so that at al ( b the
orientation of a followed by the backward orientation of rj toward is
positive, while the orientation of b followed by this backward orientation is
negative.
Around each point of B choose a small disk D, whose boundary is oriented

by N- Di.
These choices identify r,(N-B,.) as a free group with n + 2g + k

generators w w,,xt,yl, x ,y, ,zt,...,zk, subject to the single rela-
tion w... w,[xt,yd... [x,y,]zl... z 1, where [x,y,] denotes the commuta-
tor xy,xTy7.
Now a representation 0 r(N-B, .)-- determines, and is determined

by, a sequence

(,..., ;,, ,,;,..., )
of permutations in , subject only to the requirement that

,... o.[a,,O,]... [a,,O,l,... , 1.

Note that, motivated by path multiplication in r(N- B, .), we are adopting
the convention that permutations shall be multiplied from left to right, as op-
posed to functional multiplication. Nevertheless, we shall occasionally denote
the action of r onj [1,2,..., d} by r(j), as long as no confusion arises.
Also

c 3(3- and [(,l

Suppos that N and B C int N ar fixed and that two different systems of
arcs and simple closed curves ar chosen as described above. Thn it easily
follows from the classification of surfaces that there is a homeomorphism ofN
which takes one system onto th other. Suppos in addition that to th two
systems of arcs and simple dosed curves the sam sequences of permutations
of are assigned. Then it follows from the theory of covering spaces that the
homeomorphism which moves on system to the other can b lifted to give an
equivalence of the corresponding branched coverings constructed using (2.2).
If M-.N is a branched covering of degree d between compact, connected,
orientable surfaces corresponding, to a representation 0 r,(N-B,,.)--.,,
then the sequence

o (,,...,.;,,3,,...,c,,,3,;,,...,)

of permutations corresponding to a set of arcs and simple closed curves, as
above, will be called a Hurwitz system for

In summary we have the following interpretation of (2.1).

(2.3) THEOREU. TWO branched coverings of degree d over a given corn-
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pact, connected, orientable surface are equivalent ifand only ifthey have Hur-
witz systems which are conjugate by an element of.

If b M--N is a branched covering and N is connected, then M is connected
if and only if the Hurwitz representation is transitive, i.e., Orl(N- B,,.) <
acts transitively on 11,2,...,dl. Note also that is simple if and only if the
permutations al,..., trn corresponding to branch points in a Hurwitz system
are transpositions. Then the uniqueness theorem of Luroth and Clebsch stated
in Section is equivalent to the assertion that a degree d simple branched cov-
ering of S has a Hurwitz system of the form

((1,2),...,(1,2), (1,3), (1,3), (1,4), (1,4),...,(1,d), (1,d)).

We note in passing that for a simple branched covering d’M--N, the Rie-
mann-Hurwitz formula takes the form

x(M) dx(N)- n wheren #B,.

The remainder of this section is devoted to an interpretation of primitivity
of simple branched coverings in terms of the Hurwitz representation.

(2.4) LEMMA. Let G be a transitive subgroup of the symmetric group
which contains a transposition. Then either G or the action of G
preserves a nontrivial partition of the symbols 1,2,..., d.

Proof. Let H < G be the largest possible symmetric group on a subset of
l,2,...,dl. After appropriate relabeling we may suppose that H , the
symmetric group on 1,2,..., rl. Since G contains a transposition, r _> 2. Sup-
pose that G , so that r < d.
For any r E G it follows that either

rll,...,rJ I1,...,rl
or

zll,...,rJ tq I1,...,rl I.

For if not, then there would be some z G such that, after appropriate re-
labeling, r(1) and z(r+ 1)= r. But this implies that r(1,r)r-(1,r + 1) E G, which implies that G > S/, contradicting the maximality of
H. It follows that the G translates of 11,..., rl yield the desired partition of
I1,...,dl into d/r subsets since G is transitive.

Similar and more general results appear in [8; 1.7].

(2.5) PROPOSITION. Let d M--Nbe a simple branched covering ofdegree
d between connected surfaces with B, :/: . Then d is primitive if and only if
the associated Hurwitz representation 0 r(N- B,,.)-Sd is surjective.

Proof. If 4 is not primitive, then 4 factors as 7rok, where r N’--Nis a non-
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trivial ordinary covering and M--N’ is a branched covering. Moreover deg
k >- 2 since B, :g 0. Let H < K < G be the sequence of groups

7rl(M b-lB,, *) ’’I(N r-B,,*)-- ’(N- B,,,).

Then the Hurwitz representation 0 is defined by the action of G on G/H by
left translation. But then the G action respects the nontrivial grouping of
H-cosets into K-cosets, which means 0 cannot be surjective.

Conversely suppose that 0 is not surjective and let H < G be the inclusion
of groups Try(M-k-B,.)--TrI(N B,,*). Because o(G) is a transitive sub-
group of 5’ which contains a transposition, (2.4) implies that the action of G
on G/H preserves some nontrivial partition of the H-cosets. Let K be the
union of the H-cosets which lie in the portion of the partition containing H. In
fact K is the G stabilizer of K, so that K is a subgroup of G, properly between
Hand G.
Then there is a branched covering 7r" N’--N arising from the covering of

N B, corresponding to K < r(N- B,,.), and there is a lift k M-N’ of q
so that 7rok. Since b is simple and B. C B, it follows that B ; for
otherwise some fiber of would contain more than one singular point. Thus r
is a covering and r. r(N’,.)--r(N,.) is proper injection. This implies that

not primitive. U]

We remark that (2.5) is true for branched coverings in any dimension, by the
same proof.

3. Basic alterations of Hurwitz systems

Fix a simple branched covering " M--N between closed, orientable sur-
faces and let (try,..., trn ;c1,/3,..., a, ,/3,) be a Hurwitz system for .
Here we record some simple ways of altering to obtain new Hurwitz systems
for b. This amounts to studying the action of (the generators of) the group of
isotopy classes of homeomorphisms of the surface N which preserve the set of
branch points. Strictly speaking, we require in addition that a base point be
fixed throughout.
For each alteration below we indicate the entries in the Hurwitz system

which are to be changed, together with a suggestion to the reader for construc-
ting the appropriate change in diagrams.

(3.1) (tr,,tr,/)-(tritr,/tr,,tri). Simply twist a disk containing 2 successive
branch points 180. Note that the product tria/ is preserved.

(3.2) (a, ,tr,/l)-(a/l ,a,/ltr,tr,.). This is the inverse of (3.1). (3.1) and (3.2)
correspond to the standard generators of the braid group of the sphere.
Taken together, (3.1) and (3.2) imply that a given transposition tr, can be

moved to any other position in the sequence of transpositions at the expense of
conjugating the intervening entries by
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(3.3) (o,,,)--(a,,,,). Perform a Dehn twist about . Note that the
commutator [, ,,] is preserved.

(3.4)
is preserved.

Perform a Dehn twist about ,. Note that

where q 1c/1/1/?1. Perform a Dehn twist about an appropriate simple
closed curve representing
We note that (3.3)-(3.5) correspond to the generators of the group of

isotopy classes of homeomorphisms of N. Actually, in the present work we
shall not have occasion to use (3.5). Here is one other (redundant) useful alter-
ation involving only c’s and #’s, analogous to (3.1).

(3.6) (c,,,,o,/l,,/)--(t+’’3,’’,ot,,3,) This alteration, together with
its inverse, says that a pmr c, ,/ can be moved elsewhere in the sequence of
pairs, at the expense of conjugating intervening a, pairs by the commutator

[o,,;,] ,,czz,
or its inverse.

Finally, we single out two alterations in which the two parts of the Hurwitz
system interact.

(3.7) (a. ;al ,/!) to. tr.a ,/3). Pull the a curve across the branch
point. Thus one may multiply ct by tr. without affecting the remainder of the
second half of the system. When this is combined with (3.1) and (3.6), one may
multiply any aj by any tr at the expense of conjugating intervening terms.

(3.8) (a; a ,,)-ta"*.x ;ct,c,tr.). Redraw the arc from to a b
around the branch point corresponding to drag b across the branch point;
then redraw the arc to the branch point around ,. This says that fl can be
multiplied (on the right) by or that can be conjugated by . Note that
both the products aat and a[at ,t] are preserved by this alteration. In par-
ticular, iteration of (3.8) yields

( l)k; )k

We conclude this section with a lemma which emphasizes the usefulness of
"doubles"-that is, pairs of identical successive transpositions.

(3.9) PROPOSITION. (i) (a,a,r)-*(a’,a’,r).

(ii) (a,a;c,#)-.(a,a;c,#).

Proof. In neither case is it necessary that the transposition r or the a,B pair
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be adjacent to the double t. For (i), using (3.1) we may move t,t to the posi-
tion adjacent to 7 without changing the other entries, since they would be con-
jugated twice by the transposition t. Now apply (3.2) twice to get (7,t’,t) and
then apply (3.2) twice again to get (t,z,t) and then (g,t,z). Finally, one
moves the new double back to its original position.

For (ii) using (3.1) and the analog of (3.6) for transpositions in place of the
pair a, ,/3,, we temporarily move g,t to the position adjacent to et,3 without
changing the other entries. Now (3.8) yields (.,,;,/37). (3.1) yields

Finally, (3.8) again yields

(,z;’-,z) (z,;a,t),

since z2 1. E]

4. Uniqueness over the sphere

In this section we give an exposition of the proof of the Uniqueness Conjec-
ture (1.1) in the classical case of branched coverings of the sphere.

(4.1) THEOREM (Clebsch). A connected, simple
M--S of degree d has a Hurwitz system of the form

branched covering

((1,2), (1,2),...,(1,2), (2,3), (2,3), (3,4), (3,4),...,(d- 1,d), (d- 1,d)).

The proof consists of using the operations described in Section 3 to put an
arbitrary Hurwitz system for 4 into the asserted form. We begin with a lemma
which is essentially due to Luroth [6]. In the following n(i,j) denotes a se-
quence of n transpositions (i,j).

(4.2) LEMMA (Luroth). Let (gt ,t2,..., tk) be a sequence of trans-
positions in . Then is equivalent, using operations (3.1) and (3.2) and a
conjugation of the entire sequence by an element of, to a sequence of the
form

(nl(1,2),n,(2,3),...,n_l(d- 1,d)).

Proof. We proceed by induction on d, and prove the slightly stronger
statement that the desired form can be achieved using (3.1), (3.2) and a con-
jugation which fixes d. The result is clearly true for d 2. Assume that d > 2
and that the result is true for d- 1. Among all sequences which can be ob-
tained from a by successive applications of (3.1) and (3.2) only, choose one
which can be written as a concatenation a12 of two substrings a and 2, in
which af’l does not involve d and is as large as possible subject to this con-
straint. We claim that a2 must then have the form n(j,d) for somej < d. Cer-
tainly, by (3.2) and the maximality ofa, each element of a2 moves d. Sup-
pose that 2 contains (i,d) and (j,d) for : j. By (3.1) we may assume they
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are adjacent in g2. But then, applying (3.1) again, ((i,d), (j,d)) yields
((i,j) (i,d)). It follows that we can increase the size of 1, contradicting
maximality. Conjugating the whole sequence by (j,d- 1), if necessary, we
may assume that j d- 1.
Now examine gl. By the inductive hypothesis g, can be put into the form

(n(1,2), n,(2,3),...,nd-,(d- 2,d- 1)) using (3.1), (3.2), and a conjugation
fixing d- (and d). These operations do not alter n(d- 1,d), and hence the
desired form has been achieved. 7q

(4.3) LEMMA. If g (al, a2,..., ak) is a sequence of transpositions in
which generate a transitive subgroup of ., then e" can be put into the form

(n(1,2), n2(2,3), nd-l(d- 1,d)),

where n >_ for all and ni <- 2for >_ 2, using (3.1), (3.2), and a conjuga-
tion by an element of.

Proof. By (4.2) we may assume that. (n1(1,2), n2(2,a),...,n_(d- 1,d)).

The transitivity assumption immediately implies that each n _> 1. By applica-
tion of an appropriate inductive hypothesis we may assume that n, <_ 2 for

_> 3. Now we examine the part

(n1(1,2), n2(2,3))

and show that if n,. > 2 it can be decreased by 2. Consider a substring of the
form ((1,2) (2,3) (2,3), (2,3)). By the Doubles Lemma (3.9) we can con-
jugate the last two entries by (1,2) and then by (2,3), achieving

((1,2), (2,3), (1,2), (1,2)).

An application of (3.2) then yields ((1,2), (1,2), (1,2), (2,3)). Repetition of
these operations completes the proof of the lemma.

Proof of (4.1). The transpositions in any Hurwitz system for 4 generate a
transitive subgroup of since M is connected. By (4.3), b has a Hurwitz
system of the form

(n(1,2),n,(2,3),...,n.l(d- 1,d))

where each n, _> and n _< 2 for _> 2. But the product of all the entries in the
Hurwitz system must be 1. It follows that n 2 for >_ 2 and that n is even.

(4.4) Remark. The appropriate classification statement in the case of con-
nected, simple branched coverings of the disk D is that such branched cover-
ings are determined up to equivalence by degree d and the conjugacy class in
determined by the boundary curve, corresponding to the product of all the
transpositions in a Hurwitz system. We leave the details to the reader.
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(4.5) Remark. It is possible to push this approach somewhat further to
prove the Uniqueness Conjecture for primitive, simple branched coverings
#p M--Nin what we call the stable range, whered X (N)- x (M) _> 2(d- 1);
that is,

#B,_> 2(d-l).

In this case one can show that one can arrange a Hurwitz system to have
1 /1 -... c (1), thus concentrating the branched covering
within a disk; one then applies (4.1) to achieve a unique form which has an in-
viting geometric interpretation. Since this follows from the more general re-
sults of the next two sections we omit all details of the direct argument. After
proving uniqueness in the stable range several years ago, we learned that a sim-
ilar result appears in the unpublished Princeton thesis of R. Hamilton.

5. Uniqueness over the torus

In this section we prove the uniqueness conjecture (1.1) for primitive, simple
branched coverings of the torus. We begin with a useful general criterion for
producing doubles in a Hurwitz system for a simple branched covering.

Consider a triple (tr, r;ct) of elements of, where tr and r are transpositions,
which we view as a segment (o,_,a,;cl) of a Hurwitz system for a simple
branched covering. We will use the two operations

(3.2) (,r; c0--- (r,a’; a)
and

(3.8)

Recall that the quantity "zc" is preserved by (3.8). For/, 13’1 denotes the
support of ,

Ix: < x _< d,,(x) q: x].

(5.1) PROPOSITION. Suppose that tr and z are transpositions in and
c Sa such that Itr[ and [rl are contained in the support ofa single cycle ofc.
Then, using (3.2) and (3.8), (o,r;c0 can be converted into a triple (tr’,r’ ;c’)
such that ’ r’ if and only if trza is conjugate to c.

Proof. Note that under the given hypotheses on supports either trrc con-
tains two more components than c does in its decomposition into disjoint
cycles, or trra is conjugate to a by an element of supported in the cycle of c
which supports tr and r. In particular we may assume that c is a d-cycle.

Since (3.2) and (3.8) alter neither the product arc nor the conjugacy class of
t, the condition that orct be conjugate to a is surely necessary.
For the converse, then, we assume that trrc is also a d-cycle. By applying

(3.8) a suitable number of times we may assume that
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By relabeling we may assume that (a,r;a) is

((1,i), (1,j) (1,2,...,d)).

The condition that ara is a d-cycle is precisely that _< j. If j, then there is
nothing further to prove. Therefore we assume < j. We proceed by induc-
tion on the quantity d- j.

First suppose d- j 0, so that < < j d. Applying (3.8) d- times
we obtain ((1,i) (1,i) at’a-’).
Now inductively consider the case when < < j < d. We have

ra (1,j + 1,...,d) (2,3,...,j).

Apply (3.8)j- times. There are then two cases to consider.

Case 1. (d- j)1{7- i). In this case (ra’’) fixes 1. and we thus have ob-
tained ((1,i) (1,i)

Case 2. (d- J)X(J- i). In this ease we obtain

2 3 j.j+l j+s d
((1,i), (j + r,i) (j + r,i + 1,i + 2,... ,j,2,... ,t,j- + r + 1,... ,1,... ,j + t)).

(The superscribed labels simply indicate position.) Here

j+l <j+r <_ d and j+l _<j+s <_ d

for some r,s >_ 1. Now apply (3.2) to obtain the transpositions (j + r,i),
(j + r, 1). The indicated relabeling yields

((l,j), (1,j + s) (1,2,... ,d)).

Since d (j + s) < d j, induction applies to produce the desired double.
If (at,... ,a. ;at ,/t ,as ,) is a Hurwitz system for a branched covering, then we say that at is maximal if for any other Hurwitz system

(a’,...,a’,;a’,B’,...,a,’8) for ,a’ has at least as many disjoint cycles
(including trivial ones) as at does. Alternatively, the corresponding simple
closed curve at is covered by the fewest simple closed curves under .

(5.2) PROPOSITION. Let 4 M--. T be a simple branched covering of the
torus T =- S St. Then 4 has a Hurwitz system

(,,... ,,. ;o,t)
in which a is maximal and a,-t a, for 1 <_ <_ n/2.

Proof. We may suppose that a is maximal. We then show that we can
create the required doubles without destroying the maximality of a. Let
"rt3’t... % be the expression of a as a product of disjoint cycles. Maximality of
a implies that for each i, < <_ n, there is a j(i), 1 <_ j(i) <_ r, such that
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]a,I C YJt, 1. For otherwise, operation (3.7) which replaces a by trnct can be
used, after applying (3.1) an appropriate number of times, to contradict maxi-
mality.
We claim that there exist indices i < i, and j such that

and 0,10,2 is conjugate to c. It is here that we crucially use the fact that T is
the torus. We know that

olo2.., ona/3t-l/3-1 1,

so that oo.., o.c 3ct3-. By maximality o.ct has one more component in its
cycle structure than a has we say on splits a. Now either on-lona is conjugate
to a, and we have our desired pair, or on-1 splits ona. Continuing in this way,
either o,-1 splits a component of

or a,-1 combines two components of a previously split component of c. Since
c12... nc is completely recombined, it follows that one eventually encounters
a ,1 which recombines two pieces of a component of c previously split apart
by some %, il < i2. Thus a,lc,2c is conjugate to c. Applying (3.1) if necessary
we may assume On-lOnC is conjugate to c. By (5.1) we may arrange so that
n-1 an without destroying the maximality of c.
Now simply formally delete on-1 and n, and repeat the argument until all

transpositions appear as doubles. V]

(5.3) THEOREM. Let qb M--. T be a primitive, simple branched covering of
degree d over the torus T. Then has a Hurwitz system of the form

((1,2), (1,2) (1,2) (1,2,... ,d), (1)).

Proof. By (5.2), has a Hurwitz system (try, a2,... ,a.; c,/3) in which c is
maximal and tr,_,_x a2, for <_ <_ n/2. Then

[c,/] 3-’3-’= (1).

Primitivity and maximality then imply that c must be a d-cycle. Since
[a,3] (1), 3 respects the orbits of a, i.e.,

by maximality of , each a, respects the orbits of a; therefore primitivity im-
plies that a has only one orbit, and hence is a d-cycle.

Since 3 commutes with the d-cycle c, it follows that/ c* for some k.
(Proof: Say c (1,2,... ,d) so that

c(x) x+l (modd);

suppose /(1)= + k for some k; then reasoning inductively 3(x)=
3(x- 1) 3(x- 1) c(x- 1 + k) x + k). Therefore, by applying the
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Dehn twist operation (3.4), a suitable number of times, we may arrange that
/3 (1).
Thus we have achieved a Hurwitz system (trl, tr,_,..., it,; ix,(1)) for in

which tr2,_, tr2 for 1 <_ <_ n/2 and a (1 2,... ,d), after appropriate
relabeling. By (5.4) below we may arrange in addition that ct
t,_ tn (1,m) for some m. Primitivity then implies that (1,m) and
(1 2,... ,d) then generate gd. By (5.5) below, GCD(m- 1,d) 1. There-
fore, using the Dehn twist operations (3.3) and (3.4) we may replace c by the
d-cycle

tx"-’ (ct,(1)) (ct,o)-- (c"-’,c0-- (txm-’,(1)),

since tx-’ is a power of a"’. Then the entries and m are adjacent in tx-’. Ap-
propriate relabeling yields the required form.

It remains to prove two lemmas.

(5.4) LEMMA. A Hurwitz system

(2t,,...,2tn o,/3)

in , in which the transpositions appear as doubles and

c (1 2,...,d),

can be put into the form ((l,m),..., (1,m) c /3) for some m.

Proof.
doubles:

By (3.9) we can make the following two families of alterations of

Ao’2a--2(a’) and B’2tt--2(a’).

(All unspecified entries remain unaltered.)
Then by B moves we may arrange that (1,m) for some m,
_< j _< k. Among Hurwitz systems of this form we choose one such that Em

is minimal. If some m, < m, we can reduce Em as follows: By A, we replace
2t with 2(m,,m). Application of B a suitable number of times replaces
2(m,,m) with 2(1 m- m, + 1). It follows that when ]mj is minimal we have
the required form. V1

(5.5) L.uuA. (1,m) and (1 2,... ,d) generate iffGCD(m 1,d) 1.
Proof. It is well known that (1,2) and (1 2,..., d) generate .. Suppose

GCD(m 1,d) 1. Then (1,2,..., d)’- is again a d-cycle generating the
same cyclic group as (1,2,...,d). Since and m are adjacent in
(1 2,... ,d)"-t, it follows that (l,m) and (1 2,... ,d)"-1 generate ; hence
so do (1,m) and (1 2,...,d).
Now suppose GCD(m- 1,d) n, n > 1. then d rn and m + sn

for some r, s > I. Let

X, J" 1 _<.j< dandj= imodnl.
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Then X,,...,X. form a partition of 2,..., dl which is preserved by (1,m)
and (1,2,..., d). Therefore these two permutations cannot generate . UI

6. Uniqueness in the metastable range

Define a simple branched covering :M--N of degree d, where N has
positive genus, to be metastable if # B, > d/2, or, equivalently, if
dx(N) x(M) > d/2. For example, if is primitive and d _< 3, then is me-
tastable ifN is closed. ReCall the notion of maximality introduced above (5.2).

(6.1) PROPOSITION. Let tb M--N be a metastable, simple branched cover-
ing. Then has a Hurwitz system

in which 1 is maximal and tr._ try.

(6.2) Remark. All one needs is that n # B, is greater than the number of
nontrivial orbits of at for example (6.1) also holds without metastability if

is a d-cycle.

Proof of (6.1). Begin with any Hurwitz system

in which c is maximal. By maximality, operation (3.7) implies that each
transposition tr, is supported in an orbit of eft. Metastability implies that at
least two of the transpositions are supported in the same orbit of ct. Thus by
applying (3.8) a suitable number of times we may assume that

Let * /toi’? and B* Btal’. Then

is also a Hurwitz system for , and a* is clearly maximal. Since tr_t and
overlap it follows that tr-t and a are supported in the same cycle 7 of *. Let
3’ (1,2,...,k).
By applying operations (3.1), (3.2), and (3.8), none of which change o*, and

appropriate relabeling, we may assume that a,_ (1,i), tr, (1,j) and
_< j. Therefore (5.1) applied to the Hurwitz system

produces the required double. Since (5.1) only uses operations (3.2) and (3.8),
the conjugacy type, and hence maximality, of a* is unchanged.

(6.3) THEOREM. Let dp M--Nbe a primitive, metastable, simple branched
covering ofdegree d, whereN is a closed orientable surface ofpositive genus g.
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Then has a Hurwitz system of the form
((1,2), (1,2),...,(1,2) (1,2,...,d), (1),...,(1), (1)).

Proof. It suffices to show that has a Hurwitz system

(,,...,,.;, ,,...)

in which cs s c / (1); for then the torus case (5.3) ap-
plies to create the desired Hurwitz system. We suppose, therefore, that we
have chosen a Hurwitz system for such that al is maximal and the total
number of disjoint cycles (including trivial cycles) in as, 3s,..., c,, 3, is as
large as possible. Suppose some c, or 3,, >_ 2, is nontrivial. Using standard
operations we may suppose as (1). We shall show how to increase the
number of disjoint cycles in cs, without altering the conjugacy type of any
(i 2) or any 3, (i > 2).
By (6.1) we may suppose a._l a.. Let G denote the subgroup

of Sd and H denote the subgroup < og 3’ E G > of Sd. Now by primitivity
<t,G> Sa. On the other hand H is a normal subgroup of
g,G > Sa which contains a transposition. Therefore H . In par-

ticular there is a 3’ E G such that tl is contained in the support of a cycle of
,.. By the Doubles Proposition (3.9) we may arrange so that tx, itself is con-
tained in the support of a cycle of c,. Now apply (3.6) to move cs, s to the
first position in the second half of the Hurwitz system and a conjugate of
tx, fl to the second position. Now apply (3.7) to replace xs, fl by .as,
Then apply (3.6) to move g.c,_,/2 back to the second position. Now g.c2 has
one more orbit than c2 has, and all other entries in the Hurwitz system have at
most been conjugated. Thus we may systematically increase the total number
of cycles in2,fls,...,c,/3, until c /2 us /, (1) asre-
quired. V!

(6.5) Remark. Extending (6.2), we see that the preceding arguments work
equally well for branched coverings which have a Hurwitz system

in which n is larger than the number of nontrivial orbits in c. By analyzing the
possibilities for a maximal c1 when d is small, one can thus verify the Unique-
ness Conjecture for d _< 5. We leave the details of these case by case con-
siderations to the sufficiently motivated reader. More generally, to prove the
Uniqueness Conjecture in general it would suffice to show that ct can be
chosen to be a d-cycle. Further along these lines we note that it follows that
any primitive, simple branched covering can be stabilized by appropriate con-
nected sum with a suitable branched covering of S’ or with a cyclic covering of
the torus so that the resulting branched covering can be put in standard form.
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7. Applications

In this section we sketch a few applications of the results of the preceding
sections. We begin by recalling the following results from [3] and [1].

(7.1) THEOREM [3]. A primitive map M--Nofdegree d >_ 2 between closed,
orientable surfaces is homotopic to a branched covering. F1

(7.2) THEOREM [1]. A branched covering between surfaces is homotopic to
a simple branched covering.

Let

Epid(r,(M), r(N))

denote the set of epimorphisms r(M) r(N) which correspond to (primitive)
maps M--N of degree d. As is well known, each element of Hom(rl(M),
rl(N)) is induced by a map M--N, and each element of Aut r(M) is induced
by a homeomorphism. Both Aut r(M) and Aut r(N) naturally act on
Epid(r(M), rl(N)), and the two actions commute.

(7.3) COROLLARY. Let M and N be closed, orientable surfaces and d >_ 2.
Then the Uniqueness Conjecture (1.1) implies that the double coset space
Aut r(M) \ Epia(r(M) r(N)) / Autr(N) consists ofat most one element.

(7.4) COROLLARY. Suppose dx(N)- x(M) > d/2, that is,

genus (M) > d genus (N) d/2 + 1.

Then Aut rx(M) \ Epia(r(M) r(N)) / Aut r(N) consists of exactly one
element. U]

In another vein we examine the simple loop conjecture (1.2).

(7.5) PROPOSITION. /f (1.1) /S true, then for any map f M--N between
closed orientable surfaces such that

f, r,(M)--r,(N)

is not injective, there is a homotopically nontrivial simple closed curve C CM
such that f[ C is nullhomotopic.

Proof. By proper choice of orientations, we may assume deg(f) >_ 0. The
cases deg(f) _< 1 were dealt with in [3]; so we may assume that deg(f) _> 2.
By liftingf to an appropriate covering space if necessary we may also assume
thatfis primitive. Thus we may assume thatf is a simple branched covering by
(7.1) and (7.2). By (1.1), f has a standard Hurwitz system of the form
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((1,2), (1,2),...,(1,2); (1,2,...,d), (1), (1),...,(1)).

In particular there is an embedded arc ,4 CN connecting two branch points
with the property that fl(A ) consists of d- 2 arcs, each mapped homeomor-
phically toA and a single simple closed curve C. Clearlyf] C is nullhomotopic.
We are done if C is homotopically nontrivial. So suppose C is nullhomo-

topic. Then C bounds a disk D in M. It follows that D-f’l(A) tq D is a
branched covering of N-A. Let D* denote D with each component of
f-l(A) fq D collapsed to a point. Then D* = S2, andfyields a map of positive
degree D*--N/A. Now N/A = N; and it is a standard consequence of Poincar6
duality that the manifold image of a sphere under a map of nonzero degree
must be a rational homology sphere. It follows that N = S2. Therefore if
C 0, then any nontrivial simple closed curve in M will suffice. V]

(7.6) COROLLARY. The simple loop conjecture is true for a primitive map
f M--N ofpositive degree d, provided

dx(N)- X(M) > d/2. E3

Remark. A reasonably straightforward argument shows that to solve the
simple loop conjecture in general for surfaces of positive genus, it suffices to
solve it for the special case of simple branched coverings of the once-punctured
torus, with exactly two branch points.
As a final application we characterize those primitive surface maps of prime

degree which are homotopic to orbit maps for Z/p actions.

(7.7) THEOREM. Let f M--N be a primitive map ofprime degree p be-
tween closed orientable surfaces. Then up to homotopyfcan be identified with
the orbit mapfor a Z/p action on M if and only if

px(N) x(M) =- 0 mod(p 1) and px(N) x(M) >- 2(17 1).

Proof. Supposefis such an orbit map. Then the Riemann-Hurwitz formu-
la shows that px(N) x(M) # (F)(p 1), where F is the fixed point set of
the action. Primitivity implies that F . As is well known (and easy to prove
for surfaces) such a Z/p action cannot have just one fixed point. Thus

px(N)- x(M) >- 2(/7- 1).

Conversely, suppose m px(N)-x(M)E0 mod (/7-1) and m _>

2(p 1). Nowfis homotopic to a simple branched covering M--Nby (7.1)
and (7.2). On the other hand one easily constructs a Z/p-branched covering
k’ :M’--N with n m/(p- 1) branch (fixed) points. The Riemann-Hur-
witz formula shows that x(M’)= x(M), so that M’ _=M. Now if’ is
homotopic to a simple branched covering k:M--N with m _> 2(p-1)
branch points. Therefore (6.3) implies that there are homeomorphisms
g :M-,M and h N--N such that

h-oog.
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Now f = th and = ’ imply that f = h-o’og, the orbit map for an ob-
vious Z/p action. Z]

8. Homological uniqueness

In this section we show that any two primitive maps M--N of nonzero
degree d between closed orientable surfaces determine equivalent homo-
morphisms H’ (N;Z)--H (M;Z).
A symplectic inner product space V over Z is a finitely generated, free

Z-module with a nonsingular skew symmetric (i.e., alternating) bilinear form
fl V x V-Z. We denote (x,y) by x y. Such a Vhas a symplectic basis, that
is, a basis

a,...,a.,bl,...,b.

such thata,.aj b,.bj 0anda,.b or0asi =jori:j. Forfacts
about symplectic inner product spaces, see [7], for example.
Now let V and W be symplectic inner product spaces over Z. Define a

homomorphism V--W to be symplectic of degree d if (x) (y) d
x y for all x, y E V. Define to be primitive if is a split monomorphism.

(8.1) THEOREM. Let V and W be symplectic inner product spaces over Z
and let p V- W be a primitive symplectic homomorphism of degree d >_ 2.
Let a,..., a., b,..., b. be a symplectic basis for V. Then there .exists a sym-
plectic basis el e,, ,f ,fm for W such that (a,) e, and
(b,) df, + f./, for <_ <_ n. (In particular dim W _> 2 dim V.)

(8.2) COROLLARY. Letf, g M--Nbeprimitive maps ofdegree d 2 be-
tween closed orientable surfaces. Then there is a homeomorphism h M--M
such that the following diagram commutes:

H’(N;Z)

H’(M; Z) "--*H’ (M; Z).

Proof. Both H (M; Z) and HI(N; Z) are naturally symplectic inner prod-
uct spaces over Z, andf* and g* are primitive symplectic homomorphisms of
degree d. Fix a symplectic basis for HI(N;Z). By (8.1), there are symplectic
bases-for H(M; Z) with respect to whichf* and g* have the same matrix. The
corresponding change of symplectic basis matrix defines a symplectic auto-
morphism ofH 1(M; Z) and is therefore well known to be induced by a homeo-
morphism h M--M, as required. W!

Proof of (8.1). Let

A spanla,,...,al and B spanlb,,...,bnl.
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Then V A B and A and B are maximal totally isotropic subspaces of V.
Now, in W, (A) and (B) are totally isotropic direct summands. Expand
(A) and (B) to maximal totally isotropic subspaces E and F of W so that
W E F, and the nonsingular form defines an isomorphism F--Hom(E;Z).
In particular, any basis for E can be uniquely expanded to a symplectic basis of
W by appending elements of F, and vice-versa.
By primitivity, (al),..., (a.) form part of a basis of E. Letfl,... ,f. be the

corresponding dual elements of F. Now (b),..., (b.) is a basis for the sum-
mand B in F. Observe that (B)N span{f,... ,f] [01 If not there is an
indivisible fE (B)tq span[f,... ,f.] since

f span{f,...

there is e E (A) such that e f but e (A) andf (B) imply that
e.f--O modd.

Define f/ (b)- dr, for _< < n. It follows that f1,...,f2 form a
basis for a summand of F. Extendf,... ,f,_,, if necessary, to a basisf,,...
of F, by adding elements orthogonal to (A ). Let e,... ,era be the correspond-
ing basis of E. It easily follows that e, (a,) and that (b,) df, + fn/ for

_< _< n, as required.
Remark (1) Of course (8.2) (or at least the weaker version allowing an

automorphism of HI(N;Z)) would bc an immediate consequence of (1.1),
when coupled with (7.1) and (7.2).

(2) Not all primitive symplcctic homomorphisms V-W as in (8.1) cor-
respond to surface maps. It follows easily from Kneser’s theorem [5] and stan-
dard facts that is induced by a surface map if and only if dim W > d dim
V+ d. Thus (1.1) would not imply (8.1) entirely.
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