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THE LATTICE OF GROUPS CONTAINING PSL(n,q) AND
ACTING ON GRASSMANNIANS

BY

JUSTINE SKALBA

Section 1

We consider here the set fl of all subspaces of a fixed dimension inside a vec-
tor space. This set is technically called a Grassmannian. The special linear
group has a natural representation on fl, which we will show to be essentially
maximal inside the symmetric group on ft. More precisely, we have the follow-
ing terminology and result.

Let V be an n-dimensional vector space over a finite field with q elements.
Let f fl(V,k) be the set of all k-dimensional subspaces of V. Then
PFL(n,q) has a faithful natural representation on fl(n,k), which we will
denote by Go Go(n,k). In the case n 2k, (Go, f]) is permutation iso-
morphic to its dual, and we have natural graph automorphisms arising from
the inverse transpose transformation. We define to < Go,j > wherej is any
non-trivial graph automorphism of Go. Observe that Go has index 2 in to, and
all graph automorphisms are contained in Go. Let So So(n,k) be the
representation of PSL(n,q) on ft. Denote by An the alternating group on f.
Finally, let G be any subgroup of Sn containing So. We will prove:

THEOREM. Suppose <_ k <_ n and (n,k) (2,1).

If n 2k, then G C__ Go or Aa C__ G.

If n 2k, then G C__ (o or An C__ G.

There are questions concerning what occurs when we represent a Chevalley
group on the cosets of a maximal parabolic subgroup. In particular, when is
this group maximal in the alternating or symmetric group on these cosets? A
maximal parabolic subgroup is maximal as a subgroup of its Chevalley group
[9]. In the case of PSL(n,q), the maximal parabolics fix k-dimensional sub-
spaces for _< k < n. Therefore the representation of So on f] is primitive. In
our case, it’s very easy to prove this directly. As the idea of the proof is used in
a later lemma, we include it further on in our introduction.
The cases k 1, n _> 3 have already been solved by Kantor and

McDonough [7]. Considering the dual space of V, the cases k n- with
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n >_ 3 are also done. In particular, all cases when n 3 are completed. This
will be used as a starting point for a proof by induction on n.
We will be considering two groups, T and H, where T is generated by a cer-

tain group of projective transvections in So, and H is the centralizer of T in G.
The group H has been introduced to deal with special difficulties arising in the
k 2 case. In Section 2, we find key information about the structure of No(T)
and No(H).

Continuing, in Section 3, we show T and H to be almost weakly closed in
their Sylow p-subgroups. Finally, in Section 4, G is shown to preserve the rela-
tion [(,/3) 1a,/3 E [2 and dim(a f3/3) k 11. Chow [2] and Dieudonn6 [3]
have used this relation to characterize PI’L(n,q) acting on fl(V,k) in such a
way as to give a generalization of the fundamental theorem of projective
geometry. Using the result [2] or [3], our theorem follows immediately.
A proof of this theorem has been announced by V.A. Ustimenko-

Bakumovskfi [10], but unfortunately contains serious errors and omissions.
At this point, we present a short, elementary proof on the primitivity of So.
Let txE ft. Define A(c) [/3 flldim(cf3 ) k- i+ 1}, _< < k+ 1.

These a,(c) form the orbits of (SoL on ft.

LEMMA 1. So(n,k) is primitive on fl(V,k)for all <_ k < n.

Proof. Clearly So(n,k) is transitive. Let be a block of So(n,k) with

I >_ 2. Then contains a and , where/ A,(a) for some > 1. Thus

By symmetry, A,(/3) C_ O. As an element of the projective geometry P(V),

and /3 /3’ + (c71/3)

where dim(a’) dim(/3’) i-1 >_ 1.
Let t, E fl(c’,l) and " fl(V,i- 2), where " fq c " fq (cq //3) 0. This

makes sense as i- 2 _< k- 1. Then . (a 71/3) + , + " E A,(/3), so y .
Since , A,_,(a) also, A,_,(a) C_C_ I,.
Suppose q: k+ 1. Thus dim(c f3/3) k- i+ >_ 1. Let

/3, E fl(/3’ ,1), j 9(a 91/3, k i) and r/E 9(V,i 1),

where r/f3(c+/31) r/f3/3 0. (Here i- _< k- 1.) Then
+/3, + r/ A,(/3), so di O. Since di A,/,(a) also, A,+,(a) C__ .
Continuing in this manner, we can show f.

Notation and terminology. For each elementf Hom(V,Fq) and v Ef-’(0)
there corresponds a transvection b.v x-x+f(x)v, where x V- [01. Let W
be a hyperplane of V, and T T(W) be the group generated by the projective
transvections fixing W. Then Tis an elementary abelianp-group stabilizing the
chain VW0 for some primep, and IT[ wl q--’.

Let A be the support of T on fl, and r’ the fixed point set of T, so that
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I" f(W,k). For oE 9(W,k- 1), we define b [aE zxln w 1.
Clearly, ff is an orbit of T on fl(k), and ffl w/l q-, We shall
use for the set [ff fl(k- 1)l of orbits of T on A.
We introduce the notation- q-i[] and[o] 1, wherer s 0; [] 0ifs < 0.

qi.__

Thus

-] - q_[-_,]9 [] [ and

Our proof of the theorem is by induction on n. Therefore, in all the remain-
ing lemmas, we assume that the theorem holds for every vector space of di-
mension less than n. Because of the result of Kantor and McDonough, we also
assume k 1, n and n 4. In addition, we suppose that An G.

Section 2

We need the following result in order to prove Lemma 2.1" If x _> 25, then
there is a prime r such that x < r < 6x/515].

LEMMA 2.1. Let N be any subgroup of G containing Nso (T) and having A
and I as orbits, with S-as a set of blocks. Then:

(i) either

N C__ N%(T)" PFL(n- 1,q)

or

and

(ii)

or

either

n 2k and N (No(T)),

Nr C__ N%(T)r = PI’L(n- 1,q)

n 2k + and Nr C__ (N(T)r).

Proof. Since Nso(T) C___N, it follows that Nso(T)x C__ N and Nso(T)v C__ Nv.
We observe that (Nso(T)a) acts like So(n-1,k-1) on 9(W,k-1), and
(Nso(T)V) like So(n- ,k) on 9(W,k). Thus we can apply our inductive as-
sumption.

(A) Suppose AS C__ Na. We now show that AS C__ Nra also.

If not, Nr has AX as a composition factor. Using induction to find the possibil-
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ities for Nr, this can h_appen only if [I" 1--[, that is, n 2k. Then
(Nr) -= (Na)_ -= (N’Ua) -= AS. Let pl, P2 be projections of (Nrua) onto
(Nr) and (Na)’, respectively. Thus p2op- (Nr)’ --(Na) is an isomor-
phism. As [I’[ > 6, we know that 4 is a permutation isomorphism. There-
fore, for in r’, the subgroup 4((Nr)’) fixes a point ]r-in . In particular,
4(Nso(T)r) fixes ]-also, and we have a contradiction. Hence, AC__ Nr. As
[A--] > 2, this means that Nr is transitive.
Since T is transitive on each b, and T C_C_ Nr, it follows that Nr is tran-

sitive on zX. As G is primitive, by 13.1 of [11], G must be doubly-transitive.
Therefore 15.1 of [11] holds, i.e.,

m _> fll 2ll.t-t where m is the minimal degree of G.
3 3

Case (i). k > 2. Let h be a p-element of Nr whose image in Nra is a pqn-k.
cycle, and let g hqn-k. Then g moves only (pq"-)q- points. Since

I 1,- 2,1sup(g)I <
3 3

this contradicts (*).

Case (ii). k 2. Let L be the kernel of the homomorphism N---N.
(a) Assume q-’- _> 100. Let h be an element of Nr whose image in N is an

r-cycle, where r is a prime such that 1ffl/4 < r < 3lffl/10. If L has no
elements of order r, then sup(hl"l)] _< rq-’, contradicting (*) as before.
Thus, we assume that L has an element of order r. Since T C___ L, the set of non-
trivial orbits of L is S. Hence each L has an element, say g, of order r. Our
g consists of at most 3 r-cycles because 4r > ]ff I.

Suppose L is imprimitive. Let 0 be a non-trivial block ofL. As 1.01
we havep _< 10] -< 1 ]/P. Choose 0 to contain a point a in sup(g). Suppose
0

_
sup(g). Let 0 t3 fix(g). Clearly [/] f3 c<> C__ 0, and ’so[0[ _> + r.

As [b < 4r, we must have 101 Ik I/P, wherep is 2 or 3. Next, suppose
0 C_C_ sup(g). In addition, assume [0[ > 3. Then 0 contains two points of an
r-cycle of g. As r is a prime, it contains the entire r-cycle, and again
[0l ,[/p. Combining all possibilities, we have [01 p or Ik,ol/p, where
p 2,3. Hence L is contained in

Sp wr Sllp or Sll wr S,

and has a composition factor which acts primitively on a set of degree
and contains an r-cycle. Since r < 3k/10 and 100, we have
r + 3 <_ 101. Then we can use 13.9of[11] toshowthatL*hasAllasacom
position factor. Thus rn _< 6 s-I or 15 S-I for p 2 or 3, respectively. But
this contradicts (*). We conclude that L* is primitive.

If we consider g again and 13.10 of [11], we must have A, C___ L. Since
q’- : 4 or 6, any non-trivial homomorphism (L) ---(L’) is a permuta-
tion isomorphism. This means if g l is a 3-cycle, then g l,, is a 3-cycle or the
identity element. Thus m _< 31 SI, a contradiction.
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(b) For the cases q"-" 25,27,32,49,64 and 81, let r be 7,11,17,13,17 and
23, respectively. We easily obtain contradictions as above. Now consider the
remaining cases:_q"-2 4,8,9 and 16. Define s to be 5,13,11 and 19, respec-
tively. Clearly N has an element of order s. Let h be a pre-image of this ele-
ment in Nr, and g h ILl Thus Inn(g) acts on each L and has order s. All
groups of degrees 4,8,9 and 16 are known, and in every cases r(L). Thus g
normalizes a Sylow subgroup P, for each prime tE 7r(L). Let rll lz*l for
some integer u, so Aut(P,/b(P,)) is a subgroup of GL(u,t). Since sX GL(u,t)[,
it follows that g centralizes P,/b(P,). By a theorem of Burnside (5.1.4) [4], g
centralizes P,. This is true for all t, thus g centralizes L, for each o. Hence g
centralizes L, and therefore T. We can choose E T so that sup(g) sup(t),
and consequently t t, a contradiction. Therefore (i) holds.

(B) Suppose Ar C__ Nr. ThenNr does not have PSL(n 1,q) as a composi-
tion factor, and so Ar C__ N-. As IF > 1, we haveAr Nr and a contra-
diction by 13.5 of [11]. Hence (ii) holds as well.

Let v be a non-zero vector in V-W, and define T’ T’ (v) to be the group
generated by the projective transvections fixing < v >. Then T’ is the elemen-
tary abelian p-group of order q-i stabilizing the chain V 2)< v > D0.

Further, let A’ sup(T’) and F’ fix(T’)
For each t fl(W,k), we define 0 cr’. Then {0lt fl(W,k)} is the set

of orbits of T’ on A’. Clearly [0[ Hom(a, < v>)[ qk. Note that

Ir’l and A q’[";,’l.

Since Nso(T’) on fl(V,k) is permutation isomorphic to Nso(T) on f](En k),
we have the following result.

COROLLARY 2.2. Let M be any subgroup ofG containing Nso(T’) and hav-
ing A’ and F’ as orbits, with as a set of blocks. Then

or

and

(ii)

or

(i) either

Mz’ C_C_ Noo(T’)Z’ = PFL(n ,q)

n 2k + and MZ’ (N(T’)Z’),

either

Mr’C__ N%(T’)r’ PFL(n- 1,q)

n 2k- 1 and Mr’ C___ (No(T’)r’).
LetX be any group acting on a set , and A some subset of . Define XtA1 to

be the largest subgroup ofX fixing A as a set.
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LEMMA 2.3.
then

or

Proof.

If J is the largest subgroup of G having A’ and I" as orbits,

jr’ C__ N%(T’)r’ Gort r’l - PI’L(n ,q)

n 2k- and jr C(Gotr,j).

Define M as in Corollary 2.2. Then M __C J, and so Nso(T’)r’ c_C_
jr’. If the lemma does not hold, then, by induction, At, C__ jr’.

(A) Suppose J’ is imprimitive. By Corollary 2.2 some a in fl(W,k) belongs
to a non-trivial block o distinct from 0. Since M C__ J, it follows that cr is a
block ofM’ also, and so is contained in 0. As is non-trivial, there is a in- [a]. Define Y Nso(T’). Then Y C_ J and Y maps /to each point in
0- [a}. Thus cr D__ 0, a contradiction.

(B) Suppose J’ is primitive. Define R to be Jr,. Since RqJ and T’ C_C_ R,
it follows that R’ is transitive.

Case (i). Suppose R’ is imprimitive. Let be a non-trivial block of R’ of
minimal length. As R<] J, we know that ,* is a block ofR for each g E J, and,
in particular, for each g E Nso(T’). This means that . II is a block as well.
Since - is non-trivial and of minimal length, I II > implies that .
Now suppose a and /are points of - in distinct T’ orbits on A’. We may

assume a E fl(W, k).

(a) We claim that we can choose in fl(W,k) also.
Now 0, for some "r a, 3’ fl(W,k). If a II 3’ 0, then T, 0,; so

in this case, take 3’. It remains to consider the situation where

’ dim(a II 3’)-> 1.

Let

a (all-r)+a’ and 3’= (all 3,)+’r’,

where dim(a’)= dim(3,’)= k- > 1. Considering r again, we may
choose/ so that 3/’ C__ . Suppose 9(W,k). Then/ /’ + 3", where dim
/’ ’ and ’ C__ all 3’ + < v>. Thus ’ 6+/, where 6E 9(all 3’,e- 1)
and / <w+ av> for some wE (all,r)-6 and aEF#. We have= +/, + /’.

Let U be the set stabilizer in Nso(T’) of the subspaces a’ + < v>,/i, < w>
and/ of V. As

we have . for each u E U. But this means there is an e +/i + e’ in ,,
where e’ E fl(W- (a U 3’), k- 1). Clearly we have a E T’ C__ J such that, e’ E ’n w. Replacing (a,//) by (, e9, we are done.
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(b) We claim that r A’.
Let c and be distinct points in r N fl(W,k). Since

we have

r r for each g Nso(T’)<>
and similarly for each g E Nso(T’)au<>. Clearly dim(a n ) k- + for
some i, where 2 k’ minlk + 1,n/21. Thus,() n (w,k) r,

and, by symmetry,

also. We proceed as in Lemma l, to find points

and (if k’)

Continuing, this shows fl(W,k) z. Next let be any point in fl(W,k).
Choose in fl(W,k) so that 0. Then ar’a . z, and so a’ r,
contradicting Ra’ imprimitive.
We must have zO, for some , hence zl q. Since Ra’ Jr’ is

transitive and G is primitive, by 13.1 of [11], G must be doubly-transitive. Let.
and be distinct elements of F’. As R Jr, is transitive on 5’ and

A r, jr’, either G.a has orbits of length F’[ 2 and 5’ or G is triply-
transitive. Suppose G. is imprimitive. If and are distinct points of a non-
trivial block o on fl- [aJ, then .a o. Since [a’[ > fl [/2, the G. blocks
have length [F’[ 1. But R G. and I ’1 > q. Hence.G, is primitive.
We continue with other points in F’ to obtain the conclusion that G is at least
F’[ q + transitive.

Case (ii). R r, primitive. By an argument as in the above paragraph, G is at
least F’I transitive.

We now combine these two cases with a well-known transitivity formula.
(See p. 21 of [11].) If we define t to be the degree of transitivity of G, then

t < 3 In Ifll.
Observe that r’l". Hence we obtain It’[ qk + < 6 ln lr" I. This
leads to a contradiction in all cases except those when either (n,k,q) (5,2,2)
or (n,k) (4,2) and q _< 43. Except for the n/2 k q 2 case, our
transitivity is so large that we can produce a prime s which divides GI and
also satisfies I 1- t < s < [fl- 2 unless n 4 and q 5,8 or 13, in
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which case [f[-t < 2s < 121-2. Forn/2 k q 2, if we consider
[A’ 1, then G has an element consisting of four 7-cycles. In all cases, we have a
contradiction to a well-known theorem (13.10 in [11 ]) constraining elements of
prime order in a primitive group. Thus A r’ jr’, and our result follows.

Let K be the kernal of the homomorphism NG(T) NG(T).
LEMMA 2.4. Let Q be a Sylowp-subgroup ofKr. Then, for each in A, we

have Q T. If k > 2, then Q T.

Proof. For a non-zero element x of W, set

r’ I (v,)lx 1.
Define Yx Gtr,,’ I. By Lemma 2.3, using x in place of v, we know that

Y’x’; C G r.; PFL(n-I,q)Oir]

Set Ax A f r’. Then

Ax c 2 (W,k) x ( L) o f( W,k l) and

Any subgroup ofK (thus Kr) leaves each ff in S invariant. Hence Kr C__ Yx. As
T

_
Kr, we have ‘xx= Tax. In particular, Q= T for each o in

f( IV, k 1) which contains x.
Now assume k > 2. Suppose Q 2) Tand take h E Q. Then h x E Tx for all

x G W. Thus h[ [x or h[ t, 1 where g(x) W- 101 and t,(x is a
projective transvection in T with (t,(x 1)V <g(x) >. Therefore
h[ 1 if and only if <g(x)> <x>. Now suppose that h T. As
h 1, there is a u G W- 101 such that h [u t(u) 1. ],. Replacing h by
ht.),we may assume that h [,. [,u. Since h T, there is a v W- < u>
such that h l- t,. [ Iv. We take A. O Av. It follows that
a c a’", so g(v) . Indeed, g(v) belongs to every a in A. O A.. Now,

,xnA Il <u,v >c wl,

and < u, v> is the intersection of the elements of A. n Av considered as sub-
spaces of V. Thus g(v) E < u, v >, and so g(v) au + bv, where a, b F and

-1a0. Replacing h by htto., we may assume h l. Iu and h[
Since hT, there is a yEW-(<u>U<v>) such that hla : 11.

Suppose

y W- <u,v>.

Using the pairs (u,y) and (v,y) as we did with (u, v), we obtain

hl t()], where g(y)E <u,y> f’) <v,y> <y>.

Thus h I I,, a contradiction. Thus y E < u, v > ( < u > LI < v >). We
note that u,y and any element in W < u,y > are linearly independent. There-
fore h l 11 here as well. We have a contradiction. Hence Q T.



GROUPS ACTING ON GRASSMANNIANS 27

We define H to be C(T). Then H<N(T). Observe that N(T) satisfies
the conditions for N in Lemma 2.1. Thus, if Ha :# 1, then (Nso(T)a) C__ Ha.
But then H does not centralize T. Hence H C__ K. As T is regular and
abelian, H T for all o E fi(W,k- 1).
For the following lemma, we will need another well-known result from

number theory:
Let a,b,x and y be positive integers, with x 2. There is a prime which

divides ax- b and, for every y < x, does not divide ay b y, with the single
exception 26 1].

LEMMA 2.5. (i)
(ii)

(iii)
Q=H.
Ifk > 2 and P is any Sylow p-subgroup ofG normaliz-
ing T, then P C_C_ No(T).

Proof. Let Q be defined as in Lemma 2.4. For all 0E fl(W,k- 1), we
have shown Q T. Thus Q is an elementary abelian p-group. We note
that Nz(T) satisfies the conditions for N in Lemma 2.1, and K<N(T). Sup-
pose that (i) does not hold. By Lemma 2.1 (ii), Kr contains PSL(n ,q) as a
composition factor.
Now suppose Ka has PSL(n- 1,q) as a composition factor also. Since

PSL(n- 1,q) is simple, so does each K. As K C__ Nz(T), we must have
T </K. Since T is regular and abelian, it is its own centralizer in K.
Thus K/T is isomorphic to a subgroup of GL(n k)r,p), where q pr. If
we assume (n,q) :# (7,2) or (4,4), there is a prime dividing q,-l_ and not
dividing pi_ for < r(n- 1). That is, this prime divides IPSL(n- 1,q)
but not KI, a contradiction. For the two exceptional cases mentioned
above, a higher power of 3 divides PSL(n 1,q) than [K also a contra-
diction. Hence Ka cannot have PSL(n- 1,q) as a composition factor.
We conclude Kr :# 1. As (Nso(T)r), is primitive, so is N(T)r. Thus Ka is

transitive on I’. Since Il < fl/2 and G is primitive, we must have An __C G by
13.5 of [11], a contradiction. Hence (i) holds.
As H C__ K, we immediately obtain Q H, so (ii) holds.
If k > 2, then H T and (iii) follows.

Section 3.

If P is a Sylow p-subgroup of Go, we define Wo to be the 1-dimensional sub-
space fixed by all elements of P. We let T* be the group generated by all pro-
jective transvections fixing Wo, so that T* is a contragredient of T. If n 2k,
a graph automorphism maps T to T*.

LEMMA 3.1. Let k > 2. Let P be a Sylow p-subgroup of G containing T
and T*. Suppose g is an element of G such that T C__ P. If n =# 2k, then
T T, and if n 2k, then T Tot T*.
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Proof. Suppose T Tg U, where g is in G, and Tand U in P. By Lem-
ma 2.1 of [8], we may assume that T and U normalize each other. In par-
ticular, U C__ Na(T). By Lemma 2.5 (iii), we know U C_. No(T).

Since k > 2, T is its own centralizer, and consequently [T,U] :/: 1. As
T, U] C__ TN U, we must have T N U 1. Let E (T f) U) . Then is a trans-

vection with (t 1) V < w> C__ W for some w E W.
Since T is the sole Sylow p-subgroup of K, it follows that U K. Hence

sup(U) O F 0. As U T, clearly U has exponent p. Since the Sylow
p-subgroups of Go are cyclic and U C_. Go, we see that U contains a sub-
group Y of index at mostp in U such that Y So U. Both T and U have or-
bits of length q- > p, hence sup (Y)t F =/= O also. As Y C__ Nso(T), each
g E Y- T acts non-trivially on W fix(T). Then

(3.1) fix(< t,g>)r)l fix(gl

since g fixes a subspace of W of codimension at least one.

Case (i). As Y normalizes T, Y leaves W invariant. Hence (g 1) V W for
gEY. Suppose (g-1)V (t-1)Vfor some tE(Tf’)U), andgEY-T.
Let

’ dim((t 1) V + (g 1) V).

Then ’ _> 2, and < t,g> is a subgroup of U of order p. Each element of A
which is fixed by <t,g> either contains (t-1)V+ (g-1)V or contains
(t 1) V and no vectors of W moved by g. Since g moves at least one vector in
W, we obtain (respectively)

Ifix( < t,g> )1 < q"-*([ .-e-, .---,] + [-d)
(3.2)

qn-k n-3([-1 + [-d)
Then (3.1) and (3.2) give an upper bound for fix(<t,g> I.
Now, let S be a subgroup of T of order p having two nontrivial elements

with distinct supports. Then fix(S)[ q"-[_3]"-3 + ["7,]. Thus
Ifix<t,g>l < Ifix(S)l.

But as U T, U and T are permutation isomorphic. We have a contradic-
tion.

Case (ii). It remains to consider the case that

(t- 1)V (g- 1)V for all tE (Tf’) U)0 and gE Y.

Set Wo’ (t- 1)V. Then dim Wo’ ’ 1. Consequently g is a transvection
on V. Furthermore, each t in T has the form t t. v-v + f(v)w where
wE WandfEHom(V,F),f(w) 0. So TU C__ <t.[wE W’o>.
On the other hand, Y consists of transvections of the form b.o where
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fE Hom(V,Fq), f(Wo) 0 and < Wo> Wo’. Since [Y[ _> qn-llp, we must
have Wo W’. Also, as U/Y[ <- p and U is abelian, U cannot contain a
field automorphism. Thus U Y <tS,wo]f(Wo) 0> T* as required.
In addition, n 2k since T and T* are permutation isomorphic.

If we inspect the proof of Lemma 3.1 for the case k 2, we obtain

(i) T C__. H,
(ii) n 4 and T C__ T’H,

or
(iii) n > 4and Ifix<g,t>l -< [";l /q"- < IAI,

where (iii) leads to a contradiction.

In the next lemma, we deal with the k 2 case, which means using H in
place of T. Our analog to T* is H* Co(T*).
We note that No(H) satisfies the conditions for Lemmas 2.1-2.3. We define

L to be the kernel of the homomorphism No(H)---No(H). Using the first
paragraph of the proof of Lemma 2.4 and the proof of Lemma 2.5 (i) and (ii),
we find that Lr and H is the Sylow p-subgroup of L.

LEMMA 3.2. Assume k 2. Let P be a Sylow p-subgroup ofG containing
H and H*, and let H C__ p for some g G. If n #: 4, then H H, and if
n 4, thenH HorH*.

Proof. Let U H C: p for some gC G, and assume U : H. By Lemma
2.1 of [8], we may assume [H, U] C__ H tq U, and in particular, U C__ No(H).

Since H is Sylow in No(H)r, we must have sup(U)tq r’ : gl. This means
n 4 and TC_.T*H. Thus UC- T’H, and sup(U) sup(T*) as
Isup(U) Isup(H) l.
Clearly [ur[ q2, so U tq H has index q2 in U and H. Since U tq H fixes

an H-orbit b in Sfor some fl(W,1), we have UtqH .H. We know
that Nso(T) normalizes H. If HDT, then H:’l q2 for each
o’ fl(W,1)- 1o1. But this means that U has an orbit of length q, a
contradiction as U and H are permutation isomorphic. ThereforeH T, and
soU= T* H*.

Section 4

We define 0, fl and dim(a /) k- + 11, where
_< _< k + 1. These 0, form the orbits of So, Go and (o on flx ft.
Let C be the largest subgroup of Sn preserving 02. Chow and Dieudonn

have shown that C Go if n 2k and C to if n 2k. Therefore we are
essentially done once we show G _C C. In the case where n 2k, we define
3- < to,G >. Clearly ifC C, then G __.C C also. Thus we can replace G by
--when n 2k throughout this section.
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LEMMA 4.1. Assume k > 2. Let A be an orbit of G on flx ft. Then No(T)
is transitive on A t% (I" F).

Proof. Let " (,/3) E A. Assume that U is conjugate to T in G, and that
T and U are subgroups of Gr. We wish to show that U is conjugate to T in Gr.
There is a g E Gt such that TkJ Ug C__ R C__ P, where R and P are Sylow p-sub-
groups of G and G, respectively. By Lemma 3.1, if n #: 2k, we have T U,
so T is trivially conjugate to U in G. If n 2k and T : U, then there is a
graph automorphism h to C_ G such that T Uh. We are done if we can
choose h to be in G.
We observe that T and U are in So. Without loss of generality, we may let

P N So be lower triangular with respect to the basis [vl, v2,..., v,}, that is,

P(<v,,v,/t,...,v.>)C_C_<v,/l,v,/2,...,v.>) fori 1,2,...,n-1.

Thus U T*, v. t/3 and a,/3 F. Clearly there is a graph automor-
phism y taking T to T’. (T’ is described just before Corollary 2.2.) Further-
more, y can be chosen so that it has a "reverse action" on each point of fl of the
form < vq,..., vk

>. That is, y maps

< vq vk> to <v,...,v>
where vr v./l_,r and _< i _< n. Now let s be the image in So of the involu-
tion of SL(n,q) exchanging ve and v./l-e for < < n. Then ys maps T to
T* and fixes all points of fl of the form < vq,..., v, > In particular, it fixes
two. points ,, b of this form in I" where dim(, f b) t for each value of t such
that _< t _< k. We let n (’r,6). Then there is an x Nso(T) mapping n to
’. We set h-1 (ys)x. Then h E Gr, and, as T*< Nso(T), we have T Oh.
Thus T is conjugate to U in G again.
We conclude, by 3.5 of [11], that No(T) is transitive on AN fix(T)

A N (F x F).

Using Lemma 3.2 in place of Lemma 3.1, we obtain the following result.

COROLLARY 4.2. Assume k 2 and n :/: 4. If A is an orbit ofG on fl x fl,
then No(H) is transitive on A N (F x F).

LEMMA 4.3. If (n,k) #: (4,2), then G C_. C.

Proof. Suppose G C. Since So C__ G, there is an So-orbit 0,, where, 2, and a G-orbit A such that

0U0, C__ A C

Clearly 0,. N (F x F) : 1. If (n,i) :/: (2k, k + 1), then O,N (F x F) : also. In
this case, by Lemma 4.1 and Corollary 4.2, 0, and 01 fuse in No(T) rxr if k > 2,
and in N(H) rxr if k 2. Observe that both Na(T) and Na(H) satisfy the con-
ditions of N in Lemma 2.1. Hence their constituents on I" are contained in
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Nao(T)r, or, if n 2k + 1, in (No(T)r). Thus, we have a contradiction as no
such fusion takes place. Hence A 02 U Ok/l and n 2k. By hypothesis
(n,k) (4,2), so we must have k > 2.
We introduce Higman intersection numbers here [6]. Let c,/3,7 E ft. Recall

that A,(c0 [7 E flldim(c n 7) k + 11. We define

mj.r IAj(a) M A,() where

Let and r be any numbers except 2 and k + 1. As A 02 0k/t, we must have
m,,.,..r. In particular, m. m/..m

lf2.r k > 4, then m. ,: 0 and m/. 0, a contradiction.
Suppose k 4. We take any point di in ft. Let " A2(di) and ?7 Ak/(di).

Then

m:,:, _> ID’ + Z Io,,z and

where D’,Z,D and E are 2-dimensional subspaces of M ’,V- (di+ g’), i and
another contradiction.?7, respectively. Since n 8, we have m2, >

Suppose k 3. Let i < v, v,., v >, and let

Thus

where

and

" <v,v,v, > A(5) and

, I<u,x,,x:> [u5 <v,,v:> ,x, fl-(5+ )l,

[<ut,u2,y> [u C cS- ,u2 -cS,y C fl-(5+ ),

() n c_c_ <yt ,y2,x> [y, E i,y2 ?7 ,x fl (5 U ?7 U 0)l,

where O <Y, + ay2 > a Fq. Then

m.a > t:]) + (t, [;1) > 2[1 (q )) _> m,/t.a.
We have another contradiction. Hence G _.C C.

LEMMA 4.4. If (n,k) (4,2), then G C__ C.

Proof. Since So is a rank 3 permutation group, if G C, then G is
doubly-transitive. Let ct < vl, v2>,/3 < v2, v4 > and 7 < v3, v4 >.
Since G is 2-transitive, G, and Ga, have orbits of the same lengths on ft. Now
we compare the size of (So),-orbits and (So)a,-orbits on ft. We find that either
(i) G is triply-transitive or (ii) q 2 and the one-point stabilizer of G is a rank
3 permutation group with subdegrees 1,9 and 24.

Case (i). G is triply-transitive. By a proof analogous to the one in Lemma
4.1 (with G acting on fl x flx fl this time), we can show that NG(H) is triply-
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transitive on fix(H) I’. But No(H)r (7. Noo(T)r, which is not triply-transi-
tive, and we have a contradiction.

Case (ii). Here q 2 and Ga, has orbits of lengths 9 and 24. We let
di < v,_, v3>. Since Noo(T)r is not triply-transitive, if we list our (So)a,-orbits
and compare sizes, then we find that belongs to the orbit of length 24. As
IGI ,we see that 16 divides ]G"
We are assuming that to (2 G by the remark preceding Lemma 4.1. In the

proof of Lemma 4.1, we found an element ys of (o that fixes/3,7 and 8. Clear-
ly, as this ys maps T to T*, it maps fix(T) to fix(T*), and so does not fix all
points in F. Also (ys) E No(T), so ]ys] = 2eb, where b and t are positive in-
tegers, with b odd. Let g (ys) so g is a 2-element. Then g2 No(T), and as
b is odd, g does not fix I" also. Since g fixes /3, and
((o-Go)(Ga,-Gr). As (o C_. G and 16][G" Ga,[,we have
32 [[G Gr [. If we let P be a Sylow p-subgroup of G, as H C_. Gr, we see that
321H] IPI.
Now we choose our P to contain H and H*. If we consider the proof of

Lemma 4.1 again, we note that P contains a subgroup X of index 2 normaliz-
ing H. In the remark preceding Lemma 3.2, we mentioned that H is Sylow in L
and L Gr. But, as No(H)=PGL(3,2), we see that ]X]]8 ]HI. We have
another contradiction. Hence G C_. C.

Conclusion

THEOREM. Suppose <_ k < n and (n,k) q: (2,1). If n q: 2k, then
G C__ Go or An C__ G. If n 2k, then G C__ o or An C__ G.

Proof. The proof is by induction on n. As we noted in the introduction,
the case n 3 is done.

Suppose the theorem holds for all cases (n- 1, i), where

_
_< n 2 and

n _> 4. If we assume An G, then, by Lemmas 4.3 and 4.4, we have G ___C C.
By [2] and [3], it follows that G (_ Go if n : 2k and G _C (o if n 2k. Hence
the theorem holds for (n,k), and we are done.
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