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THE EILENBERG-MOORE SPECTRAL SEQUENCE
AND THE MOD 2 COHOMOLOGY OF

CERTAIN FREE LOOP SPACES

BY

LARRY SMITH

There has been considerable interest in computing the cohomology of the
space A(X) of free loops on X, at least since the theorem of Gromoll and
Meyer, connecting the unboundedness of the Betti numbers {dim H(AX; Q)}
with the existence of infinitely many closed geodesics on X when X is a
Riemannian manifold. There have been however relatively few explicit calcu-
lations. The minimal model theory of Sullivan has been used in the rational
case to obtain a few results. However with finite coefficients, aside from [12-1,
which only contains Betti number estimates, there seems nothing known,
apart from those facts that are easily knowable. In [9-1 we observed that the
free loop space sits in a fibre square for any connected space X, where A is
the diagonal map"

if(x)

A(X) X

X ,XxX

This observation makes available the Eilenberg-Moore spectral sequence (see
for example [8]) as a tool for computing H*(A(X); k) for simply connected
X. In 1-9] we dealt with the case where the coefficient field k was of charac-
teristic zero. In this note we take up the case of k Z/2, and derive the
following not so easily knowable result.

THEOREM. Let X be a simply connected space, and suppose Sq vanishes on
H*(X; Z/2) and

(*) H*(X; Z/2) - P[xl,..., x.]/(x]’,...,

where e en is a power of 2, and P[
the Eilenberg-Moore spectral sequence

] denotes a polynomial algebra. Then

E, H*(A(X) Z/2), E2 ** (H*(X" Z/2), H*(X" Z/2))Tor,(x;z/2)(R),(x;z/2
collapses.
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An essential step in the proof is the explicit computation of E2, along the
lines of [9; 3.5] (see also Proposition 1 below). A particularly simple example
of a space that satisfies (*) are the complex quadrics

Q...= ([z] CP(n + 1)lz02 +... + z2.+ 0}
when n + 1 is a power of 2. Combining the preceding theorem with the
known mod 2 cohomology of the quadric and applying Proposition 1 below
we have:

COROLLARY. Let n + 1 be a power of 2. Then there is a filtration on
H*(AQ.; Z/2) such that

P[u, v]
EH*(AQn Z/2) (Urn+ 1, V2)

(R) E[SU, sv] (R) F[zu,

where n 2m + 1, E[ ] an exterior algebra, and F[ ] a divided power
al#ebra and the de#rees of the #enerators are as follows:

deg u 2, deg su 1, deg zu 2m,

degv=2m+2, degsv=2m+l, degzv=4m.

The classes u and v have filtration O, su, sv filtration -1 and zu, zv filtration
--2.

Other examples of spaces that satisfy (*) are U(n)/SO(n), Sp(n)/SO(n), etc.
I want to thank Frank Conolley for suggesting the problem of computing

H*(AQ.; Z/2) as being a natural "test case" for extending the results of [9],
for as he pointed out, H*(Q.; Q) and H*(CP(n); Q) are isomorphic when n is
odd, so the rational results of [11] does not apply to deduce anything about
closed geodesics on odd quadrics.
The proof of the theorem requires a number of preliminary manoeuvres.

We begin by recalling some results from [9]. Let X be a connected topologi-
cal space, and A(X)..= Xsl the space of free loops on X. There is then the
fibre square

A(X) X

X ,XxX

where A is the diagonal map, whose fibre is the ordinary loop space f(X) of
X. Thus for simply connected X and coefficients in a field k we obtain an
Eilenberg-Moore spectral sequence [8], [9-1

E, = H*(A(X); k), E2 Torn,tX;k)(R)n,tX;k (H*(X; k), H*(X; k)).
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For notational simplicity it will be convenient to set

T*’*(A*) *’* (A*,Tor,t,(R) ,t, A*)

for any graded connected algebra A*.

Convention. For the remainder of this note all cohomology will be taken
with Z/2 coefficients, and we write H*( for H*( Z/2).

Using the mod 2 analog of [9; Section 3! one can easily prove"

Proposition 1. Let

A* P[x,, x,]/(x*, x,n)

where e el en is a power of 2. Then

T**(A*) A* (R) Tor]**(Z/2, Z/2)

P[xl, xn]
(R) E[su,..., sun] (R) F[’ru, "rUn]

(x’, x)

where E[ ] is an exterior allebra, F[ ] a divided power aloebra and

degsui=(-1, degui),i=l,...,n; degzui=(-2, ei),i=l,...,n

Proof For the sake of completeness we sketch a proof based on Hopf
algebra considerations. Since e is a power of 2 we may impose a Hopf
algebra structure on A* by declaring the generators to be primitive elements.
Then

A #

Z/2 A*--- A* (R) A*--- A*-- Z/2

is a coexact sequence of algebras, where # is multiplication and A the diago-
nal map. Moreover, A*(R) A* is free over A* [6; 4.4] so the change of rings
spectral sequence [1; XVI.6.1. (la)-! may be applied. There being no problem
with local coefficients we conclude

E, =*" TOrA,(R)A,(A*, A*),

E’ - A* (R) Tor,(Z/2, A*)(R) Tor,(Z/2, Z/2)

whence the spectral sequence collapses to the isomorphism

TOrA,(R)A,(A*, A*) - A* (R) TorA,(Z/2, Z/2).

The computation of TOrA,(Z/2, Z/2) is routine. I
Proposition 1 gives us the structure of the E2 term of the Eilenberg-Moore

spectral sequence of the fibre square Za(X) when X satisfies (*).

THEOREM 2. Let X be a simply connected space such that

(1) Sq H*(X Z/2)--, H*(X Z/2) vanishes
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and

(2) H*(X; Z/2) = PEx, x,]/(x]*, x.")
where el e. is a power of 2. Then the Eilenbero-Moore spectral sequence

E, =:, H*(A(X)), Ez T**(H*(X))

for .q’(X) collapses.

The proof of Theorem 2 proceeds by comparing {Er(.L,(X)), dr(q’(X))} to.
the corresponding spectral sequence for certain universal examples E. The
universal examples are H-spaces, so the following lemma allows us to reduce
the study of {Er(.L’(E), dr(.o.q’(E))} to more familiar Eilenberg-Moore spectral
sequence considerations.

LEMMA 3. Let X be an H-space. Then A(X) is homotopy equivalent to
X x (X). Moreover, for simply connected X the Eilenberg-Moore spectral
sequence

and

{E,(e(X), d,(e(X))}

{H*(X) (R) Er(X), (R) dr(X)}
are isomorphic, where {Er(X), dr(X)} is the Eilenberg-Moore spectral sequence
of the path-loop fibration

fX PX X.

Proof Since X is an H-space, so is AX Xs. Moreover, seen with this
H-space structure, the evaluation map e: A(X) X becomes an H-map. Thus

fiX AX X

becomes a principal bundle with

s: X AX: s(x) constant loop at x

as cross-section. Hence the multiplication gives a map

X x fX AX

which is a homotopy equivalence. Naturality and diagram chasing yields the
rest. 1

Proof of Proposition 2. We proceed by induction to show that dr 0. The
structure of E2("(X)) is given in Proposition 1. As an algebra we see that E2
is generated by classes

ul, of filtration zero, s-lu1, of filtration 1,

72,(zul), of filtration 2+1, s O, 1
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If there is a nonvanishing differential, then it must take a nonzero value on
some indecomposable element, and so it suffices from filtration consider-
ations to show that d, vanishes 2s(zul) for all s >_ 0, and all r >_ 2. To sim-
plify notations we drop subscripts, setting u u, d deg u,, e e, etc., and
consider ),2s(zu). Let E, be the stable two stage Postnikov system defined by
the fibre square

where

and

E., L(Z/2, de)

K(Z/2, d) K(Z/2, de)

,*(ide i

ia, e Hd(K(Z/2, de)), in Ha(K(Z/2, d)

are the fundamental classes. The cohomology of Em can be computed by [7;
(2.1) and (2.2]. We get

z/au, 3
H*(E,) (R) Poly

where: j z*id, and Poly is a certain polynomial algebra (see also [5]). Stan-
dard Hopf algebra considerations applied to the Eilenberg-Moore spectral
sequence of the fibration

show that d2 0 (the usual argument that d2 of an indecomposable of
minimal degree 4= 0 implies d2 (there on) is primitive, and an inspection of
primitives). Thus in the Eilenberg-Moore spectral sequence of the fibre
square

one sees d2(,L’a(E,n))= 0 by noting that E, is an H space and applying
Lemma 3. Let

f: X K(Z/2, d)
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represent u, i.e., f*id u H2(X). Since ue= 0 there is a lift b in the indi-
cated diagram

K(Z/2, d)

such that b*j u. The map 4) defines a map of fibre squares

and one easily sees that

e(). e(x)--, (m)

ae()*(r,(rj)) z(ru).

Since d2 vanishes on 72s(’lTj) it follows that d2 vanishes on 2s(’lsu) by naturality.
An induction is thus started. Assume now that we have shown dr 0 for

r 2 ,2k- 2 and consider the inductive step. We replace the two stage
Postnikov systems by the stable k / stage Postnikov system

P(

=" P(1)

P(0) K(Z/2, d)

of [4; Theorem 4.2, p 2, s 1]. The essential features of this example for
our purposes are as follows. Let j H2(p(k)) be the image of the fundamental
class i2 e H2(p(0)). Then"

(i) je O.
(ii) The first nonzero differential in the Eilenberg-Moore spectral

sequence of the fibration P(k) PP(k) P(k) defined on a class ?2s(zj) is

d2k+l-1 (4; (6.4)].

Let f: X-- P(0) K(Z/2, d) represent u, i.e., f*(i,) u. Then in the diagram

,P(k)

P(0)
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we can find a lift q because the successive k-invariants used to construct the
tower () all begin with a fl Sq [4; Theorem 5.2 (1)], and fl O, H*(X) .
By commutativity, b*(j) u. The map b induces a map of fibre squares

a(q): &a(X) ,(P(k))

and hence a map of Eilenberg-Moore spectral sequences. From property (i)
we see that

(qS)*(y,(zj) ,(zu), 0, 1

Since P(k) is an H-space, it follows from (ii) and Lemma 3 that d,(,(’cj)) 0
for r 2, 2’ / 2 and 0, 1, By naturality we conclude that

dr((X))(,,(’cu)) 0 for r 2, 2’ + 2.

This completes the inductive step and hence the proof of Proposition 2. |
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