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CURVATURE PROPERTIES OF HARMONIC FOLIATIONS!

BY

FraNz W. KAMBER AND PHILIPPE TONDEUR

Introduction

A foliation & on a manifold M is harmonic, if the canonical projection
n: TM — @ of the tangent bundle to the normal bundle Q is a harmonic
Q-valued 1-form [5], [6]. For this one needs a connection V in @, and a
Riemannian metric g,; in M. In this paper we examine the interplay of the
harmonicity property with the curvature of the Riemannian metric g, and
the curvature of the connection V. As a typical application we mention the
result of Proposition 2.36: a harmonic foliation of codimension one on a
compact flat Riemannian manifold is necessarily induced from a hyperplane
foliation of Euclidean space. Other representative conclusions are Corollaries
2.15, 2.27 and Theorem 2.34.

A rich variety of harmonic foliations were discussed in [6]. See also [7]. If
V is defined by formulas (2.16) below in terms of the foliated bundle structure
in Q, and the Riemannian connection V¥ on M, then & is harmonic if and
only if all leaves of &# are minimal submanifolds of M [6, 3.3]. A foliation is
said to be taut, if there exists a Riemannian metric g,, such that all leaves of
& are minimal. The study of such foliations was begun by Gluck [2],
Rummler [14] and Sullivan [16].

The main tools exploited in this paper are the Weitzenbdck formulas (1.1)
and (1.2). One novelty is that we prove (1.1) under slightly different hypothe-
ses than usual: the formula is established for a 1-form w on a Riemannian
manifold M with values in a vector-bundle E— M carrying any connection
V (no metric on E is involved), but on the other hand we require w to be
dy-closed. After the applications to harmonic and to Riemannian foliations in
Section 2, we prove (1.1) as a consequence of an equation of Codazzi type
(3.8), which may be of independent interest. The last section is devoted to the
formula (4.3) for the tension of the Gauss section of a foliation #. It is a
consequence of the Weitzenbock formula (1.1). Besides the derivative of the
torsion (%) of # there is an additional term involving the normal curvature
of & and the curvature of M. Restricted to a leaf £ of a Riemannian foli-
ation of Euclidean space, it reduces to the Ruh-Vilms type for the tension of
the Gauss map of & [15].
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1. Weitzenbock formulas

We begin with the statement of the main technical tool of this paper. Let
E— M be a smooth vectorbundle over a Riemannian manifold. A connection
V in E induces a connection on E-valued forms Q(M, E), and an exterior
derivative

dy: (M, E)— Q"*Y(M, E), r>0.

For a Riemannian metric g,, on M the star operator on forms Q(M) on M
extends to E-valued forms.

x: Q'(M, Ey—» Q" "(M, E), n=dim M.
The codifferential d¥: Q" (M, E)— Q' ~Y(M, E), r > 0 is given by
d¥w = (=1 4o x 0, we Q(M, E),

and the Laplacian A by dyd¥ + d¥ dy. At a point x € M we fix an orthonor-
mal basis e, ..., e, of T M. Let E,, ..., E, be a local framing of TM in a
neighborhood of x, coinciding with ey, ..., e, at x and satisfying V¥ E; =
(V¥ Egp), = 0. Here VM denotes the Riemannian connection of (M, g,,). The
Weitzenbdck formula evaluates the Laplacian of w € Q'(M, E) as follows:

(1.1) Ao),=-Y 9,9, 0+ S),
A

where, for a vector field X,

S(@)(X) = %: {Rvles, X)o(e,) — o(Rymle s Xe o)}

Only the value X, € T, M enters into this formula. Here Ry denotes the cur-
vature of the connection V in E, and Rys the curvature of the Riemannian
connection V™ in TM.

This formula is usually proved (see [1], [10], [11]) under the additional
assumption that E— M is a Riemannian vectorbundle, i.e., equipped with a
metric g compatible with the connection V in the sense that Vg =0. In
Section 3 we give a proof of (1.1) for the special case of a closed 1-form w.
but without the assumption of any metric on E. This is a consequence of the
Codazzi type equation (3.8).

If g5 is a metric on E such that Vg; = 0, we can form the scalar product
dai(Aw, ). Formula (1.1) yields then the following well-known “scalar” Weit-
zenbdck formula

(1.2) A 0] = Vo * - ga(Aw, ©) + gai(S(), o).
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The Laplacian AM on the left hand side is the ordinary Laplacian d*d on M

(note the sign convention adopted) applied to the function |w|? = gq:(w, )
given by

o2 = Z gr(wley), wley)).
A=1
The first term on the right hand side is given by

I Vo I:zc = 42—11 gﬂl(VeA w, vmw)'

For M closed and oriented, the _global scalar product {w, @’ for forms w,
o' € Q' (M, E) is defined by

(o, 0y = Lgs(w/\ x0), Jo|? = o, v).

d¥ is then the formal adjoint of dy with respect to ( , > and, by Green’s
theorem, formula (1.2) yields
(1.3) Ao, 0y = |Vo|? + (S©), 0>, o eQ (M, E).

2. Harmonicity of foliations and curvature

The context for the applications in this section is as follows. Let L ¢ TM
be an integrable subbundle defining a foliation %, and Q = TM/L the
normal bundle. If # is Riemannian, i.e., if there exists a holonomy invariant
metric gy on Q, there is a unique metric and torsion-free connection V in Q
[6, 1.11].

A Riemannian metric g,, on M defines a splitting o of the exact sequence

21 0-L>TMsQ—0

with ¢Q the orthogonal complement of L. The induced connections ¥ on
Q-valued forms involve V and the Riemannian connection V¥ of g,,.

In the presence of metrics g, and g,, we refine the choice of local framings
as follows. We begin with an orthonormal basis of T,M with ¢; € L, for
i=1...,p and e, €0Q, for a=p+1,...,n Then E, ..., E, is a local
framing of TM in a neighborhood of x with e, = (E,), and VX E; =0 (4,
B =1, ..., n). But we neither claim nor require that (E;), e L, for 1 <i<por
(E),€0dQ, for p+1<a<n at points y # x. We do have (nE), = ne; =0
for 1 <i < p. In the case of a bundle-like metric g,, the vectors (nE,), = ne,
for p + 1 < a < n form, in addition, an orthonormal basis of Q,.

Consider the canonical projection n: TM — Q as Q-valued 1-form. Then

2.2) dym =0,
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since dy 7 equals the torsion Ty given by

2.3) ToX, Y) = Vyn(Y) — Vy n(X) — 2 X, Y]

which is zero.
The Ricci operator pyw: TM — TM of VM is given for X € T, M by

(24) pym(X) = ; Ryu(X, e )ey.

With these notations one obtains the following statement from (1.2).

2.5 PROPOSITION. Let & be a Riemannian foliation of codimension q on

(M", gp) with holonomy-invariant metric go on Q (gy is not assumed to be
bundle-like). Then for n € QY(M, Q) one has the identity

(2.6) —$AM |2 * = Vn)? — gau(A, 1) + gau(S(n), 7),

where
Inlz = ; go(nle ) me) =Y goln(e,), mle,),
|V1r |:2c = AZBQQ((VTC)(‘?A, ep), (Vn)(eA, ep))

and

gﬂl(S(n)a n)x = Z gQ(RV(eaa ep)n(ea)9 n(eﬁ)) + Z gQ(n(pVM(ea))a n(ea))°

a¥p a

For compact oriented M one obtains the following identity for the global scalar
products:

2.7 (Am, )y = ||Vn||? + {S(n), ).

Note that dyz = 0 by (2.2), so that Ax = dyd¥ =, and therefore (An, n) =
lld¥ =%

To analyze the sign of the term gq.(S(%), 7), it is convenient to introduce
the self-adjoint operator B,: TM — TM by

(2.8) Iu(B. X, Y) = go(n(X), n(Y)) for X, Y e [TM.
Clearly ker B, = L, im B, = 6Q = L. We further refine the choice of local

framings by requiring that the orthogonal basis ey, ..., e, of T, M also diago-
nalize B,, i..

29 Be)=0(=1,...,p); Ble)=4e,(x=p+1,....,n
where 4, > 0, since g, is positive definite. By (2.8) we then clearly have

(210) gQ(n(ea)’ n(eﬁ)) = }'a 60:/3
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Now consider the normal sectional curvature Ky(e,, €) in direction of the
normal 2-plane spanned by e,, e; defined by

@11 Kelew ep) = f;; goRe(r(e.), neghmiey), mle.).

Note that since V is a basic connection, i(X)Ry =0 for X e 'L [6, 1.13],
hence Ry(n(e,), —) = Ryle,s —).
Further, by (2.8) and (2.9),

(2.12) go(nlpymle,), mle,)) = gu((By © pyme,, ;)
= gulpvmle,); Bre,)

= j'az gM(pVM(ea)9 ea)‘
Using (2.11) and (2.12) we then obtain

(2.13) gai(8(n), n), = — ;ﬂ'la Ap Kyle,, ep) + Z Ay Iu(pynley), e).

Thus non-negative Ricci curvature on M and non-positive normal sectional
curvature Ky imply gq.(S(n), #) = 0 and, a fortiori, {S(n), n) > 0. We note
that in the case of a bundle-like metric g,, these curvature assumptions run
contrary to the spirit of the Gray—O’Neill formula (see (2.20) below), unless
both curvatures vanish and ¢Q = TM is an involutive subbundle. We discuss
the bundle-like case after finishing the present discussion. From (2.5) and
(2.13) we obtain the following result.

2.14 PROPOSITION. Let & be a Riemannian foliation of codimension q on a
closed oriented manifold M. Let g\, be a metric on M with non-negative Ricci
curvature, and assume the normal sectional curvature Ky of go to be non-
positive. Then

dtn=0<Vn=0 and go(S(n), 1) =0.
Now for X, Y e I'TM we have
VrxXx, Y) = (Vxa)(Y) = Vxn(Y) — n(V¥ Y).

It follows that (Va)X, Y)=0 for X, Ye L iff V¥Y e 'L for X, Y e I'L.
This condition means that each leaf £ is a totally geodesic submanifold of
M [8, vol. 11, p. 56, 57].

2.15 COROLLARY. Let & be a foliation satisfying the conditions in (2.14).

() If m is a harmonic form, then each leaf & is a totally geodesic sub-
manifold of M.

(i) If goi(S(m), m),, # O for at least some x, € M, then 7 is not a harmonic
form.
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One way to satisfy the condition Ky < 0 is to assume g = 1, in which case
Ky =0 (for lack of normal 2-planes). Corollary 2.15 holds then under the
assumption that the Ricci curvature of g,, is non-negative. If the Ricci oper-
ator (pym),, is positive for at least some x, € M, we are in case (ii). But for
q = 1 we obtain sharper results in Theorem 2.34, where & is not required to
be a Riemannian foliation.

Next we apply the Weitzenbock formula to harmonic foliations [5], [6].
We have two types of applications: (a) results assuming g,, to be bundle-like;
and (b) results in the codimension one case, where less assumptions on the
metrics g, and g, are needed.

We discuss first the bundle-like case, i.e., go can be assumed to be induced
by gu. The projection n: TM — Q is then an orthogonal projection. The
particular connection V in Q, given by [6, 1.3],

n[X,Y] for XelIL

n(V¥Y) for X eTlaQ, seTQ, ¥, = ofs) € I'aQ,

(2.16) Vys= {
is then the unique metric and torsion-free connection in Q [6, 1.11]. The
harmonicity of =, i.e., the condition d¥ = = 0 (since we already have dy 7 = 0),
is then equivalent to the property that all leaves of & are minimal sub-
manifolds of (M, g,,) [6, 2.28]. The Q-valued symmetric bilinear form a =
— V7 restricted to any leaf ¥ < M of & is then the second fundamental
form of the Riemannian submanifold ¥ < M. By [6, 2.26], the tension
T =Tr a of # is evaluated at x € M by

(2.17) t,=Tra= ; aley, e4) = Zi: ale;, e) € Q,.

It is immediate that
(2.18) t=d¥m,

and & is harmonic iff 1 = 0 [6, 2.28].
The operator B,: TM — TM defined by (2.5) is the map o o = and the
non-zero eigenvalues 1, equal 1. Then formula (2.13) becomes

(2.19) gau(S(n), 1), = — Z Kyle,, ep) + Z Kyu(e,, e4)

a#p a* A
where Kyule,, e,) denotes the sectional curvature of the metric g,, in direc-
tion of the 2-plane spanned by e,, e, (@=p+1,...,n; A=1,...,n). The
sectional curvatures Kyu(e,, e5) and Kyl(e,, e;) are related as the sectional cur-
vatures in the total space and base space of a Riemannian submersion.
Therefore by the formula of Gray [3] and O’Neill [12] we have

2

3
(2‘20) KV(ew eﬂ) - KVM(ew eﬂ) = Z nl[Ea’ Eﬁ]

X

where nt: TM — L denotes the orthogonal projection nt = id —m.
At this point it is convenient to refer to the self-adjoint map
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A(v): TM — TM uniquely associated to a by the formula
2.21) In(AW)X, Y) = go(uX, Y), v)

for veI'Q and X, Y e I'TM [6, 2.8]. In terms of the matrix representation
[6, 2.9]

_ (A A
(2.22) A= (A; 0 >,
formula (2.20) then reads
(2.23) Kyle,, eg) — Kyule,, e5) = 3| Ay(e.)eq |,
and (2.19) takes the form
(224 gai(S(m), M), = =3 ) | Aylees|* + Z; Kynu(e, €)
a#p a,
where i ranges over 1, ..., p. Note that the first sum on the right hand side is
just | A, |2 for A,: Q— Hom (¢Q, L). Clearly, from (2.22),
(2.25) la|?> =4, > + 2|4, 1%

Since |n|? =q is constant, AM|n|> =0. Thus from (2.6) (2.24) (2.25) we
obtain the following result.

2.26 THEOREM. Let & be a Riemannian foliation of codimension q on M
with bundle-like metric g,;. Then

| Ay > =|A4;1* + gau(Am, 7) — Z Kyule,, €).
a,l

A, =0 iff all leaves of &# are totally geodesic [6, 2.6]; and A4, =0 iff
0Q = TM is involutive [6, 2.15]. Then & has a totally geodesic complemen-
tary foliation by [6, 2.15]. We obtain the following conclusion.

2.27 COROLLARY. Let &# be a Riemannian foliation of codimension q on M
with bundle-like metric g,,. Assume 6Q = TM to be involutive. If Kyy = 0, F
harmonic implies F totally geodesic.

Note that no compactness is required for the proof. Therefore we obtain
the following application.

2.28 COROLLARY. Let (M, g,) be a Riemannian manifold of the form
M =~ T'\R", T a discrete torsionfree subgroup of the Euclidean group. Let & be
a codimension one Riemannian foliation such that g, is bundle-like. If F is
harmonic, then & is induced from a I'-invariant hyperplane foliation on R".

Proof. % is induced from a T-invariant foliation & on R". & is har-
monic, hence totally geodesic, and hence a hyperplane foliation of R". |

This result should be compared with the closely related Proposition 2.36.
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Finally we discuss foliations of codimension one in more detail. We
assume that & is transversely oriented by a unit normal section Z € I'dQ.
Then & is defined by the 1-form w(X)=gu(X,Z) for X e I'TM and
i(X) = w(X) - Z. Then & is harmonic iff d*w = 0 [6, 3.9] and Riemannian iff
do =0 [6, 3.14]. For the real-valued 1-form w the identity (1.2) holds
without any restriction on g,,. The term gq:(S(w), ) involves only the Ricci
operator and equals Ric™ (Z, Z). Since w is of unit length, we have

(2.29) dor(Aw, ©) = | Vo |2 + Ric* (Z, Z).

For compact oriented M, by integration with respect to the Riemannian
volume #,,, we obtain

(2.30 ldw)? + |d*o|* = |Vl + LRicM (Z, Z)ny.

We compare this with the integral formula of Yano (see [9, p. 154])

(2.31) ld*w||* = L Tr (VMZ)) - g + L RicY (Z, Z) - ny,

where VMZ: TM — TM is given by (VMZ)(X) = V¥ Z for X e I'TM. Thus
(232 IVo|? = |ldo||* + LTr (V¥Z2)?) - iy

Observe that in fact VMZ: TM — L, since gpu(V¥ Z, Z) = 4Xg\(Z, Z) = 0.
Thus the restriction of —V™Z to L is the Weingarten map W(Z): L— L [6,
2.10], which is self-adjoint. It follows that Tr (W(Z)?) > 0. But also

(2.33) Tr (VM2)}) = Tr (W(Z)*) = 0.
The equality of the traces follows from —VMZ/L = W(Z) and
9n(Y™Z)’Z, Z) = g\(V22Z, Z) = 4V Zgu(Z, Z) = 0.

The following statement sharpens the results of (2.15) and (2.27) in the case
g = 1. Note that & is not assumed to be Riemannian. Note added in proof:
The following result is also contained in the paper by G. Oshikiri, A remark
on minimal foliations, Tohoku Math. J., vol. 33 (1981), pp. 133-137.

2.34 THEOREM. Let & be a transversally orientable foliation of codimension
one on a compact oriented Riemannian manifold M with non-negative Ricci
curvature.

(i) If the Ricci operator is positive for at least one x, € M, the foliation is
not harmonic.
(ii) If & is harmonic, then & is totally geodesic.
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Proof. (i) Under the Ricci curvature assumption made,
fu Ric™ (Z, Z)np > 0.

Since Tr (VMZ)?) > 0, it follows from (2.31) that d*w # 0. Thus % is not
harmonic [6, 3.9].

(i) If d*w =0, (2.31) implies Tr (VMZ)?) = 0. By (2.33) it follows that
Tr (W(Z)%) = 0. Since W(Z) is self-adjoint, all eigenvalues of W(Z) are zero,
hence W(Z) =0. The vanishing of the Weingarten map of the foliation
implies that & is totally geodesic. [}

In this context it is worthwhile to note the following fact.

2.35 PROPOSITION. On a compact oriented Riemannian manifold M with
non-negative Ricci curvature and positive Ricci operator at some x, € M, or
with strictly negative sectional curvature, there is no transversally orientable
Riemannian foliation of codimension one.

Proof. Under the stated assumptions on the Ricci curvature, the harmo-
nic 1-forms vanish by Bochner’s method (for example, see Wu [18]). Thus
Hpp(M) =0, so that every closed 1-form w is of the form df for some func-
tion f: M — R. But a transversally orientable Riemannian foliation of codi-
mension one is given by a nowhere zero closed 1-form [6, 3.14], which does
not exist on M. Similarly if the sectional curvature is strictly negative, by a
result of Tsagas [17] every closed 1-form has zeroes. ||

We return finally to the situation discussed in Corollary 2.28. As a conse-
quence of Theorem 2.34, we obtain the following related result.

2.36 PROPOSITION. Let & be a transversally oriented harmonic foliation of
codimension one on a compact oriented flat Riemannian manifold M. Then &
is induced from a hyperplane foliation on the universal covering M" =~ R".

Proof. By (2.34), & is totally geodesic. Its lift # to R" is therefore totally
geodesic, hence a hyperplane foliation. ||

3. Codazzi equation

We return to the context of the first section. For w € Q!(M, E) the form
Vo e QY(M, T*M ® E) is defined by

(3.1) (Vxo)Y) = Vyo(Y) — (V¥ Y) for X,Y e 'TM.
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32 LeMMA. (dy o)X, Y) = (Vx o) Y) — (V; 0)(X).

Proof.
Vxo)Y) — (Vy o)X) = (Vx oY) — (V¥ Y)) — (Vy f(X) — oV} X))

= Vyo(Y) — Vyo(X) — o([X, Y]) — o(Tym(X, Y))
= (dy )X, Y) — o(Tym(X, Y)).
Since the torsion Tyy = 0, the result follows. |
Let «, = —Vw. By (3.2) it follows that dy w = 0 implies
3.3) 0 (X, Y) = 0 (Y, X) for X, Y e 'TM.
Next consider Vo, = — V2w € Q'(M, T*M ® T*M ® E) given by
34 Vya XY, Z) = Vya (Y, Z) — o, (Y, VXY, Z) — a (Y, V¥ 2).

3.5 LemMa. (Vya XY, Z) = (Vya )XZ, Y).

Proof. This follows from the symmetry (3.3). |
Note that (3.2) applied to a, € Q!(M, T*M ® E) yields
(3.6) (v )X, Y; Z) = (Vya )Y, Z) — (Vya )X, 2).
The expression need not vanish. In fact we have the following result.

3.7 THEOREM. Let E— M be a smooth vectorbundle with connection V over
a Riemannian manifold M. For w € QM, E) satisfying dyw =0, and «, =
—Vw we have the Codazzi type equation
B8) (Vxa, XY, Z) — (Vya )X, Z) = —Ry(X, Y)(Z) + o(Ryu(X, Y)Z)

for X, Y, Z e TTM.

Proof. By (3.4),
Vxa XY, Z) = —Vy(Vy(2) — (VY Z))
+ Vory 0(Z) — o(V¥y 0Z) + V4 V¥ Z) — oV V¥ 2).
The terms Vy (V¥ Z) + Vy (V¥ Z) will also appear in the corresponding
expression for (Vy o )(X, Z). Therefore
Vxa XY, 2) — (Vyo )X, Z) = —{Ry(X, Y)(Z) + Vix,y,(Z)}
+ {VTVM(X,Y) o(Z) + Vix,yyoZ)}
—o{VryanZ + Vixn Z}
— o{Ry(Y, X)Z + Viy x, Z}.
1

The vanishing of the torsion Tys implies the desired formula.
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3.9 Remark. To explain in which sense equation (3.8) is of Codazzi type,
let Q be the normal bundle of a foliation # on M, and n: TM — Q be the
canonical projection. A Riemannian metric g,, gives rise to a connection V in
Q by (2.16), and the second fundamental form & = — V7. The restriction of a
to any leaf % is the second fundamental form of the Riemannian sub-
manifold & <« M. If X, Y and Z are tangent vectorfields to &, then (3.8)
is of Lodazzi type for & — M, expressing the normal component of
Ryu(X, Y)Z b

X D2y (VxaXY, 2) — (VyalX, 2)

Now we turn to the proof of the Weitzenbock formula (1.1). First we con-
sider the trace ©(w) = Tr «, € I'Q of the symmetric bilinear Q-valued form

o,. In terms of an orthonormal basis e, (4 =1, ..., n) at x € M it is evalu-
ated by
(3.10) WAw), =Y ay(ey, e4) € O

A

Let E,, ..., E, be a local framing of TM in a neighborhood of x, coinciding
with ey, ..., e, at x, and satisfying VX Ep = (V¥, Ep), = 0.

3.11 LeMMA.  (Vyt(@), = Y0 (Vxa )ey, ) for X e TTM.

Proof. From (3.3) and (3.4) we get

Vxa XY, Y) = Vya, (Y, Y)— 20, (V¥Y, Y)
Thus

Y (Vxao)ew ed) = Vx 2 tuless eq) — 2 Y, a,(V¥ Ess €.
A A A
But (V¥ E,), = 0, which yields the result. |

This formula can equivalently be expressed by
(3.12) Vyt(w) = Vy Tr a, = Tr (Vya,)

and is a consequence of the symmetry of a,,.
Next we observe that

(3.13) H(w) = d¥ 0.
This is immediate from the evaluation formula
@w),=-Y V., o)) =Tra,.
A

Since dy w = 0 by assumption, we obtain for the Laplacian Aw the expression
(3.14) i(X) Aw = i(X)dy d¥ o = i(X)dy 1(0) = V().

The Codazzi type equation (3.8) now yields
(3.15) Vyt(w) — Z (ve,4 %, )X, eq) = Z {Ryleq, X)w(e,) — o(Ryule s X)ey}.

A A
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Further
B.16) (V. a,)X,e) =V, a,X, E,) —a (V¥ X, e,) — o, (X, VXE,)
= =V (Vg 0)X) + (V., o)V X)
= = (¥, 95, 0)X).

Substituting (3.14) and (3.16) in (3.15) yields (1.1).
To derive the scalar Weitzenbock formula (1.2), we need a metric gz on
E— M compatible with the connection V, i.e., satisfying

3.17) (VxguXs, 1) = Xgg(s, t) — ge(Vx s, t) — gels, Vx ) =0
for X e I'TM and s, t € I'Q. Then
(3.18) —AMwP), = —@*d|o?), =} (V] d|o]*)e,)

4

= ; (Veid| o P)E,) — (d|w PNV E L)
= ; (E4E 4 gai(w, @)),.

Using (3.17) we have
E gai(w, ) = 2991(VEA o, ),
ELE goi(w, w) = z(gm(vz,, VEA , ©) + gm(vEA w, vm w)).

This identity and (1.1) substituted in (3.18) yield then the well-known formula
(1.2).

4. Ruh-Vilms formula

Let & be a foliation of codimension g on a Riemannian manifold M. Let

p
GY(M)— M

be the Grassmannian bundle of codimension g subspaces in TM. The sub-
bundle L =« TM is characterized by the Gauss section y: M — GYM). Its
derivative y, is a 1-form on M with values in the tangent bundle of GYM).
Since 7 is a section, the horizontal component y¥ € Q'(M, p*TM) is given at
x € M by

P =id: T,M— (p*TM),,) = T, M.

To describe the vertical component y), we first observe that the tangent
bundle along the fibres of G{M)— M is given at y(x) = L, by Hom (L,, Q,).
Then

4.1 Ph=a,
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ie.,
(XNY) =0 (X, Y) for X e T,M,YelL,

where « = —Vr is the second fundamental form of & (see Section 2).
According to [1], the tension 1(y) is given by

2(y) = —d¥y} € T Hom (L, Q)

We prove the following result.

4.2 THEOREM. Let & be a foliation of codimension q on a Riemannian
manifold M, and V a torsion-free connection in the normal bundle. For the
tension 1(y) € Hom (L, Q) of the Gauss section y: M— GYM) of # we have
the formula

(4.3) (NLX) = V,1(F) — S(m)(X)

forxe Mand X € L,.

To describe the Q-valued 1-form S(n) on the right hand side, we choose a
local framing as in Section 2, by starting with an orthonormal basis of T, M
withe;e L, (i=1,...,p)and e, e 0Q, (@ =p+1,...,n). Then for X € L,,

(4.4) S(M)X) =}, Rele,, X)nle,) + nlpon(X))

Proof. If V is a torsion-free connection in Q, then dyn = 0 (see (2.2) and
(2.3)). Therefore An = dyd¥n. But d¥n = 7(F) (2.18), thus An = dyo(F) =
Vi(#). Then formula (1.1) yields

(Vo(F)), = —(Tr V*n), + S(n),
where
—Tr V21 = Tr Yo = —d¥a e T Hom (TM, Q).

The restriction of the last expression to Hom (L, Q) is 7(y). Therefore we
obtain the identity (4.3).

The specific form (4.4) for S(n) for the special framings described follows
from the vanishing of Ry(X, Y) for X, Y € I'L, and formula (2.4). |

If # is a Riemannian foliation, and V the unique torsion-free and metric
connection on Q, then Ry is basic [6, 1.13]. Therefore, the terms Ry(e,, X)
vanish for X € I'L. Note that Vys for X e I'L is the canonical (partial) Bott
connection Vs for s € I'Q. This yields the following result.

4.5 COROLLARY. Let & be a Riemannian foliation of codimension q on a
Riemannian manifold M. For the tension t(y) of the Gauss section y of & we
have the formula

10)X) = Vx o(F) — n(pyu(X))
forxeMand X € L,.
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If M is Ricci-flat, this reduces to a formula of Ruh-Vilms type for a leaf

& < M, implying that the Gauss section y is harmonic iff the tension of &
(i.e., the mean curvature) is parallel along £ [15].
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