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CURVATURE PROPERTIES OF HARMONIC FOLIATIONS

BY

FRANZ W. KAMBER AND PHILIPPE TONDEUR

Introduction

A foliation - on a manifold M is harmonic, if the canonical projection
re: TM---, Q of the tangent bundle to the normal bundle Q is a harmonic
Q-valued 1-form [5], [6]. For this one needs a connection V in Q, and a
Riemannian metric 9M in M. In this paper we examine the interplay of the
harmonicity property with the curvature of the Riemannian metric 9t and
the curvature of the connection V. As a typical application .we mention the
result of Proposition 2.36" a harmonic foliation of codimension one on a
compact fiat Riemannian manifold is necessarily induced from a hyperplane
foliation of Euclidean space. Other representative conclusions are Corollaries
2.15, 2.27 and Theorem 2.34.
A rich variety of harmonic foliations were discussed in [6]. See also [7]. If

V is defined by formulas (2.16) below in terms of the foliated bundle structure
in Q, and the Riemannian connection Vu on M, then - is harmonic if and
only if all leaves of - are minimal submanifolds of M [6, 3.3]. A foliation is
said to be taut, if there exists a Riemannian metric #u such that all leaves of
ff are minimal. The study of such foliations was begun by Gluck [2],
Rummier [14] and Sullivan [ 16].
The main tools exploited in this paper are the Weitzenb6ck formulas (1.1)

and (1.2). One novelty is that we prove (1.1) under slightly different hypothe-
ses than usual: the formula is established for a 1-form co on a Riemannian
manifold M with values in a vector-bundle E---, M carr.ying any connection
V (no metric on E is involved), but on the other hand we require co to be
dr-closed. After the applications to harmonic and to Riemannian foliations in
Section 2, we prove (1.1) as a consequence of an equation of Codazzi type
(3.8), which may be of independent interest. The last section is devoted to the
formula (4.3) for the tension of the Gauss section of a foliation -. It is a
consequence of the Weitzenb6ck formula (1.1). Besides the derivative of the
torsion z(-) of - there is an additional term involving the normal curvature
of and the curvature of M. Restricted to a leaf of a Riemannian foli-
ation of Euclidean space, it reduces to the Ruh-Vilms type for the tension of
the Gauss map of &a [ 15].
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1. Weitzenb6ck formulas

We begin with the statement of the main technical tool of this paper. Let
E M be a smooth vectorbundle over a Riemannian manifold. A connection
V in E induces a connection on E-valued forms f’(M, E), and an exterior
derivative

dr: r(M, E)--- t’lr+ I(M, E), r > 0.

For a Riemannian metric 9u on M the star operator on forms f’(M) on M
extends to E-valued forms.

fr(M, E) n-r(M, E), n dim M.

The codifferential d" r(M, E) f-I(M, E), r > 0 is given by

d co (- 1)ntr+ 1)+ , dv * 09, 09 6 fr(M, E),

and the Laplacian A by dvd + d dr. At a point x 6 M we fix an orthonor-
mal basis el, en of TxM. Let El, En be a local framing of TM in a
neighborhood of x, coinciding with el, en at x and satisfying V Ea
(VA Ea)x 0. Here Vu denotes the Riemannian connection of (M, #u). The
Weitzenb6ck formula evaluates the Laplacian of co fl(M, E) as follows:

where, for a vector field X,

S(co),,(X) {Rv(ea, X)co(ea) co(Rv(ea, X)ea)}.
A

Only the value Xx e T,, M enters into this formula. Here Rv denotes the cur-
vature of the connection V in E, and RvM the curvature of the Riemannian
connection Vu in TM.

This formula is usually proved (see [1], [10], [11]) under the additional
assumption that E M is a Riemannian vectorbundle, i.e., equipped with a
metric 9E compatible with the connection V in the sense that VOE 0. In
Section 3 we give a proof of (1.1) for the special case of a closed 1-form co.
but without the assumption of any metric on E. This is a consequence of the
Codazzi type equation (3.8).

If 9r is a metric on E such that VO 0, we can form the scalar product
9nl(Aco, co). Formula (1.1) yields then the following well-known "scalar" Weit-
zenb6ck formula

(1.2) -1/2A co 12 I?co 12 gta,(Aco, o) 4- gt,(S(co), 09).
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The Laplacian AM on the left hand side is the ordinary Laplacian d*d on M
(note the sign convention adopted) applied to the function [col 2 gnl(co, 09)
given by

10912x gE(co(ea), co(ea)).
A=I

The first term on the right hand side is given by

Vo) Ix2 gtl(ea (.0, e,(,O).
A=I

For M closed and oriented, the global scalar product (o9, o9’) for forms o9,

09’ fr(M, E) is defined by

d is then the formal adjoint of dv with respect to ( ) and, by Green’s
theorem, formula (1.2) yields

(1.3) (Aco, co) IIcoll 2 / (S(co), co), 09 fX(M, E).

2. Harmonicity of foliations and curvature

The context for the applications in this section is as follows. Let L c TM
be an integrable subbundle defining a foliation ’, and Q TM/L the
normal bundle. If - is Riemannian, i.e., if there exists a holonomy invariant
metric Or2 on Q, there is a unique metric and torsion-free connection V in Q
I-6, 1.11].
A Riemannian metric #M on M defines a splitting tr of the exact sequence

(2.1) 0--. L- TM Q ,-- 0

with aQ the orthogonal complement of L. The induced connections on
Q-valued forms involve V and the Riemannian connection VM of #M.

In the presence of metrics #Q and gM we refine the choice of local framings
as follows. We begin with an orthonormal basis of T,M with ei Lx for

1,..., p and e aQ, for a p + 1 n. Then E1 E, is a local
framing of TM in a neighborhood of x with ea (EA)x and V EB 0 (A,
B 1, n). But we neither claim nor require that (Ei)r Lr for 1 < < p or
(E)r trQr for p + 1 < a < n at points y :p x. We do have (nE)x ne 0
for 1 < < p. In the case of a bundle-like metric #M the vectors (zrE), rce
for p + 1 < a < n form, in addition, an orthonormal basis of Q,.

Consider the canonical projection r" TM Q as Q-valued 1-form. Then

(2.2) dv rt O,
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since dv n equals the torsion Tv given by

(2.3) Tv(X, Y)= Vx n(Y)- Vr n(X)- n[X, Y]

which is zero.
The Ricci operator pvM" TM-- TM of Vu is given for X Tx M by

(2.4) pvM(X) E Rvu(X, eA)eA"
A

With these notations one obtains the following statement from (1.2).

2.5 PROPOSITION. Let be a Riemannian foliation of codimension q on
(M", gM) with holonomy-invariant metric gQ on Q (gM is not assumed to be
bundle-like). Then for n I(M, Q) one has the identity

(2.6) --1/2AM
where

and

In I ’. g.(n(ea), n(ea))= go.(n(e), n(e)),
A ot

In Ix2 #((n)(eA, eB), (n)(ea, eB))
A,B

gnt(S(n), n)x ge(Rv(e, ea)n(e), n(ea)) + ge(n(pvu(e)), n(e)).

For compact oriented M one obtains the following identity for the global scalar
products"

(2.7) (An, r) IIrll 2 + (S(), r),

Note that dv n 0 by (2.2), so that An dvd, n, and therefore (An, n)
d 2.
To analyze the sign of the term gn(S(n), n), it is convenient to introduce

the self-adjoint operator B" TM---, TM by

(2.8) gM(B,X, Y)= gQ(n(X), n(Y)) for X, Y FTM.

Clearly ker B, L, im B, aQ -L+/-. We further refine the choice of local
framings by requiring that the orthogonal basis el, e. of TxM also diago-
nalize B,, i.e.

(2.9) B,,(e) 0 (i 1 p); B,,(e,) 2,e, ( p + 1,..., n)

where 2, > 0, since 9e is positive definite. By (2.8) we then clearly have

(2.10) go,(n(e,), n(et))= 26a
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Now consider the normal sectional curvature Kv(%, %) in direction of the
normal 2-plane spanned by %, ea defined by

1
(2.11) Kv(e, %)=-- ge(Rv(rt(e), rt(et))rt(et), t(e)).

Note that since V is a basic connection, i(X)Rv 0 for X FL [6, 1.13],
hence Rv(rt(e), -) Rv(%, -).

Further, by (2.8) and (2.9),

(2.12) Oo.(rr(pv(e,)), n(e,)) OM((B, Pv)e,, %)

OM(Pvt(e), B, e)

2, 0t(Pv(e,), e,).

Using (2.11) and (2.12) we then obtain

(2.13) Vn(S(n), rt)x 22a Kv(e, es) + 2 #u(Pvu(e), e).

Thus non-negative Ricci curvature on M and non-positive normal sectional
curvature Kv imply #n,(S(n), t)> 0 and, afortiori, (S(rt), t)> 0. We note
that in the case of a bundle-like metric #u these curvature assumptions run
contrary to the spirit of the Gray-O’Neill formula (see (2.20) below), unless
both curvatures vanish and trQ c TM is an involutive subbundle. We discuss
the bundle-like case after finishing the present discussion. From (2.5) and
(2.13) we obtain the following result.

2.14 PROPOSITION. Let be a Riemannian foliation of codimension q on a
closed oriented manifold M. Let 9t be a metric on M with non-neoative Ricci
curvature, and assume the normal sectional curvature Kv of 9 tobe non-
positive. Then

d, rc Oo 0 and gtlx(S(/I;),/i;) O.

Now for X, Y FTM we have

(t)(X, Y) (x t)(Y) Vx t(Y) t(V Y).

It follows that (n)(X, Y)= 0 for X, Y FL iff V Y FL for X, Y FL.
This condition means that each leaf is a totally geodesic submanifold of
M [8, vol. II, p. 56, 57].

2.15 COROLLARY. Let . be a foliation satisfyino the conditions in (2.14).

(i) If rc is a harmonic form, then each leaf is a totally oeodesic sub-
manifold of M.

(ii) If 9n(S(rO, rr),,o 4:0 for at least some Xo M, then n is not a harmonic
form.
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One way to satisfy the condition Kv _< 0 is to assume q 1, in which case
Kv 0 (for lack of normal 2-planes). Corollary 2.15 holds then under the
assumption that the Ricci curvature of 0M is non-negative. If the Ricci oper-
ator (Pv,)xo is positive for at least some Xo M, we are in case (ii). But for
q 1 we obtain sharper results in Theorem 2.34, where - is not required to
be a Riemannian foliation.
Next we apply the Weitzenb6ck formula to harmonic foliations [5-1, [6].

We have two types of applications: (a) results assuming 0M to be bundle-like;
and (b) results in the codimension one case, where less assumptions on the
metrics gu and #e are needed.
We discuss first the bundle-like case, i.e., #e can be assumed to be induced

by #u. The projection " TM Q is then an orthogonal projection. The
particular connection V in Q, given by [6, 1.3],

n[X, ] for XFL
(2.16) Vxs=(n(V) for XFaQ,

sFQ,=a(s)FaQ,

is then the unique metric and torsion-free connection in Q [6, 1.11]. The
harmonicity of , i.e., the condition d n 0 (since we already have dv 0),
is then equivalent to the property that all leaves of are minimal sub-
manifolds of (M, #u) [6, 2.28]. The Q-valued symmetric bilinear form
-9 restricted to any leaf M of is then the second fundamental
form of the Riemannian submanifold M. By [6, 2.26], the tension
z Tr of is evaluated at x M by

(2.17) Zx Tr (e, e) (e, e) Q.
A

It is immediate that

(2.18) v a ,
and is harmonic iff v 0 [6, 2.28].
The operator B: TM TM defined by (2.5) is the map and the

non-zero eigenvalues 2, equal 1. Then formula (Z13) becomes

(2.19) gn(S(), )x E Kv(e, e)+ E Kv(e, ea)

where Kvu(e, e) denotes the sectional curvature of the metric 9u in direc-
tion of the 2-plane spanned by e,, ea ( p + 1, n; A 1, n). The
sectional curvatures Kv(e,, e) and Kv(e,, e) are related as the sectional cur-
vatures in the total space and base space of a Riemannian submersion.
Therefore by the formula of Gray [3] and O’Neill [12] we have

3
[E’(2.20) Kv(e,, ea)- Kv(e,, ea)= Ea]

where nx" TM L denotes the orthogonal projection n id -.
At this point it is convenient to refer to the self-adjoint map
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A(v): TM TM uniquely associated to by the formula

(2.21) 9M(A(v)X, )--9o.(x(X, ), v)

for v FQ and X, Y FTM [6, 2.8]. In terms of the matrix representation
[6, 2.9]

(2.22) A=
A

formula (2.20) then reads

(2.23) Kv(e,, ea)- Kv(e,, et)= 31A(e,)et ,
and (2.19) takes the form

(2.24) gn(S(n), re),, -3 A2(e,)ea 12 + KvM(e, e)
# ,i

where ranges over 1, p. Note that the first sum on the right hand side is
just [A 1 for A" Q Hom (aQ, L). Clearly, from (2.22),

(2.25) 1 12 lax 12 + 21A212.
Since 112= q is constant, AII2= 0. Thus from (2.6) (2.24) (2.25) we
obtain the following result.

2.26 THEOREM. Let be a Riemannian foliation of codimension q on M
with bundle-like metric gt. Then

]A 1 ]A 1 + gta,(Arr, rt)- ’, Kv(e,

A 0 iff all leaves of " are totally geodesic 1"6, 2.6]; and A 0 iff
rQ m TM is involutive !6, 2.15]. Then " has a totally geodesic complemen-
tary foliation by I-6, 2.15]. We obtain the following conclusion.

2.27 COROLLARY. Let be a Riemannian foliation of codimension q on M
with bundle-like metric gt. Assume trQ c TM to be involutive. If KvM >_ O, ;
harmonic implies totally geodesic.

Note that no compactness is required for the proof. Therefore we obtain
the following application.

2.28 COROLLARY. Let (M, gt) be a Riemannian manifold of the form
M F\R", F a discrete torsionfree subgroup of the Euclidean group. Let be
a codimension one Riemannian foliation such that gu is bundle-like. If is
harmonic, then is inducedfrom a F-invariant hyperplane foliation on R.

Proof " is induced from a F-invariant foliation on R".. is har-
monic, hence totally geodesic, and hence a hyperplane foliation of R". I

This result should be compared with the closely related Proposition 2.36.



CURVATURE PROPERTIES OF HARMONIC FOLIATIONS 465

Finally we discuss foliations of codimension one in more detail. We
assume that - is transversely oriented by a unit normal section Z FaQ.
Then is defined by the 1-form og(X)= gu(X, Z) for X FTM and
7(X) og(X) Z. Then " is harmonic iff d*o9 0 [6, 3.9] and Riemannian iff
dco =0 [6, 3.14]. For the real-valued 1-form 09 the identity (1.2) holds
without any restriction on gu. The term gtal(S(og), 09) involves only the Ricci
operator and equals Ricu (Z, Z). Since 09 is of unit length, we have

(2.29) #tax(Am, 09) [Vco 12 + Ricu (Z, Z).

For compact oriented M, by integration with respect to the Riemannian
volume r/M, we obtain

(2.30) Ildogll 2 + IId*ol12 IIVoll 2 + jRic’ (Z, Z)nM.

We compare this with the integral formula of Yano (see I-9, p. 154])

(2.31) d’o9 2 ;u Tr ((VuZ)2) r/u + fu RicU (Z, Z). r/u,

where VUZ TM--, TM is given by (VUZ)(X)= Vxu Z for X FTM. Thus

IIVol12 Ildogll 2 + fM Tr ((vMz)2)’IM"(2.32)

Observe that in fact VuZ TM--, L, since gu(Vxu Z, Z) 1/2Xgu(Z, Z) O.
Thus the restriction of -VuZ to L is the Weingarten map W(Z): L--, L [6,
2.10], which is self-adjoint. It follows that Tr (W(Z)2) 0. But also

(2.33) Tr ((VuZ)2) Tr (W(Z)2) >_ 0.

The equality of the traces follows from -VMZ/L W(Z) and

gM((VMz)2z, Z) gM(VvMuzzZ, Z)-’ 1/2VI ZgM(Z Z)= O.

The following statement sharpens the results of (2.15) and (2.27) in the case
q 1. Note that " is not assumed to be Riemannian. Note added in proof:
The following result is also contained in the paper by G. Oshikiri, A remark
on minimalfoliations, T6hoku Math. J., vol. 33 (1981), pp. 133-137.

2.34 THEOREM. Let be a transversally orientable foliation of codimension
one on a compact oriented Riemannian manifold M with non-negative Ricci
curvature.

(i) If the Ricci operator is positive for at least one Xo M, the foliation is
not harmonic.

(ii) If is harmonic, then is totally geodesic.
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Proof (i) Under the Ricci curvature assumption made,

M RicM (Z, Z)lM > O.

Since Tr ((VMZ)2) > 0, it follows from (2.31), that d*o 4= 0. Thus - is not
harmonic [6, 3.9!.

(ii) If d*o 0, (2.31) implies Tr ((vMz)2) 0. By (2.33) it follows that
Tr (W(Z)2) -0. Since W(Z) is self-adjoint, all eigenvalues of W(Z) are zero,
hence W(Z)= 0. The vanishing of the Weingarten map of the foliation
implies that " is totally geodesic. |

In this context it is worthwhile to note the following fact.

2.35 PROPOSITION. On a compact oriented Riemannian manifold M with
non-negative Ricci curvature and positive Ricci operator at some Xo M, or
with strictly neoative sectional curvature, there is no transversally orientable
Riemannian foliation of codimension one.

Proof. Under the stated assumptions on the Ricci curvature, the harmo-
nic 1-forms vanish by Bochner’s method (for example, see Wu [18]). Thus
HXo(M) 0, so that every closed 1-form o is of the form df for some func-
tion f: M--, R. But a transversally orientable Riemannian foliation of codi-
mension one is given by a nowhere zero closed 1-form [6, 3.14], which does
not exist on M. Similarly if the sectional curvature is strictly negative, by a
result of Tsagas [17] every closed 1-form has zeroes. |

We return finally to the situation discussed in Corollary 2.28. As a conse-
quence of Theorem 2.34, we obtain the following related result.

2.36 PROPOSITION. Let be a transversally oriented harmonic foliation of
codimension one on a compact oriented fiat Riemannian manifold M. Then
is induced from a hyperplane foliation on the universal covering Mn - R.

Proofi By (2.34), " is totally geodesic. Its lift to R is therefore totally
geodesic, hence a hyperplane foliation. |

3. Codazzi equation

We return to the context of the first section. For 09 fX(M, E) the form
q)co fiX(M, T*M (R) E) is defined by

(3.1) (xO)(Y) Vxo(Y)- o(VxM Y) for X, Y FTM.



CURVATURE PROPERTIES OF HARMONIC FOLIATIONS 467

3.2 LEMMA. (dvo))(X Y) (xco)(Y) (rco)(X).
Proof.
(x co)(g) (, co)(X) (Vx re(Y) m(V g)) (Vr re(X) m(V X))

Vx(g) Vr(X) ([X, g3) (Tvu(X, g))

(dr m)(X, Y) m(Tvu(X, g)).

Since the torsion Tvu 0, the result follows.

Let -m. By (3.2) it follows that dvm 0 implies

(3.3) (X, Y)= (g, X) for X, g FTM.

Next consider -2 ill(M T*M T*M E) given by

(3.4) (x)(Y, Z) Vx(g, Z) (g, V Y, Z)- (r, VZ).

3.5 LEMMA. (x)(Y, Z) (x)(Z, Y).

Proof This follows from the symmetry (3.3).

Note that (3.2) applied to fit(M, T*M E) yields

(3.6) (dr )(X, Y; Z) (x)(g, Z) (rX, Z).

The expression need not vanish. In fact we have the following result.

3.7 THEOREM. Let E M be a smooth vectorbundle with connection V over
a Riemannian manifold M. For fl(M, E) satisfying dvm O, and- we have the Codazzi type equation

3.8) x)g, z)- ()x, z)= -R(X, Y)(Z) + ((X, Y)Z)

for X, Y, Z FTM.

Proo By (3.4),

x)r, z) VxcVrz) (v? z))

+ Vv:r z) vz) + vvz) vvz).

The terms Vxm(VZ)+ Vrm(V Z) will also appear in the corresponding
expression for ()(X, Z). Therefore

x)g, z)- )x, z)= (gvx, g)z)+ Vtx.z))
+ (vrx.(z) + vtx. (z))

(Vrtx,r Z + Vtx,r Z)
-(g(, X)Z + Vt.xZ).

The vanishing of the torsion Tvu implies the desired formula. [
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3.9 Remark. To explain in which sense equation (3.8) is of Codazzi type,
let (2 be the normal bundle of a foliation o*- on M, and n: TM Q be the
canonical projection. A Riemannian metric Vu gives rise to a connection V in
(2 by (2.16), and the second fundamental form cz -$rrr. The restriction of cz
to any leaf .W is the second fundamental form of the Riemannian sub-
manifold c M. If X, Y and Z are tangent vectorfields to , then (3.8)
is of Lodazzi type for .W c M, expressing the normal component of
RvM(X, Y)Z by

(xa)(Y, Z) -(ra)(X, Z)

Now we turn to the proof of the Weitzenb6ck formula (1.1). First we con-
sider the trace z(o)= Tr o, FQ of the symmetric bilinear Q-valued form
,o.. In terms of an orthonormal basis eA (A 1,..., n) at x M it is evalu-
ated by
(3.10) z(o)x

A

Let Et,..., E, be a local flaming of TM in a neighborhood of x, coinciding
with e t, en at x, and satisfying V E, (VMA EB), 0.

3.11 LEMMA. (Wx Z((.O)) EA (X o,)(eA, ea) for X e FTM.

Proof.

Thus

From (3.3) and (3.4) we get

(x o,)(Y, Y) Vx zo,(Y, Y) 2o(V Y, Y).

(xo,)(ea, ea)= Vx , o,(ea, eA)- 2 o,((V Ea)x, ea).
A A A

But (V Ea)x 0, which yields the result. I
This formula can equivalently be expressed by

(3.12) Vx,() Vx Tr o Tr (xo)
and is a consequence of the symmetry of
Next we observe that

(3.13) z() d,

This is immediate from the evaluation formula

(a m)x -(m)(e) Tr
A

Since dv 0 by assumption, we obtain for the Laplacian A the expression

(3.14) i(X) & i(X)dvd i(X)dv,()= Vx,().

The Codazzi type equation (3.8) now yields

(3.15) Vx,() (ao)(X, eA) {Rv(eA, X)(ea) (Rv(ea, X)eA}.
A A
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Further

(3.16) (ea xo)(X, eA) VeA o(X, Ea) Z,(VeA X, eA) oto(X VeMA EA)
v((o)(x)) + (o)(v x)

-( o)(x).

Substituting (3.14) and (3.16) in (3.15) yields (1.1).
To derive the scalar Weitzenb6ck formula (1.2), we need a metric g on

E--, M compatible with the connection V, i.e., satisfying

(3.17) (Vxg)(s, t) Xg(s, t) g(Vxs, t) g(s, Vxt) 0

for X FTM and s, e F(. Then

(3.18) --(AM co 12)x -(d’d] co 12), (VeMA dim 12)(eA)
A

(V(d co ]2)(EA) (d[co [2)(V EA)
A

X ( oo,(o, o)).
A

Using (3.17) we have

Ea gnl(o, co)= 2gn,(rA co, co),

This identity and (1.1) substituted in (3.18) yield then the well-known formula
(1.2).

4. Ruh-Vilms formula

Let ff be a foliation of codimension q on a Riemannian manifold M. Let
p

Gq(M)-- M

be the Grassmannian bundle of codimension q subspaces in TM. The sub-
bundle L c TM is characterized by the Gauss section y: M--, Gq(M). Its
derivative y, is a 1-form on M with values in the tangent bundle of G(M).
Since V is a section, the horizontal component ,,n fl(M p*TM) is given at
xMby

n,x id" TxM --, (p* TM)ro, = T M.

To describe the vertical component .v, we first observe that the tangent
bundle along the fibres of G(M)--- M is given at y(x) Lx by Hem (Lx, Q,).
Then

(4.1) y,v 0,
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((,v)(X))(Y) ax(X, Y) for X Tx M, Y L,,
where a -Vr is the second fundamental form of " (scc Section 2).

According to [1], the tension () is given by

z(7) -d 7,v e r Horn (L, Q)

Wc prove the following result.

4.2 THEOREM. Let be a foliation of codimension q on a Riemannian

manifold M, and V a torsion-free connection in the normal bundle. For the
tension z(7) Hom (L, Q) of the Gauss section 7: M--, G(M) of we have
the formula
(4.3) (r)(x) vz()-

for x M and X L,.
To describe the Q-valued 1-form S(n) on the right hand side, we choose a

local framing as in Section 2, by starting with an orthonormal basis of Tx M
with e e Lx (i 1 p) and e trQ ( p + 1,..., n). Then for X Lx,

(4.4) S(rr)x(X) Rv(e, X)Tt(e)+ rc(pvu(X))

Proof. If V is a torsion-free .connection in Q, then dv n 0 (see (2.2) and
(2.3)). Therefore ATr dvd 7r. But d 7r z(-) (2.18), thus Art dvz(r)
Vz(-). Then formula (1.1) yields

where
(Vz())x -(Tr 2n)x + S(n).

-Tr ’2n Tr -d e F Hom (TM, Q).

The restriction of the last expression to Hom (L, Q) is z(7). Therefore we
obtain the identity (4.3).
The specific form (4.4) for S(n) for the special framings described follows

from the vanishing of Rv(X, Y) for X, Y FL, and formula (2.4). |

If - is a Riemannian foliation, and V the unique torsion-flee and metric
connection on Q, then Rv is basic [6, 1.13]. Therefore, the terms Rv(e, X)
vanish for X FL. Note that Vx s for X FL is the canonical (partial) Bott
connection 7x s for s FQ. This yields the following result.

4.5 COROLLARY. Let be a Riemannian foliation of codimension q on a
Riemannian manifold M. For the tension z(7) of the Gauss section 7 of we
have the formula

()x(x) Tx()- (p(x))

for x M and X L.



CURVATURE PROPERTIES OF HARMONIC FOLIATIONS 471

If M is Ricci-flat, this reduces to a formula of Ruh-Vilms type for a leaf
Za c M, implying that the Gauss section y is harmonic iff the tension of -(i.e., the mean curvature) is parallel along . [15].
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