LINEAR GROUPS OVER MAXIMAL ORDERS

BY

Alexander J. HAhn ${ }^{1}$

Counterexamples of O'Meara [6] show that the classical isomorphism theory of the linear groups breaks down when the coefficients are taken to be maximal orders in division algebras. The reason for this is simple in retrospect: Equivalences between categories of modules induce isomorphisms (of "equivalence type") between linear groups, and these can fall outside the scope of classical descriptions. Refer to [5]. The theory of [5] provides a new classification which takes this phenomenon into account. A special case of a theorem there asserts the following: If two free modules of ranks ≥ 3 over such maximal orders are given, then any isomorphism between their projective linear groups is either of equivalence type or the composite of an equivalence type with the transpose inverse isomorphism. The present article will extend this result in two directions: First to maximal orders in central simple algebras and from linear groups of free modules to those of finitely generated projectives.

More precisely, let R be a Dedekind domain with quotient field K, and let Λ be a maximal R-order in a central simple K-algebra A. Let $\mathfrak{M}_{\boldsymbol{\Lambda}}$ be the category of right Λ-modules and let $M \in \mathfrak{M}_{\Lambda}$ be finitely generated projective. The length of M is by definition that of the right A-module $M \otimes_{\Lambda} A, G L(M)$ is the group of invertible Λ-homomorphisms on M, and $P G L(M)$ is the quotient of $G L(M)$ by its center. Denote by M^{*} the dual of M and by Λ° the R-order "opposite" Λ. Clearly $M^{*} \in \mathfrak{M}_{\Lambda^{\circ}}$. Let Λ_{1} over R_{1} be another such maximal order.

Theorem. Let M and M^{\prime} be finitely generated projective Λ and Λ_{1}-modules, respectively, with lengths ≥ 3. If

$$
\Phi: P G L(M) \rightarrow P G L\left(M^{\prime}\right)
$$

is an isomorphism of groups, then there is either
(i) an equivalence $F: \mathfrak{M}_{\Lambda} \rightarrow \mathfrak{M}_{\Lambda_{1}}$ with $F(M)=M^{\prime}$, such that F acting on homomorphisms induces Φ, i.e., $\Phi=F$,
or

[^0](ii) an equivalence $E: \mathfrak{M}_{\Lambda^{\circ}} \rightarrow \mathfrak{M}_{\Lambda_{1}}$ with $E\left(M^{*}\right)=M^{\prime}$, such that $\Phi=E C_{M}$, where $C_{M}: P G L(M) \rightarrow P G L\left(M^{*}\right)$ is induced by transpose-inverse.

This is a special case of Theorem (3.1) below. The paper concludes with Proposition (3.3) which has as consequence the fact that the conclusion of the theorem does not hold if Λ and Λ_{1} are taken to be hereditary orders.

Terminology and basic facts will come from [7] for orders and modules, and [5] for the linear groups; [1], [2] and [4] are valuable general references.

1. Tensor products and R-equivalences

Let R be an integral domain with quotient field K and let A be a finite dimensional K-algebra. Let Λ be an R-algebra in A, i.e., Λ is an R-algebra contained in A, has its operations from A and spans A over K.

It is easy to see that

$$
A \otimes_{\Lambda} A \cong A
$$

as $(A-A)$-bimodules, with $a \otimes a_{1} \rightarrow a a_{1}$. Note next that if ${ }_{\Lambda} P$ is a left Λ module, then there is a natural left A-module structure on $K \otimes_{R} P$. For $a \in A, r a \in \Lambda$ for a non-zero $r \in R$; set $a=r^{-1} \lambda$ with $\lambda \in \Lambda$ and put

$$
a(k \otimes p)=r^{-1} k \otimes \lambda p
$$

One then has an isomorphism

$$
A \otimes_{\Lambda} P \cong K \otimes_{R} P
$$

of left A-modules with

$$
a \otimes p \rightarrow r^{-1} \otimes \lambda p
$$

Completely analogous things can be done for a right Λ-module P_{Λ}.
Suppose now that B is another finite dimensional K-algebra and that Δ is an R-algebra in B. Let P be a $(\Lambda-\Delta)$-bimodule over R. Then there is an isomorphism of $(\Lambda-\Delta)$-bimodules

$$
A \bigotimes_{\Lambda} P \cong P \bigotimes_{\Delta} B
$$

given by $a \otimes p \rightarrow \lambda p \otimes r^{-1}$, where $a=\lambda r^{-1}$. The inverse is given analogously.
Recall the concept of R-functor from page 57 of [2]. An R-functor

$$
F: \mathfrak{M}_{\boldsymbol{\Lambda}} \rightarrow \mathfrak{M}_{\Delta}
$$

is an R-equivalence if there is an R-functor $E: \mathfrak{M}_{\Delta} \rightarrow \mathfrak{M}_{\Lambda}$ such that $E F$ and $F E$ are naturally isomorphic to the identity functors on \mathfrak{M}_{Λ} and \mathfrak{M}_{Δ} respectively. In this case Λ and Δ are R-equivalent. It is not difficult to check that if A and B are central simple K-algebras then they are K-equivalent if and only if they are in the same Brauer class.

Consider the functors $T: \mathfrak{M}_{\Lambda} \rightarrow \mathfrak{M}_{A}$ and $T_{1}: \mathfrak{M}_{\Delta} \rightarrow \mathfrak{M}_{B}$ given respectively by tensoring with ${ }_{\Lambda} A$ and ${ }_{\Delta} B$.
(1.1) Let $F: \mathfrak{M}_{\Lambda} \rightarrow \mathfrak{M}_{\Delta}$ be an R-equivalence. Then there is a K-equivalence $\bar{F}: \mathfrak{M}_{A} \rightarrow \mathfrak{M}_{B}$ such that

commutes, i.e., such that $\bar{F} T \cong T_{1} F$.
Proof. By Theorem 3.1 page 60 of [2], for example, there is a set of equivalence data

$$
\left(\Lambda, \Delta,{ }_{\Lambda} P_{\Delta},{ }_{\Delta} Q_{\Lambda}, \mu, \tau\right)
$$

with P and Q bimodules over R, such that F is isomorphic to the R-functor determined by tensoring with ${ }_{\Lambda} P_{\Delta}$.

Now consider the bimodules

$$
{ }_{A} \bar{P}_{B}=\left(A \otimes_{\Lambda} P\right) \otimes_{\Delta} B \quad \text { and } \quad{ }_{B} \bar{Q}_{A}=\left(B \otimes_{\Delta} Q\right) \otimes_{\Lambda} A
$$

Making extensive use of the isomorphisms developed above and the properties of sets of equivalence data, shows that there is a set of equivalence data $(A, B, \bar{P}, \bar{Q}, \bar{\mu}, \bar{\tau})$.

The isomorphism $\bar{\mu}: \bar{P} \otimes_{B} \bar{Q} \rightarrow A$ is given by

$$
\bar{\mu}\left[((a \otimes p) \otimes b) \otimes\left(\left(b_{1} \otimes q_{1}\right) \otimes a_{1}\right)\right]=a r^{-1} r_{1}^{-1} \mu\left(p \delta \delta_{1} \otimes q_{1}\right) a_{1}
$$

where $b=r^{-1} \delta$ and $b_{1}=r_{1}^{-1} \delta_{1}$ with r, r_{1} in $\dot{R}, \delta, \delta_{1}$ in Δ. Similarly, $\bar{\tau}: \bar{Q} \otimes_{A} \bar{P} \rightarrow B$ is given by

$$
\bar{\tau}\left[\left(\left(b_{1} \otimes q_{1}\right) \otimes a_{1}\right) \otimes\left(\left(a_{2} \otimes p_{2}\right) \otimes b_{2}\right)\right]=b_{1} s_{1}^{-1} s_{2}^{-1} \tau\left(q_{1} \lambda_{1} \lambda_{2} \otimes p_{2}\right) b_{2}
$$

where $a_{1}=s_{1}^{-1} \lambda_{1}$ and $a_{2}=s_{2}^{-1} \lambda_{2}$ with s_{1}, s_{2} in R and λ_{1}, λ_{2} in Λ.
To prove the associativity properties use the isomorphisms

$$
\bar{P} \leftrightharpoons A \otimes_{\Lambda}\left(A \otimes_{\Lambda} P\right) \simeq A \otimes_{\Lambda} P
$$

and

$$
\bar{Q} \rightarrow B \otimes_{\Delta}\left(B \otimes_{\Delta} Q\right) \simeq B \otimes_{\Delta} Q
$$

These isomorphisms also show that \bar{P} and \bar{Q} are bimodules over K.
Let $\bar{F}: \mathfrak{M}_{A} \rightarrow \mathfrak{M}_{B}$ be the K-equivalence defined by tensoring with ${ }_{A} \bar{P}_{B}$. Using the above isomorphisms once more shows that $\bar{F} T \cong T_{1} F$. Q.E.D.
(1.2) Corollary. If Λ and Δ are R-equivalent, A and B are K-equivalent.

Under more controlled conditions there is a converse for (1.2).
(1.3) Suppose R is a Dedekind domain, that A and B are central simple K-algebras, and that Λ and Δ are maximal R-orders in A and B respectively.

Then Λ and Δ are R-equivalent if and only if A and B are in the same Brauer class.

Proof. If Λ and Δ are R-equivalent then A and B are in the same Brauer class by (1.2).

Conversely, assume that A and B are in the same Brauer class. So there is a central division algebra D over K, and finite dimensional right D-spaces V and W such that

$$
A \cong \operatorname{End}\left(V_{D}\right) \quad \text { and } \quad B \cong \operatorname{End}\left(W_{D}\right)
$$

as K-algebras. By (21.6) of [7] there is a maximal R-order Δ_{0} in D and full right Δ_{0}-lattices N in V_{D} and N^{\prime} in W_{D} such that

$$
\Lambda \cong \operatorname{End}\left(N_{\Delta_{0}}\right) \quad \text { and } \quad \Delta \cong \operatorname{End}\left(N_{\Delta_{0}}^{\prime}\right)
$$

as R-algebras. Since ${ }_{\Lambda} N_{\Delta_{0}}$ and ${ }_{\Delta} N_{\Delta_{0}}^{\prime}$ are both progenerators in $\mathfrak{M}_{\Delta_{0}}$ and bimodules over R, tensoring with N and N^{\prime} induces R-equivalences

$$
\mathfrak{M}_{\Lambda} \rightarrow \mathfrak{M}_{\Delta_{0}} \text { and } \quad \mathfrak{M}_{\Delta} \rightarrow \mathfrak{M}_{\Delta_{0}} . \quad \text { Q.E.D. }
$$

Let $P_{\Lambda} \in \mathfrak{M}_{\Lambda}$. There is a homomorphism

$$
A \otimes_{\Lambda} P^{*} \rightarrow\left(P \otimes_{\Lambda} A\right)^{*}
$$

of left A-modules, satisfying

$$
a \otimes f \rightarrow[a \otimes f]
$$

with $[a \otimes f]\left(p \otimes a^{\prime}\right)=a f(p) a^{\prime}$, for a, a^{\prime} in A, f in P^{*} and $p \in P$. If, in addition, both P_{Λ} and A_{Λ} are finitely generated over Λ this is an isomorphism. Define the inverse as follows: Let $g \in\left(P \bigotimes_{\Lambda} A\right)^{*}$, denote by $P \otimes \Lambda$ the obvious image of P in $P \otimes_{\Lambda} A$, and observe that $g(P \otimes \Lambda)$ is a finitely generated submodule of A_{Λ}. It follows that there is a non-zero $r \in R$ such that $r g(P \otimes \Lambda) \subseteq \Lambda$, so that the composite

$$
P \longrightarrow P \otimes \Lambda \xrightarrow{r g} \Lambda
$$

is in P^{*}. Denote this composite by $r g$ and define

$$
\left(P \otimes_{\Lambda} A\right)^{*} \rightarrow A \otimes_{\Lambda} P^{*}
$$

by $g \rightarrow r^{-1} \otimes r g$. This definition does not depend on the choice of r. Use of the natural left K-vector space structure on $A \otimes_{\Lambda} P^{*}$ shows that this map is a homomorphism of left A-modules. It is easy to see that it is the inverse of the earlier map.

Suppose that A is central simple over K, and that $M \in \mathfrak{M}_{\boldsymbol{\Lambda}}$ is finitely generated. Recall that the length $l\left(M_{\Lambda}\right)$ of M_{Λ} is defined to be equal to the length of the finitely generated right A-module $M \otimes_{\Lambda} A$. Do a similar thing for left Λ-modules. If A_{Λ} is finitely generated, the isomorphism

$$
A \otimes_{\Lambda} M^{*} \cong\left(M \otimes_{\Lambda} A\right)^{*}
$$

shows that $l\left(\Lambda_{\Lambda} M^{*}\right)=l\left(M_{\Lambda}\right)$, and hence that $l\left(M_{\Lambda^{\circ}}^{*}\right)=l\left(M_{\Lambda}\right)$, where Λ° is the opposite R-algebra of Λ in the central simple K-algebra A°. Finally, if B is also central simple over K, and if $F: \mathfrak{M}_{\Lambda} \rightarrow \mathfrak{M}_{\Delta}$ is an R-equivalence, then $l\left(M_{\Lambda}\right)=l\left(F(M)_{\Delta}\right)$. This follows from (1.1) above and (21.8) (right handed version) of [1].

2. Elementary properties of linear groups

Let R be a Dedekind domain with quotient field K, let D be a finite dimensional central division algebra over K, and let Λ be a maximal R-order in D.

Let W be a finite dimensional right vector space over D and let $M \subseteq W$ be a right Λ-module. Let $X=\left\{x_{1}, \ldots, x_{n}\right\}$ be a basis for W over D and let $\left\{f_{1}\right.$, $\left.\ldots, f_{n}\right\}$ be the dual basis. For $n \geq 2, i \neq j$ and $\alpha \in D$, let $\tau_{x_{i} \alpha, f_{j}}$ in $G L(W)$ be defined by

$$
\tau_{x_{i \alpha}, f_{j}}(x)=x+x_{i} a f_{j}(x)
$$

and observe that

$$
\tau_{x_{i} \alpha, f_{j}}(M) \subseteq M \quad \text { if and only if } \quad \tau_{x_{i \alpha}, f_{j}}(M)=M
$$

Let $E_{X}(M)$ be the subgroup of $G L(W)$ generated by all the $\tau_{x_{i}, f_{j}}$ which stabilize M, and denote its derived group by $D E_{X}(M)$.
(2.1) Suppose $n \geq 2$ and that $M=x_{1} \mathfrak{a}_{1}+\cdots+x_{n} \mathfrak{a}_{n}$ with \mathfrak{a}_{i} a right Λ-ideal in D. Then $\tau_{x_{i} \alpha, f_{j}}(M)=M$ if and only if $\alpha \mathfrak{a}_{j} \subseteq \mathfrak{a}_{i}$.

Proof. Trivial.
(2.2) Suppose $n \geq 3$ and that $M=x_{1} \mathfrak{b}+\cdots+x_{n-1} \mathfrak{b}+x_{n} \mathfrak{a}$, with \mathfrak{a} and \mathfrak{b} right Λ-ideals in D. Then $D E_{X}(M)=E_{X}(M)$.

Proof. Observe that for i, j and k distinct,

$$
\tau_{x_{i \alpha} \beta, f_{j}}=\left[\tau_{x_{i \alpha} \alpha, f_{k}}, \tau_{x_{k} \beta, f_{j}}\right] .
$$

Now let $\tau_{x_{i} \alpha, f_{j}}$ be arbitrary with $\tau_{x_{i}, f_{j}}(M)=M$.
If $j=n, \alpha \mathfrak{a} \subseteq \mathfrak{b}$. Pick $k<n, k \neq i$. Then

$$
\tau_{x_{i} \alpha, f_{n}}=\left[\tau_{x_{i}, f_{k}}, \tau_{x_{k} \alpha, f_{n}}\right]
$$

and $\tau_{x_{i} \alpha, f_{n}} \in D E_{X}(M)$ by (2.1).

If $i=n$, proceed similarly. Assume therefore, that $i, j<n$. So $\alpha \mathfrak{b} \subseteq \mathfrak{b}$. Hence $\alpha \in \mathfrak{b b}^{-1}=\left(\mathfrak{b a} \mathfrak{a}^{-1}\right)\left(\mathfrak{a b}^{-1}\right)$. So $\alpha=\sum_{\text {fin }} \gamma \delta$, with $\gamma \in \mathfrak{b a}{ }^{-1}$ and $\delta \in \mathfrak{a b}^{-1}$. Since $\tau_{x_{i} \gamma, f_{n}}$ and $\tau_{x_{n} \delta, f_{j}}$ are both in $E_{X}(M)$,

$$
\tau_{x_{i} \gamma \delta, f_{j}} \in D E_{X}(M)
$$

Therefore $\tau_{x_{i} \alpha, f_{j}}=\prod_{\text {fin }} \tau_{x_{i} \gamma \delta, f_{j}}$ is in $D E_{X}(M)$. Q.E.D.
Assume now that M is a full right Λ-lattice in W, ie., M is a right Λ-lattice which spans V over K (or equivalently over D). By the right handed version of (27.8) of [7], there is a basis

$$
X=\left\{x_{1}, \ldots, x_{n}\right\}
$$

for W over D such that

$$
M=x_{1} \Lambda+\cdots+x_{n-1} \Lambda+x_{n} \mathfrak{a}
$$

where \mathfrak{a} is a right Λ-ideal in D. This M is therefore a special case of that considered above. By (10.7) of [7], M is a finitely generated projective Λ module. Identify

$$
G L(M)=\{\sigma \in G L(W) \mid \sigma M=M\}
$$

Note that $E_{X}(M) \subseteq G L(M) \subseteq G L(V)$. Let $R L(M)$ be the subgroup of $G L(M)$ consisting of the invertible R-scalar transformations on M.
(2.3) Suppose $n \geq 3$. Then the centralizer of $E_{X}(M)$ in $G L(M)$ is $R L(M)$.

Proof. Proceed as in the proof of (2.14) of [5]. Use (2.1) repeatedly.
(2.4) Let Λ and Λ_{1} be maximal R-orders in D and let M and M_{1} be full right Λ and Λ_{1}-lattices, respectively, in W. Put

$$
M=x_{1} \Lambda+\cdots+x_{n-1} \Lambda+x_{n} \mathfrak{a}
$$

where $X=\left\{x_{1}, \ldots, x_{n}\right\}$ is a basis for W over D and \mathfrak{a} is a right Λ-ideal in D.
Suppose $n \geq 2$ and $E_{X}(M) \subseteq G L\left(M_{1}\right)$. Then there is a normal ideal ${ }_{\Lambda} b_{\Lambda_{1}}$ in D and a right Λ_{1}-ideal \mathfrak{b}_{n} in D with $\mathfrak{a b} \subseteq \mathfrak{b}_{n}$, such that

$$
M_{1}=x_{1} \mathrm{~b}+\cdots+x_{n-1} \mathrm{~b}+x_{n} \mathrm{~b}_{n} .
$$

Proof. Let $\mathfrak{b}_{i}=\left\{\alpha \in D \mid x_{i} \alpha \in M_{1}\right\}$. It is clear that $\mathfrak{b}_{i}, 1 \leq i \leq n$, is a right Λ_{1}-module in D. We show $\mathfrak{b}_{1}=\cdots=\mathfrak{b}_{n-1}$. We may assume $n \geq 3$. By (2.1) and the hypothesis, $\tau_{x_{i}, f_{j}}\left(M_{1}\right) \subseteq M_{1}$ for all $\lambda \in \Lambda$, and $i, j<n$. In particular,

$$
x_{i} \lambda \mathrm{~b}_{j}=x_{i} \lambda f_{j}\left(x_{j} \mathfrak{b}_{j}\right) \subseteq x_{i} \lambda f_{j}\left(M_{1}\right) \subseteq M_{1}
$$

so $\lambda \mathbf{b}_{j} \subseteq \mathbf{b}_{i}$ for all $\lambda \in \Lambda$. Taking $\lambda=1$ and appealing to symmetry gives the result. Let $\mathfrak{b}=\mathfrak{b}_{1}=\cdots=\mathfrak{b}_{n-1}$. Now let $j \neq n$, and $\alpha \in \mathfrak{a}$. By (2.1) and the hypothesis,

$$
x_{n} \alpha \mathfrak{b}=x_{n} \alpha f_{j}\left(x_{j} \mathfrak{b}\right) \subseteq x_{n} \alpha f_{j}\left(M_{1}\right) \subseteq M_{1}
$$

So $\mathfrak{a b} \subseteq \mathfrak{b}_{n}$, and similarly $\mathfrak{a}^{-1} \mathfrak{b}_{n} \subseteq \mathfrak{b}$.
We show that \mathfrak{b} is a $\left(\Lambda-\Lambda_{1}\right)$-bimodule and that

$$
M_{1}=x_{1} \mathfrak{b}+\cdots+x_{n-1} \mathfrak{b}+x_{n} \mathfrak{b}_{n} .
$$

Let $x \in M_{1}$ be arbitrary, and let

$$
x=x_{1} \alpha_{1}+\cdots+x_{n} \alpha_{n}, \quad \alpha_{i} \in D
$$

For $\alpha \in \mathfrak{a}, \tau_{x_{n} \alpha, f_{1}}\left(M_{1}\right) \subseteq M_{1}$, so $\tau_{x_{n} \alpha, f_{1}}(x)=x+x_{n} \alpha \alpha_{1}$ is in M_{1} and hence $\alpha \alpha_{1} \in \mathfrak{b}_{n}$. So $\mathfrak{a} \alpha_{1} \subseteq \mathfrak{b}_{n}$ and

$$
\Lambda \alpha_{1}=\mathfrak{a}^{-1} \mathfrak{a} \alpha_{1} \subseteq \mathfrak{a}^{-1} \mathfrak{b}_{n} \subseteq \mathfrak{b}
$$

In particular $\alpha_{1} \in \mathfrak{b}$. On the other hand letting $\alpha_{1} \in \mathfrak{b}$ be arbitrary and taking $x=x_{1} \alpha_{1}$ gives $\Lambda \mathfrak{b} \subseteq \mathfrak{b}$ and hence that \mathfrak{b} is a ($\Lambda-\Lambda_{1}$)-bimodule. Proceeding similarly shows that $\alpha_{2}, \ldots, \alpha_{n-1}$ are in \mathfrak{b} hence that

$$
x_{1} \alpha_{1}+\cdots+x_{n-1} \alpha_{n-1} \in M_{1}
$$

Therefore, $x_{n} \alpha_{n} \in M_{1}, \alpha_{n} \in \mathfrak{b}_{n}$ and $M_{1}=x_{1} \mathfrak{b}+\cdots+x_{n-1} \mathfrak{b}+x_{n} \mathfrak{b}_{n}$.
Finally, since R is Noetherian and M_{1} finitely generated as R-module, $x_{1} \mathrm{~b}$ and $x_{n} b_{n}$ are finitely generated as R-modules. The same is of course true for \mathfrak{b} and \mathfrak{b}_{n}. Since M_{1} is a full right Λ_{1}-lattice in $V, K \mathfrak{b}=D=K \mathfrak{b}_{n}$, so $\Lambda_{\Lambda} \mathfrak{b}_{\Lambda_{1}}$ is a normal ideal in D and \mathfrak{b}_{n} is a right Λ_{1}-ideal in D. Q.E.D.
(2.5) Let Λ and Λ_{1} be two maximal R-orders in D and let M and M_{1} be full right Λ and Λ_{1}-lattices, respectively, in W. Let

$$
M=x_{1} \Lambda+\cdots+x_{n-1} \Lambda+x_{n} \mathfrak{a}
$$

where $X=\left\{x_{1}, \ldots, x_{n}\right\}$ is a basis for W over D and \mathfrak{a} is a right Λ-ideal of D.
Suppose that $n \geq 2, E_{X}(M) \subseteq G L\left(M_{1}\right)$ and $E_{X}\left(M_{1}\right) \subseteq G L(M)$. Then there is a normal ideal ${ }_{\Lambda} \mathfrak{b}_{\Lambda_{1}}$ in D such that $M_{1}=M \mathfrak{b}$.

Proof. Use (2.4), then (2.1) to show that $\mathfrak{b}_{n} \subseteq \mathfrak{a b}$. Q.E.D.
Let $R L(W)$ be the set of invertible K-scalar transformations on W. In reference to the situation of (2.5), consider the quotient maps

$$
P_{1}: G L(W) \rightarrow G L(W) / R L(W) \quad \text { and } \quad P: G L(M) \rightarrow G L(M) / R L(M) .
$$

Observe that the kernel of the restriction of P_{1} is $R L(M)$ and that P_{1} induces an injection $P G L(M) \rightarrow P_{1} G L(W)$. So consider $P G L(M)$ as subgroup of $P_{1} G L(W)$ and do the same for $P G L\left(M_{1}\right)$. Denote by $S L(M)$ and $S L\left(M_{1}\right)$ the commutator subgroups of $G L(M)$ and $G L\left(M_{1}\right)$ respectively.
(2.6) Suppose $n \geq 3$. Let Λ and Λ_{1} be maximal R-orders in D, and let M and M_{1} be full right Λ and Λ_{1}-lattices, respectively, in W. Suppose $\operatorname{PSL}(M) \subseteq$ $\operatorname{PGL}\left(M_{1}\right)$ and $P S L\left(M_{1}\right) \subseteq P G L(M)$. Then there is a normal ideal ${ }_{\Lambda} \mathfrak{b}_{\Lambda_{1}}$ in D such that $M 1=M \mathrm{~b}$.

Proof. Put $M=x_{1} \Lambda+\cdots+x_{n-1} \Lambda+x_{n} \mathfrak{a}$ with $X=\left\{x_{1}, \ldots, x_{n}\right\}$ a basis for W and a a right Λ-ideal of D. Now verify the hypothesis of (2.5).

Let $\tau_{x_{i}, f_{j}}$ be an arbitrary generator of $E_{X}(M)$ and show that it is in $G L\left(M_{1}\right)$.

Assume first that $j=n$. Pick $k<n, k \neq i$. By (2.1) and (2.2), $\alpha \in \mathfrak{a}^{-1}$ and $\tau_{x_{i}, f_{n}}=\left[\tau_{x_{i}, f_{k}}, \tau_{x_{k} \alpha, f_{n}}\right]$ with $\tau_{x_{i}, f_{k}}$ and $\tau_{x_{k} \alpha, f_{n}}$ in SL(M). So $\alpha_{1} \tau_{x_{i}, f_{k}}$ and $\alpha_{2} \tau_{x_{k} \alpha, f_{n}}$ are in $G L\left(M_{1}\right)$ for some non-zero α_{1}, α_{2} in K. Since

$$
\tau_{x_{i} \alpha, f_{n}}=\left[\alpha_{1} \tau_{x_{i}, f_{k}}, \alpha_{2} \tau_{x_{k} \alpha, f_{n}}\right]
$$

$\tau_{x_{i}, f_{n}} \in G L\left(M_{1}\right)$. Proceed similarly if $i=n$. Now assume that $i, j<n$. So $\alpha \in \Lambda$ by (2.1). Since $\Lambda=\mathfrak{a}^{-1} \mathfrak{a}$, put $\alpha=\sum_{\text {fin }} \gamma \delta$, with $\gamma \in \mathfrak{a}^{-1}$ and $\delta \in \mathfrak{a}$. It suffices to show that $\tau_{x_{i \gamma} \gamma, f_{j}}$ is in $G L\left(M_{1}\right)$, refer to the proof of (2.2). Since

$$
\tau_{x_{i} \gamma \delta, f_{j}}=\left[\tau_{x_{i} \gamma, f_{n}}, \tau_{x_{n} \delta, f_{j}}\right],
$$

this follows from (2.1) and the above. Therefore $E_{X}(M) \subseteq G L\left(M_{1}\right)$.
An application of (2.4) now gives $M_{1}=x_{1} \mathfrak{b}+\cdots+x_{n-1} \mathfrak{b}+x_{n} \mathfrak{b}_{n}$, for some right Λ_{1}-ideals \mathfrak{b} and \mathfrak{b}_{n}. Now refer to the proof of (2.2) and argue as above to show that $E_{X}\left(M_{1}\right) \subseteq G L(M)$. Q.E.D.

3. The main theorems

Let R and R_{1} be Dedekind domains with quotient fields K and K_{1} respectively. Let A be a central simple K-algebra and let Λ be an R-order in A. Analogously, let A_{1} be a central simple K_{1}-algebra and let Λ_{1} be an R_{1}-order in A_{1}.
(3.1) Theorem. Assume that Λ and Λ_{1} are both maximal. Suppose that M and M^{\prime} are finitely generated projective Λ and Λ_{1}-modules, respectively, with lengths ≥ 3.

Let G be a subgroup of $\operatorname{PGL}(M)$ containing $\operatorname{PSL}(M)$ and let

$$
\Phi: G \rightarrow P G L\left(M^{\prime}\right)
$$

be a monomorphism such that $\Phi G \supseteq P S L\left(M^{\prime}\right)$. Then there exists either
(i) a category equivalence $F: \mathfrak{M}_{\Lambda} \rightarrow \mathfrak{M}_{\Lambda_{1}}$ with $F(M)=M^{\prime}$ such that $\Phi=\left.F\right|_{G}$, or
(ii) a category equivalence $E: \mathfrak{M}_{\Lambda^{\circ}} \rightarrow \mathfrak{M}_{\Lambda_{1}}$ with $E\left(M^{*}\right)=M^{\prime}$ such that $\Phi=$ $\left.E C_{M}\right|_{G}$.

In particular, Λ or Λ° is Morita equivalent to Λ_{1} and $l(M)=l\left(M^{\prime}\right)$.

Proof. (1) Suppose first that A and A_{1} are division algebras. Denote them by D and D_{1} respectively. Set $\Lambda_{1}=\Delta$ and note that Λ and Δ are integral domains with division rings of quotients D and D_{1} in the sense of Section 6 of [6].

To prove the theorem in case (1) it suffices to show that the conclusions of Theorem (3.3) of [5] hold in present context (replace "rank" by "length") and then to set $F=F^{g} F_{P}$ or $E=F^{h} F_{Q}$. To verify the conclusions of this theorem proceed as in the finite rank case of its proof, making use of the following observations.

Put $V=M \otimes_{\Lambda} D$ and identify M with its canonical image in V under $m \rightarrow m \otimes 1$. Let $\operatorname{dim} V_{D}=n$ and note that $n \geq 3$. Since M is a fintely generated projective Λ-module, M is a full Λ-lattice in V. By (27.8) of [7],

$$
M=x_{1} \Lambda+\cdots+x_{n-1} \Lambda+x_{n} \mathfrak{a}
$$

where $\left\{x_{1}, \ldots, x_{n}\right\}$ is a D-basis for V and \mathfrak{a} is a right Λ-ideal in D. Since $r a \subseteq \Lambda$ for a non-zero $r \in R$,

$$
M \subseteq x_{1} \Lambda+\cdots+x_{n-1} \Lambda+\left(x_{n} r^{-1}\right) \Lambda
$$

In particular, M is a bounded Λ-module on V_{D} in the sense of Section 6 of [6]. A completely analogous thing is true for M_{Δ}^{\prime}. Since G is full of projective transvections in $P_{1} G L(V)$, and similarly for ΦG, one can apply the theorems of O'Meara-Sosnovskii. Then make use of (2.6).
(2) In the general case, choose division algebras D and D_{1} over K and K_{1} respectively, and finite dimensional vector spaces V over D and W over D_{1} such that $A \cong$ End $\left(V_{D}\right)$ and $A_{1} \cong$ End $\left(W_{D_{1}}\right)$ as K and K_{1}-algebras respectively.

Now let Δ be any maximal R-order in D. By (1.3) there is an R-equivalence $F_{1}: \mathfrak{M}_{\boldsymbol{\Lambda}} \rightarrow \mathfrak{M}_{\Delta}$, with associated group isomorphism

$$
F_{1}: P G L(M) \rightarrow P G L\left(F_{1}(M)\right) .
$$

Refer to Section 2 of [5]. Similarly, letting Δ_{1} be a maximal R_{1}-order in D_{1}, there is an R_{1}-equivalence $F_{2}: \mathfrak{M}_{\Lambda_{1}} \rightarrow \mathfrak{M}_{\Delta_{1}}$ with associated isomorphism

$$
F_{2}: P G L\left(M^{\prime}\right) \rightarrow P G L\left(F_{2}\left(M^{\prime}\right)\right)
$$

Applying (1.2) of [5] to an inverse of F_{2}, gives an equivalence

$$
E_{2}: \mathfrak{M}_{\Delta_{1}} \rightarrow \mathfrak{M}_{\Lambda_{1}} \quad \text { with } E_{2}\left(F_{2}\left(M^{\prime}\right)\right)=M^{\prime}
$$

Let $E_{2}: P G L\left(F_{2}\left(M^{\prime}\right)\right) \rightarrow P G L\left(M^{\prime}\right)$ be the associated isomorphism. Define the isomorphism Φ_{1} by requiring the diagram

to commute. Use of the properties of length shows that case (1) applies to Φ_{1}. So either there is
(i) an equivalence

$$
F_{3}: \mathfrak{M}_{\Delta} \rightarrow \mathfrak{M}_{\Delta_{1}}
$$

with $F_{3}\left(F_{1}(M)\right)=F_{2}\left(M^{\prime}\right)$ and $\Phi_{1}=\left.F_{3}\right|_{G^{\prime}}$, or
(ii) an equivalence

$$
E_{3}: \mathfrak{M}_{\Delta^{\circ}} \rightarrow \mathfrak{M}_{\Delta_{1}}
$$

with $E_{3}\left(F_{1}(M)^{*}\right)=F_{2}\left(M^{\prime}\right)$ and $\Phi_{1}=\left.E_{3} C_{F_{1}(M)^{*}}\right|_{G}$.
In case (i) let $F=E_{2} F_{3} F_{1}$ to finish the proof. In case (ii) apply (2.12) and (1.2) both of [5] to show that there is an equivalence $E_{1}: \mathfrak{M}_{\Lambda^{\circ}} \rightarrow \mathfrak{M}_{\Delta^{\circ}}$ with $E_{1}\left(M^{*}\right)=F_{1}(M)^{*}$, such that the diagram

commutes. Using the projective version of this diagram and letting $E=$ $E_{2} E_{3} E_{1}$ completes the proof in this case.

Since the lengths of $F_{1}(M)$ and $F_{2}\left(M^{\prime}\right)$ are the same, so are those of M and M^{\prime} by Section 1. Q.E.D.
(3.2) Corollary. Let M and M^{\prime} be finitely generated projective modules over Λ and Λ_{1}, respectively, with lengths ≥ 3. Then the following are equivalent:
(i) There is a category equivalence $F: \mathfrak{M}_{\Lambda} \rightarrow \mathfrak{M}_{\Lambda_{1}}$ with $F(M)=M^{\prime}$, or E : $\mathfrak{M}_{\Lambda^{\circ}} \rightarrow \mathfrak{M}_{\Lambda_{1}}$ with $E\left(M^{*}\right)=M^{\prime}$.
(ii) $\quad G L(M) \cong G L\left(M^{\prime}\right)$.
(iii) $P G L(M) \cong P G L\left(M^{\prime}\right)$.
(iv) $S L(M) \cong S L\left(M^{\prime}\right)$.
(v) $\operatorname{PSL}(M) \cong \operatorname{PSL}\left(M^{\prime}\right)$.

Proof. Proceed as in the proof of (3.1a) of [5]. Use (2.2) and (2.3) above.
(3.3) Suppose $R=R_{1}$, also $K=K_{1}$, and that A and A_{1} are in the same Brauer class. Suppose that Λ and Λ_{1} are both hereditary, and let n be a positive integer.

Then there are finitely generated projective modules $M \in \mathfrak{M}_{\Lambda}$ and $M^{\prime} \in \mathfrak{M}_{\Lambda_{1}}$ both of length n, such that $G L(M) \cong G L\left(M^{\prime}\right)$ and $P G L(M) \cong P G L\left(M^{\prime}\right)$.

Proof. Begin by letting Δ and Δ_{1} be maximal R-orders in A and A_{1} containing Λ and Λ_{1} respectively. By (1.3) there is an R-equivalence F : $\mathfrak{M}_{\Delta} \rightarrow \mathfrak{M}_{\Delta_{1}}$.

Now let M_{Δ} be any finitely generated projective Δ-module. Put $F(M)=$ $M_{\Delta_{1}}^{\prime}$. By (21.6) and (21.8) of [1] (right handed versions) $M^{\prime} \in \mathfrak{M}_{\Delta_{1}}$ is finitely generated projective. By Section 2 of [5], $G L\left(M_{\Delta}\right) \cong G L\left(M_{\Delta_{1}}^{\prime}\right)$ and $P G L\left(M_{\Delta}\right) \cong P G L\left(M_{\Delta_{1}}^{\prime}\right)$. By Section $1, l\left(M_{\Delta}\right)=l\left(M_{\Delta_{1}}^{\prime}\right)$.

Since M is a right Δ-lattice, it is a right Λ-lattice. So M is a finitely generated projective Λ-module by (10.7) of [7]. By Example 1, page 378 of [7], $G L\left(M_{\Lambda}\right)=G L\left(M_{\Delta}\right)$, and since Cen $\Lambda=$ Cen $\Delta=R, P G L\left(M_{\Lambda}\right)=P G L\left(M_{\Delta}\right)$. Since

$$
M \otimes_{\Lambda} A \cong M \otimes_{R} K \cong M \otimes_{\Delta} A
$$

as right A-modules (refer to Section 1), $l\left(M_{\Lambda}\right)=l\left(M_{\Delta}\right)$. The facts developed above for M are analogously true for M^{\prime}. Therefore

$$
G L\left(M_{\Lambda}\right) \cong G L\left(M_{\Lambda_{1}}^{\prime}\right) \quad \text { and } \quad P G L\left(M_{\Lambda}\right) \cong P G L\left(M_{\Lambda_{1}}^{\prime}\right)
$$

and $l\left(M_{\Lambda}\right)=l\left(M_{\Lambda_{1}}^{\prime}\right)$.
It remains to show that for a positive integer n, there is a finitely generated projective M_{Δ} with $l\left(M_{\Delta}\right)=n$.

Choose a division algebra D over K and a finite dimensional right vector space V over D such that $A \cong$ End (V_{D}) as K-algebras. By (21.6) of [7], there is a maximal R-order Δ_{0} in D and a full right Δ_{0}-lattice N in V, such that $\Delta \cong$ End ($N_{\Delta_{0}}$) by restriction. By (27.8) of [7] there is a basis $\left\{x_{1}, \ldots, x_{n}\right\}$ for V over D, and a right Δ-ideal \mathfrak{a} in D, such that

$$
N=x_{1} \Delta_{0}+\cdots+x_{n-1} \Delta_{0}+x_{n} a .
$$

Clearly, $N \otimes_{\Delta_{0}} D \cong V$. It now follows from Section 1 that $A \otimes_{\Delta} N \cong V$ as left A-algebras. Therefore $l\left({ }_{\Delta} N\right)=1$. Hence $l\left(N_{\Delta}^{*}\right)=1$ from Section 1. Now take an appropriate direct sum. Q.E.D.

Remarks. It is now easy to construct specific examples of hereditary orders for which the conclusions of Theorem (3.1) fail. Refer to Section 3D of [5] for example. The underlying reason for the failure seems to be that finitely generated projectives are progenerators over maximal orders and that this is no longer the case for hereditary ones. It is probable that (3.1) remains true for progenerators over hereditary orders. Indeed Bolla [3] proves the endomorphism ring analogue of (3.1) for progenerators over arbitrary rings.

References

1. F. Anderson and K. Fuller, Rings and categories of modules, Springer-Verlag, New York, 1974.
2. H. Bass, Algebraic K-theory, Benjamin, New York, 1968.
3. M. Bolla, Isomorphisms between endomorphism rings of progenerators, J. Algebra, vol. 87 (1984), pp. 261-281.
4. F. De Meyer and E. Ingraham, Separable algebras over commutative rings, Lecture Notes in Mathematics, No. 181, Springer-Verlag, Heidelberg, 1971.
5. A. Hahn, Category equivalences and linear groups over rings, J. Algebra, vol. 77 (1982), pp. 505-543.
6. O. T. O'Meara, A general isomorphism theory for the linear groups, J. Algebra, vol. 44 (1977), pp. 93-142.
7. I. Reiner, Maximal orders, Academic Press, New York, 1975.

University of Notre Dame
Notre Dame, Indiana

[^0]: Received February 2, 1982.
 ${ }^{1}$ The author thanks the National Science Foundation for its support under a grant at the University of Notre Dame, Indiana.

