LYAPOUNOV NUMBERS FOR THE ALMOST PERIODIC SCHRODINGER EQUATION

BY

Russell A. Johnson

1. Introduction

We consider the almost periodic Schrödinger operator

$$
\begin{equation*}
L=\frac{-d^{2}}{d t^{2}}+q(t) \tag{1.1}
\end{equation*}
$$

where $q(t)$ is continuous and Bohr almost periodic. Associated to (1.1) is a rotation number $\alpha(\lambda)(\lambda \in \mathbf{R})$, where

$$
\alpha(\lambda)=-\lim _{t \rightarrow \infty} \frac{\theta(t)}{t}, \quad \theta(t)=\arg \left(\phi(t)+i \phi^{\prime}(t)\right)
$$

and $\phi \neq 0$ satisfies $L \phi=\lambda \phi$. It is known that $\alpha(\lambda)$ is independent of the solution ϕ, that α is continuous and monotone increasing in λ, and that α increases exactly on the essential spectrum F of L [7]. In addition,

$$
\alpha(\lambda)=\lim _{\varepsilon \rightarrow 0} w(\lambda+i \varepsilon),
$$

where $w(z)$ is holomorphic in the upper half plane $H^{+}=\{z \mid \operatorname{Im} z>0\}$, and $\operatorname{Im} w(z)$ measures the "complex rotation" of certain solutions of $L \phi=z \phi$. Moreover, $w(z)$ provides information about the higher-order $K d V$ equations with almost-periodic initial data [7].

In this paper, we consider the real part $-\operatorname{Re} w(z)$, and its boundary value $\beta(\lambda)(\lambda \in \mathbf{R})$. It will be easy to see that

$$
\operatorname{Re} w(z)=\lim _{t \rightarrow \infty} \frac{1}{2 t} \ln \left[\psi(t)^{2}+\psi^{\prime}(t)^{2}\right]
$$

where $L \psi=z \psi$ and $\psi \in L^{2}(0, \infty)\left(z \in H^{+}\right)$. Thus $\operatorname{Re} w(z)$ measures the exponential decay of solutions which are in $L^{2}(0, \infty)$. We will see that the boundary value of $\operatorname{Re} w$ also measures exponential decay of solutions. In fact, we define

$$
\begin{equation*}
\beta(\lambda)=\sup _{\phi \neq 0}\left\{\varlimsup_{t \rightarrow \infty} \frac{1}{2 t} \ln \left[\phi(t)^{2}+\phi^{\prime}(t)^{2}\right]\right\}, \tag{1.2}
\end{equation*}
$$

Received December 30, 1981.
where $L \phi=\lambda \phi$; actually the sup is ta_ien no just over solutions of $L \phi=\lambda \phi$, but over solutions to all equations

$$
\begin{equation*}
L_{\omega} \phi=\left(\frac{-d^{2}}{d t^{2}}+\omega(t)\right) \phi=\lambda \phi \tag{1.3}
\end{equation*}
$$

where $\omega(t)$ is in the hull of q (see Section 2). In 1.2 , we allow λ to take on real and complex values. It then turns out that $\beta(\lambda) \geq 0$ everywhere, that $\operatorname{Re} w(\lambda)=-\beta(\lambda)$ if $\operatorname{Im} \lambda>0$, and that

$$
\lim _{\varepsilon \rightarrow 0}(-\operatorname{Re} w(\lambda+i \varepsilon))=\beta(\lambda) \quad \text { for all } \lambda \in \mathbf{R} .
$$

Moreover, if λ is real and $\beta(\lambda)=0$, then all solutions of all equations $L_{\omega} \phi=$ $\lambda \phi$ satisfy

$$
\lim _{t \rightarrow \infty} \frac{1}{2 t} \ln \left[|\phi(t)|^{2}+\left|\phi^{\prime}(t)\right|^{2}\right]=0
$$

if $\beta(\lambda)>0$, then for almost all ω, (1.3) admits a unique (up to constant multiple) solution ψ with

$$
\lim _{t \rightarrow \infty} \frac{1}{2 t} \ln \left[\psi(t)^{2}+\psi^{\prime}(t)^{2}\right]=-\beta(\lambda)
$$

In particular, $\psi \in L^{2}(0, \infty)$.
The function β has several other properties; we prove two. First, it is harmonic on the resolvent set $\mathbf{C} \backslash F$ of the operator L (we give a simple proof based on [7]). This fact is used to prove that, if I is an open interval such that $F \cap I \neq \emptyset$, then $F \cap I$ has positive logarithmic capacity. Second, it is one-sided continuous at an endpoint λ of a spectral gap: if $\lambda_{n} \in \mathbf{R} \backslash F$ and $\lambda_{n} \rightarrow \lambda$, then $\beta\left(\lambda_{n}\right) \rightarrow \beta(\lambda)$.

To throw more light on the function $\beta(\lambda)(\lambda \in \mathbf{R})$, we consider a class of examples, modeled on the example of [6] (in that example, $\beta\left(\lambda_{0}\right)>0$ for at least one point λ_{0} in F, namely the leftmost point in F). We assume

$$
\begin{equation*}
q(t)=\lim _{n \rightarrow \infty} q_{n}(t), \quad q_{n}\left(t+T_{n}\right)=q_{n}(t) \tag{1.4}
\end{equation*}
$$

where the limit is uniform and the period T_{n+1} of q_{n+1} is an integer multiple of $T_{n}(n \geq 1)$; we also put various other conditions on the q_{n}.

We prove that $\beta\left(\lambda_{0}\right)>0$ for the left endpoint $\lambda_{0} \in F$, and that β is discontinuous at λ_{0} : in fact, $\beta\left(\lambda_{n}\right) \rightarrow 0$ for a sequence $\lambda_{n} \rightarrow \lambda_{0}$. Now,

$$
\lim _{\varepsilon \rightarrow 0} w(\lambda+i \varepsilon)=-\beta(\lambda)+i \alpha(\lambda)
$$

hence β is the Hilbert transform of the continuous function $-\alpha(\lambda)$. Hence β has the mean value property [14]. So β must oscillate wildly near λ_{0}.

2. Preliminaries

We first introduce the hull Ω of q. For $\tau \in \mathbf{R}$, the translate q is given by $q_{\tau}(t)=q(t+\tau)(t \in \mathbf{R})$; then $\Omega=\mathrm{cl}\left\{q_{\tau} \mid \tau \in \mathbf{R}\right\}$, where the closure is taken in the uniform topology. Thus q is a point in Ω; we denote q also by ω_{0}. A flow (Ω, \mathbf{R}) is defined by translation:

$$
(\omega \cdot t)(s)=\omega(t+s) \quad(\omega \in \Omega)
$$

We give Ω the structure of a compact, abelian topological group, as follows. If

$$
\omega_{1}=\lim _{n \rightarrow \infty} \omega_{0} \cdot t_{n}, \quad \omega_{2}=\lim _{n \rightarrow \infty} \omega_{0} \cdot s_{n}
$$

then

$$
\omega_{1} \omega_{2}=\lim _{n \rightarrow \infty} \omega_{0} \cdot\left(t_{n}+s_{n}\right) \quad \text { and } \quad \omega_{1}^{-1}=\lim _{n \rightarrow \infty} \omega_{0} \cdot\left(-t_{n}\right)[11] .
$$

Note that ω_{0} is the identity of Ω. We may view \mathbf{R} as a dense subgroup of Ω via the $\operatorname{map} t \rightarrow \omega_{0} \cdot t$.

We "extend q to Ω " in the natural way: define $Q(\omega)=\omega(0)(\omega \in \Omega)$; then Q is continuous, and $Q\left(\omega_{0} \cdot t\right)=q_{t}(0)=q(t)$. Thus q is regained from Q by evaluation along the orbit through $q=\omega_{0}$. We will consider the equations

$$
\begin{equation*}
L_{\omega} \phi=\left(\frac{-d^{2}}{d t^{2}}+Q(\omega \cdot t)\right) \phi=\lambda \phi \quad(\omega \in \Omega) \tag{2.1}
\end{equation*}
$$

and the associated two-dimensional systems

$$
u^{\prime}=\left(\begin{array}{ll}
0 & 1 \tag{2.2}\\
\lambda+Q(\omega \cdot t) & 0
\end{array}\right) u, \quad u=\binom{\phi}{\phi^{\prime}} \quad(\omega \in \Omega)
$$

When it is necessary to avoid confusion, we will write $(2.1)_{\omega, \lambda}$ and $(2.2)_{\omega, \lambda}$ instead of (2.1) ${ }_{\omega}$ and (2.2) ${ }_{\omega}$.
2.3 Definition. Fix $\lambda \in \mathbf{C}$. Define

$$
\begin{aligned}
\beta(\lambda)=\sup \left\{\begin{array}{l}
\varlimsup_{t \rightarrow \infty} \frac{1}{t} \ln \|u(t)\|: \quad u(t) \text { is a non-zero } \\
\\
\text { solution of some equation (2) } \omega
\end{array}\right\} .
\end{aligned}
$$

The sup is taken over all $u(t)$ and all $\omega \in \Omega$.

Fix $\lambda \in \mathbf{C}$. It is convenient to introduce the projective flow defined by equations (2) . Call a complex 1-dimensional subspace of \mathbf{C}^{2} a complex line. For each $\omega \in \Omega$, equation (2) is linear, so the fundamental matrix solution $\Phi_{\omega}(t)$ (with $\Phi_{\omega}(0)=I$) maps complex lines to complex lines. If l is a complex line in \mathbf{C}^{2}, let $l(\tau)=\Phi_{\omega}(t) \cdot l$ denote its image after time t. Letting $\mathbf{P}^{1}(\mathbf{C})$ be the usual space of all complex lines in \mathbf{C}^{2}, we define a flow on $\Sigma=\Omega \times \mathbf{P}^{1}(\mathbf{C})$ as follows:

$$
(\omega, l) \cdot t=(\omega \cdot t, l(t)) \quad\left(\omega \in \Omega, l \in \mathbf{P}^{1}(\mathbf{C})\right)
$$

The point of introducing (Σ, \mathbf{R}) is the following. Write

$$
A_{\lambda}(\omega)=\left(\begin{array}{cc}
0 & 1 \\
-\lambda+Q(\omega) & 0
\end{array}\right) \quad(\omega \in \Omega)
$$

Define

$$
\begin{equation*}
f_{\lambda}: \Sigma \rightarrow \mathbf{R}:(\omega, l) \rightarrow \operatorname{Re} \frac{\left\langle A_{\lambda}(\omega) u_{0}, u_{0}\right\rangle}{\left\langle u_{0}, u_{0}\right\rangle} \tag{2.4}
\end{equation*}
$$

where $0 \neq u_{\mathrm{o}}$ is any vector in l. Then if $u(t)$ satisfies equation (2) ${ }_{\omega}$ with $u(0)=$ u_{0}, one has

$$
\begin{equation*}
\frac{1}{t}[\ln \|u(t)\|-\ln \|u(0)\|]=\frac{1}{t} \int_{0}^{t} f_{\lambda}((\omega, l) \cdot s) d s \tag{2.5}
\end{equation*}
$$

Thus the exponential growth of $u(t)$ is determined by a time average of f_{λ}. We will use the ergodic theory of the flow (Σ, \mathbf{R}) to study these time averages.

We remark that a flow (Σ, \mathbf{R}) is defined for each $\lambda \in \mathbf{C}$. When confusion can arise, we write $(\Sigma, \mathbf{R})_{\lambda}$ for the flow defined by equations $(2.2)_{\omega, \lambda}$.

If λ is real, we obtain also a flow on $\Sigma_{\mathrm{Re}}=\Omega \times \mathbf{P}^{1}(\mathbf{R})$, where $\mathbf{P}^{1}(\mathbf{R})$ is the space of (real) one-dimensional subspaces of \mathbf{R}^{2}. We will call such subspaces lines (as opposed to complex lines). It is convenient to view $\mathbf{P}^{1}(\mathbf{R})$ as a subset of $\mathbf{P}^{1}(\mathbf{C})$, and hence $\Sigma_{R e}$ as a subset of Σ. To do this, we use the usual identification of the Riemann number sphere S^{2} with $\mathbf{P}^{1}(\mathbf{C})$: if $[a, b]$ denotes the complex line on which the non-zero complex vector (a, b) lies, then we define Ident: $S^{2} \rightarrow \mathbf{P}^{1}(\mathbf{C})$ by

$$
z \rightarrow[1, z], \text { if } z \neq \infty ; \quad \text { Ident }(\infty)=[0,1]
$$

Then $\mathbf{P}^{1}(\mathbf{R})$ is identified with $\mathbf{R} \cup\{\infty\} \subset S^{2}$.
We also need to consider the singular boundary value problems

$$
\begin{equation*}
L_{\omega} \phi=\left(\frac{-d^{2}}{d t^{2}}+Q(\omega \cdot t)\right) \phi=\lambda \phi, \phi(0)=0, \phi \in L^{2}(0, \infty) \quad(\omega \in \Omega) \tag{2.6}
\end{equation*}
$$

Fix $\omega \in \Omega$. Since equation $(2.6)_{\omega}$ is of limit point type [3], there is a function $M_{\omega}(\lambda)$, defined and holomorphic for $\operatorname{Im} \lambda \neq 0$, satisfying

$$
\frac{\operatorname{Im} M_{\omega}(\lambda)}{\operatorname{Im} \lambda}>0
$$

such that if $\phi(t) \neq 0$ satisfies $L_{\omega} \phi=\lambda \phi$, then $\phi \in L^{2}(0, \infty)$ iff $\phi^{\prime}(0)=$ $M_{\omega}(\lambda) \phi(0)$. For fixed λ with $\operatorname{Im} \lambda \neq 0$, let $\psi^{+}(t)$ satisfy

$$
L \psi^{+}=\lambda \psi^{+} \quad \text { and } \quad \psi^{+\prime}(0)=M_{\omega}(\lambda) \psi^{+}(0) .
$$

It is not hard to show that
(2.7) $\psi^{+}(t)=\psi^{+}(0) \exp \left(\int_{0}^{t} M_{\omega \cdot s}(\lambda) d s\right)$,
(2.8) $\quad M_{\omega}(\lambda)$ is jointly continuous in ω and $\lambda(\operatorname{Im} \lambda \neq 0)$.

Problem (2.6) ${ }_{\omega}$ admits a monotone increasing spectral function $\rho_{\omega}(t)$ [3]; the points in the spectrum of the singular problem $(2.6)_{\omega}$ are the points of increase of ρ_{ω}. The function ρ_{ω} is unique if it is chosen to be rightcontinuous with $\rho_{\omega}(0)=0$. We have

$$
\operatorname{Im} M_{\omega}(\lambda)=\frac{1}{\pi} \int_{-\infty}^{\infty} \operatorname{Im} \frac{d \rho_{\omega}(t)}{t-\lambda} \quad(\operatorname{Im} \lambda>0)
$$

We note that the essential spectrum of (2.6) ${ }_{\omega}$ is independent of ω, and equals the spectrum F on $L^{2}(-\infty, \infty)$ of each and every operator

$$
L_{\omega}=\frac{-d^{2}}{d t^{2}}+Q(\omega \cdot t)
$$

(see [14]; viewed on $L^{2}(-\infty, \infty)$, the L_{ω} 's all have the same spectrum F, and it is always essential).
2.9 Definition [7]. For $\operatorname{Im} \lambda \neq 0$, define $w(\lambda)=\int_{\Omega} M_{\omega}(\lambda) d \omega$, where $d \omega$ is normalized Haar measure on the compact topological group Ω.

Using 2.8 , one shows that $w(\lambda)$ is holomorphic for $\operatorname{Im} \lambda \neq 0$. Since $d \omega$ is the only measure on Ω invariant with respect to the flow (Ω, \mathbf{R}), we have for fixed ω, λ

$$
\operatorname{Re} w(\lambda)=\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} M_{\omega \cdot s}(\lambda) d s
$$

so using 2.7,

$$
\operatorname{Re} w(\lambda)=\lim _{t \rightarrow \infty} \frac{1}{2 t} \ln \left(\left|\psi^{+}(t)\right|^{2}+\left|\psi^{+\prime}(t)\right|^{2}\right)
$$

Thus $\operatorname{Re} w(\lambda)$ is the exponential rate of decay of solutions

$$
u(t)=\left(\psi^{+}(t), \psi^{+\prime}(t)\right)
$$

of $(2.2)_{\omega}$ for which $\psi^{+} \in L^{2}(0, \infty)$. Note $\operatorname{Re} w(\lambda) \leq 0$, and since it is harmonic, $\operatorname{Re} w(\lambda)<0$ if $\operatorname{Im} \lambda \neq 0$.

For each $\omega \in \Omega$, there is also a holomorphic function $M_{\omega}^{-}(\lambda)(\operatorname{Im} \lambda \neq 0)$, satisfying

$$
\frac{\operatorname{Im} M_{\omega}^{-}(\lambda)}{\operatorname{Im} \lambda}<0
$$

such that $\psi^{-}(t)=\exp \left(\int_{0}^{t} M_{\omega \cdot s}^{-} \cdot(\lambda) d s\right)$ is in $L^{2}(-\infty, 0) ; M_{\omega}^{-}(\lambda)$ is also jointly continuous in ω and λ. It is proved in [7] that

$$
w(\lambda)=-\int_{\Omega} M_{\omega}^{-}(\lambda) d w \quad(\operatorname{Im} \lambda \neq 0)
$$

Using these facts, one can show that

$$
\begin{equation*}
\beta(\lambda)=-\operatorname{Re} w(\lambda) \quad(\operatorname{Im} \lambda \neq 0) \tag{2.10}
\end{equation*}
$$

where β is as defined in 2.3.
Now introduce polar coordinates (r, θ) in equations $(2.2)_{\omega}$, where λ is real and fixed. Then θ satisfies

$$
\begin{equation*}
\dot{\theta}=\sin ^{2} \theta+(-\lambda+Q(\omega \cdot t)) \cos ^{2} \theta \tag{2.11}
\end{equation*}
$$

In [7], the rotation number $\alpha(\lambda)$ is defined as follows:

$$
\begin{equation*}
\alpha(\lambda)=-\lim _{t \rightarrow \infty} \frac{\theta(t)}{t} \tag{2.12}
\end{equation*}
$$

where a choice of $\omega \in \Omega$ and $\theta(0)=\theta_{0}$ is made.
2.13 Theorem [7]. The rotation number $\alpha(\lambda)$ is independent of ω and θ_{0}, and the convergence in (2.12) is uniform in t, ω, θ_{0}. Also α is continuous and monotone increasing in $\lambda \in \mathbf{R}$. One has that α increases exactly on the spectrum F of the L_{ω}, and

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0^{+}} \operatorname{Im} w(\lambda+i \varepsilon)=\alpha(\lambda) \quad(\lambda \in \mathbf{R}) \tag{2.14}
\end{equation*}
$$

Next we recall some results from the theory of almost periodic linear systems, as applied to equations $(2.2)_{\omega}$.
2.15. Let $\lambda \in \mathbf{R}$, and let f_{λ} be defined in 2.4. If $\beta(\lambda)=0$, then $\int_{\Sigma} f_{\lambda} d \mu=0$ for every invariant measure [10] μ on Σ. Every time average,

$$
\lim _{|b-a| \rightarrow \infty} \frac{1}{b-a} \int_{a}^{b} f_{\lambda}(\sigma \cdot s) d s \quad(\sigma \in \Sigma)
$$

is 0 and the convergence is uniform in a, b, σ (this uses the proof of Lemma 3.5 in [7]). On the other hand, if $\beta(\lambda)>0$, then there are exactly two ergodic measures on Σ; one has $\mu_{ \pm}\left(\Sigma_{\mathrm{Re}}\right)=1$, and

$$
\begin{equation*}
\int_{\Sigma} f_{\lambda} d \mu_{+}=\hat{\beta}>0, \quad \int_{\Sigma} f_{\lambda} d \mu_{-}=-\hat{\beta} \tag{2.16}
\end{equation*}
$$

See [5]; $\hat{\beta}$ is in fact the right end-point of the Sacker-Sell spectrum [12] of equations $(2.2)_{\omega}$. (Note that $\beta(\lambda) \geq 0$ because a fundamental matrix solution of $(2.2)_{\omega}$ has constant determinant; so there are no other possibilities for $\beta(\lambda)$.
2.17 Proposition. If $\lambda \in \mathbf{R}$ and $\beta(\lambda)>0$, then $\beta(\lambda)=\hat{\beta}$. (It follows directly from 2.3, 2.5, and 2.15 that, if $\beta(\lambda)=0$, then $\hat{\beta}=0$.)

Proof. Let $\varepsilon>0$. Since $\beta(\lambda)>0$, we can find $\omega \in \Omega$, a sequence $\left(t_{n}\right) \rightarrow \infty$, and a line $l \in \mathbf{P}^{1}(\mathbf{R})$ such that, if $u(t) \neq 0$ is a solution of (2) ${ }_{\omega}$ with $(u(0)$, $\left.u^{\prime}(0)\right) \in l$, then $(\sigma=(\omega, l) \in \Sigma)$

$$
\lim _{n \rightarrow \infty} \frac{1}{t_{n}} \ln \left\|u\left(t_{n}\right)\right\|=\lim _{n \rightarrow \infty} \frac{1}{t_{n}} \int_{0}^{t_{n}} f_{\lambda}(\sigma \cdot s) d s>\beta(\lambda)-\varepsilon
$$

Using the classical Krylov-Bogoliubov argument as in the proof of [7, Lemma 3.5], we can find an invariant measure η on Σ so that

$$
\int_{\Sigma} f_{\lambda} d \eta>\beta(\lambda)-\varepsilon
$$

From 2.15, there are non-negative numbers a, b such that

$$
a+b=1 \quad \text { and } \quad \eta=a \mu_{+}+b \mu_{-}
$$

From (2.16), we see that $\hat{\beta} \geq \beta(\lambda)-\varepsilon$, and hence $\hat{\beta} \geq \beta(\lambda)$. On the other hand, 2.15 and the Birkhoff ergodic theorem give us a point $\sigma=(\omega, l) \in \Sigma$ for which

$$
\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} f_{\lambda}(\sigma \cdot s) d s=\hat{\beta}
$$

Let $u(t)$ be a solution of $(2.2)_{\omega}$ with $u(0) \neq 0$ on the line l. Then

$$
\lim _{t \rightarrow \infty} \frac{1}{t} \ln \|u(t)\|=\hat{\beta}
$$

and hence $\beta(\lambda) \geq \hat{\beta}$. So $\beta(\lambda)=\hat{\beta}$.

3. Facts about β

We show that

$$
\lim _{\varepsilon \rightarrow 0^{+}}-\operatorname{Re} w(\lambda+i \varepsilon)=\beta(\lambda) \quad \text { for all } \lambda \in \mathbf{R}
$$

(a more precise statement will be proved), and derive some properties of β.
3.1. Theorem. (a) If $\lambda \in \mathbf{R}$ and $z \rightarrow \lambda$ non-tangentially (n.t.) for $z \in H^{+}$, the upper half-plane, then $-\operatorname{Re} w(z) \rightarrow \beta(\lambda)$. If $\beta(\lambda)=0$, then β is continuous at λ, and $-\operatorname{Re} w(z) \rightarrow \beta(\lambda)$ whenever $z \rightarrow \lambda$, non-tangentially or not.
(b) β is upper semi-continuous on \mathbf{R}.
(c) On \mathbf{R}, β is non-negative, of first Baire class, and has the mean value property.

Proof. First consider (c). We noted in Section 2 that $\beta(\lambda) \geq 0$ for all λ. That β is of first Baire class follows from (a) or (b). Also, β has the mean value property because it is the Hilbert transform of the continuous function $-\alpha$ (part (a), 2.14, and [15]). So we need only prove (a) and (b).

Let us prove the first statement in (a). Consider the functions $M_{\omega}(z)$ discussed in Section $2\left(z \in H^{+}\right)$. For fixed $z \in H^{+}$, define a measure μ_{z} on Σ as follows:

$$
\int_{\Sigma} g d \mu_{z}=\int_{\Omega} g\left(\omega, M_{\omega}(z)\right) d \omega
$$

whenever $g: \Sigma \rightarrow \mathbf{R}$ is continuous. Using 2.7, we see that

$$
\left(\omega, M_{\omega}(z)\right) \cdot t=\left(\omega \cdot t, M_{\omega \cdot t}(z)\right)
$$

where the dot on the left-hand side refers to the flow $(\boldsymbol{\Sigma}, \mathbf{R})_{z}$. It follows that μ_{z} is invariant under this flow. In fact, μ_{z} is ergodic, because the set $A_{z}=\{(\omega$, $\left.\left.M_{\omega}(z)\right) \mid \omega \in \Omega\right\} \subset \Sigma$ is an invariant set which is flow isomorphic to (Ω, \mathbf{R}) via the projection $\pi: \Sigma \rightarrow \boldsymbol{\Omega}:(\omega, l) \rightarrow \omega$.

Let ψ^{+}be a non-zero solution of $(2.1)_{\omega}$ with $\psi^{+\prime}(0)=M_{\omega}(z) \psi^{+}(0)$. Writing $u(t)=\left(\psi^{+}(t), \psi^{+\prime}(t)\right)$, recalling that

$$
\operatorname{Re} w(z)=\lim _{t \rightarrow \infty} \frac{1}{2 t} \ln \left(\left|\psi^{+}(t)\right|^{2}+\left|\psi^{+\prime}(t)\right|^{2}\right)
$$

and using (2.5) and (2.10), we get

$$
\begin{aligned}
-\beta(z) & =\lim _{t \rightarrow \infty} \frac{1}{t} \ln \|u(t)\| \\
& =\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} f_{z}\left(\left(\omega, M_{\omega}(z)\right) \cdot s\right) d s \\
& =\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} f_{z}\left(\left(\omega \cdot s, M_{\omega \cdot s}(z)\right) d s\right.
\end{aligned}
$$

and by the Birkhoff ergodic theorem the last limit equals

$$
\int_{\Omega} f_{z}\left(\omega, M_{\omega}(z)\right) d \omega
$$

Hence we have

$$
\begin{equation*}
\beta(z)=-\int_{\Sigma} f_{z} d \mu_{z} \quad\left(z \in H^{+}\right) \tag{3.2}
\end{equation*}
$$

Now fix $\lambda \in \mathbf{R}$, and suppose first that $\beta(\lambda)=0$. Let $z_{n} \in H^{+}, z_{n} \rightarrow \lambda$, and suppose $\beta(z)=-\operatorname{Re} w\left(z_{n}\right)$ does not tend to zero. We may assume

$$
\beta\left(z_{n}\right) \rightarrow \delta>0
$$

Write $\mu_{n}=\mu_{z_{n}}, f_{n}=f_{z_{n}}$, and note that $f_{n} \rightarrow f_{\lambda}$ uniformly on Σ. The sequence $\left\{\mu_{n}\right\}$ of measures has a weakly convergent subsequence $\left\{\mu_{k}\right\}$. Suppose $\mu_{k} \rightarrow \eta$. Then η is invariant with respect to ($\Sigma, \mathbf{R})_{\lambda}$, and hence $\int_{\Sigma} f_{\lambda} d \eta=0$ (2.15). However, it is clear that this contradicts 3.2. Hence $\beta\left(z_{n}\right) \rightarrow 0=\beta(\lambda)$.

Suppose next that $\beta(\lambda)>0$. Let μ_{-}be the measure on Σ_{Re} given by 2.15 . For μ_{-}-a.a. $(\omega, l) \in \Sigma_{\mathrm{Re}}$, any solution $u(t) \neq 0$ of $(2.2)_{\omega, \lambda}$ with $u(0) \in l$ satisfies

$$
\lim _{t \rightarrow \infty} \frac{1}{t} \ln \|u(t)\|=-\beta(\lambda)
$$

Given $\omega \in \Omega$, there can be at most one line l_{ω} in \mathbf{R}^{2} with this property. We conclude that, for $d \omega$-a.a. $\omega \in \Omega$, there is a unique $l_{\omega} \in \mathbf{P}^{1}(\mathbf{R})$ such that, if ψ is a solution of $(2.1)_{\omega, \lambda}$ such that

$$
\left(\psi(0), \psi^{\prime}(0)\right)
$$

lies on l_{ω}, then $\psi \in L^{2}(0, \infty)$. Let

$$
\Omega_{0}=\left\{\omega \in \Omega \mid \text { there exists } l_{\omega} \text { as above }\right\} .
$$

We now claim that if $\omega \in \Omega_{0}$, then $M_{\omega}(z) \rightarrow l_{\omega}$ in $\mathbf{P}^{1}(\mathbf{C})$ whenever $z \rightarrow \lambda$ n.t. To see this, let

$$
\theta_{\omega} \in(-\pi / 2, \pi / 2)
$$

be the angle l_{ω} makes with the positive ϕ-axis in (ϕ, ϕ^{\prime})-space \mathbf{R}^{2}, and consider the singular boundary-value problem

$$
\begin{gather*}
L_{\omega} \phi=\left(\frac{-d^{2}}{d t^{2}}+Q(\omega \cdot t)\right) \phi=v \phi \tag{3.3}\\
\phi(0)=\cos \theta_{\omega}, \quad \phi^{\prime}(0)=\sin \theta_{\omega}, \quad \phi \in L^{2}(0, \infty) .
\end{gather*}
$$

This problem admits a spectral function ρ_{ω}^{θ}, which has a jump discontinuity at $v \in \mathbf{R}$ if and only if $(3.3)_{\omega}$ has eigenvalue v [3]. There is also a function
$M_{\omega}^{\theta}(z)$, holomorphic for $\operatorname{Im} z \neq 0$, such that:
(i) the solution ψ^{+}of $L_{\omega} \phi=z \phi$ satisfying

$$
\phi^{+}(0)=\sin \theta_{\omega}+M_{\omega}^{\theta}(z) \cos \theta_{\omega}, \quad \psi^{+\prime}(0)=\cos \theta_{\omega}+M_{\omega}^{\theta}(z) \sin \theta_{\omega}
$$

is in $L^{2}(0, \infty)$;
(ii) $\operatorname{Im} M_{\omega}^{\theta}(z)=\frac{1}{\pi} \int_{-\infty}^{\infty} \operatorname{Im} \frac{d \rho_{\omega}^{\theta}(t)}{t-z}$ for $\operatorname{Im} z>0$.

Now, (3.3) ${ }_{\omega}$ has, for each $\omega \in \Omega_{0}$, an eigenvalue at the point λ under consideration. Hence $M_{\omega}^{\theta}(z) \rightarrow \infty$ if $z \rightarrow \lambda$ n.t. and $z \in H^{+}$[15]. But, using (i), 2.7, and uniqueness of ψ^{+}up to constant multiple, we seen that $M_{\omega}(z) \rightarrow \tan \theta_{\omega}$; i.e. $M_{\omega}(z) \rightarrow l_{\omega}$ in $\mathbf{P}^{1}(\mathbf{C})$. This is what we wanted to show.

Next let $\left\{z_{n}\right\}$ be any sequence in H^{+}such that $z_{n} \rightarrow \lambda$ and $M_{\omega}\left(z_{n}\right) \rightarrow l_{\omega}$ for all $\omega \in \Omega_{0}$. Clearly if $\omega \in \Omega_{0}$, then $\omega \cdot t \in \Omega_{0}$ for all $t \in \mathbf{R}$, and $M_{\omega \cdot t}\left(z_{n}\right) \rightarrow l_{\omega \cdot t}$. Also

$$
-\beta\left(z_{n}\right)=\int_{\Omega} f_{z_{n}}\left(\omega, M_{z_{n}}(\omega)\right) d \omega \rightarrow \int_{\Omega} f_{\lambda}\left(\omega, l_{\omega}\right) d \omega
$$

by bounded convergence. However, it is easily seen that the map

$$
\omega \rightarrow\left(\omega, l_{\omega}\right): \boldsymbol{\Omega} \rightarrow \boldsymbol{\Sigma}
$$

defines a $d \omega$-measurable, invariant section of the sphere bundle Σ; i.e.,

$$
\left(\omega, l_{\omega}\right) \cdot t=\left(\omega \cdot t, l_{\omega} \cdot t\right) \quad \text { for all } t \in \mathbf{R} \quad \text { and } \quad \omega \in \Omega_{0}
$$

Hence we can define an ergodic measure μ_{0} on Σ by

$$
\int_{\Sigma} g d \mu_{0}=\int_{\Omega} g\left(\omega, l_{\omega}\right) d \omega
$$

when $g: \Sigma \rightarrow \mathbf{R}$ is continuous; μ_{0} is ergodic because the projection $\pi: \Sigma \rightarrow \Omega$ restricts to a measurable bijection from $\left\{\left(\omega, l_{\omega}\right) \mid \omega \in \Omega\right\}$ to Ω_{0}. So, by 2.15,

$$
\int_{\Sigma} f_{\lambda} d \mu_{0}= \pm \beta(\lambda)
$$

and since $0 \geq-\beta\left(z_{n}\right) \rightarrow \int_{\Sigma} f_{\lambda} d \mu_{0}$, we must have $\int_{\Sigma} f_{\lambda} d \mu_{0}=-\beta(\lambda)$. So

$$
\beta\left(z_{n}\right) \rightarrow \beta(\lambda) \quad \text { if } z_{n} \rightarrow \lambda \text { n.t. }
$$

We have proved the first statement in part (a) of the theorem.
There remains to prove that $\beta(\lambda)=0$ implies β is continuous at λ, and that β is upper semi-continuous on \mathbf{R}. Since $\beta \geq 0$ everywhere, it suffices to prove that β is upper semi-continuous on \mathbf{R}.

Suppose for contradiction that there is a sequence $\lambda_{n} \rightarrow \lambda \in \mathbf{R}$ such that $\lim _{n \rightarrow \infty} \beta\left(\lambda_{n}\right)>\beta(\lambda)$. Then we can assume that $\beta\left(\lambda_{n}\right) \geq \delta>0$. By 2.15 , the flow $(\Sigma, \mathbf{R})_{\lambda_{n}}$ admits an ergodic measure μ_{n} with

$$
\int_{\Sigma} f_{\lambda_{n}} d \mu_{n} \geq \delta \quad \text { for all } n
$$

We can assume that $\mu_{n} \rightarrow \mu$ weakly; one checks that μ is invariant with respect to $(\Sigma, \mathbf{R})_{\lambda}$. Since $f_{\lambda_{n}} \rightarrow f_{\lambda}$ uniformly,

$$
\beta\left(\lambda_{n}\right) \rightarrow \int_{\Sigma} f_{\lambda} d \mu
$$

By $2.15, \int_{\Sigma} f_{\lambda} d \mu \leq \beta(\lambda)$. This is a contradiction; we have proved that β is upper semi-continuous. This completes the proof of 3.1.

Next we use the results of [7] to prove that β is harmonic on the resolvent set of $L=-d^{2} / d t^{2}+q(t)$ acting on $L^{2}(-\infty, \infty)$. The result is also a special case of a more general proposition proved in [4].
3.4 Proposition. Let F be the spectrum of $L=-d^{2} / d t^{2}+q(t)$ acting on $L^{2}(-\infty, \infty)$. Then β is harmonic on the resolvent set $\mathbf{C} \backslash F$.

Proof. Consider the function $w(\lambda)=\int_{\Omega} M_{\omega}(\lambda) d \omega$ introduced in Section 2; then

$$
\beta(\lambda)=-\operatorname{Re} w(\lambda) \quad(\operatorname{Im} \lambda \neq 0)
$$

Recall that $M_{\omega}(\bar{\lambda})=\overline{M_{\omega}(\lambda)}$, hence $w(\bar{\lambda})=\overline{w(\lambda)}$. Now if I is an interval in $\mathbf{R} \backslash F$, then

$$
-\beta(\lambda)+i \alpha(\lambda)=\lim _{\varepsilon \rightarrow 0^{+}} w(\lambda+i \varepsilon)
$$

and $\alpha(\lambda)$ is constant for $\lambda \in I$, say α_{I} [7]. We also have

$$
\lim _{\varepsilon \rightarrow 0^{-}} w(\lambda+i \varepsilon)=\beta(\lambda)-\alpha_{I} \quad(\lambda \in I) .
$$

So if we define

$$
w^{*}(\lambda)= \begin{cases}w(\lambda), & \operatorname{Im} \lambda>0 \\ \beta(\lambda)+i \alpha_{I}, & \lambda \in I, \\ w(\lambda)+2 i \alpha_{I}, & \operatorname{Im} \lambda<0\end{cases}
$$

then w^{*} is holomorphic on $\{\operatorname{Im} \lambda \neq 0\} \cup I$ by the reflection principle. It follows that β is harmonic on the resolvent set.

As a corollary, we prove that F cannot be too small.
3.5 Corollary. Let $I \subset \mathbf{R}$ be an open interval such that $I \cap F \neq \emptyset$. Then $F \cap I$ has positive logarithmic capacity [11].

Proof. Suppose $F \cap I \neq \emptyset$ but the logarithmic capacity is zero. By 3.4, β extends harmonically to the entire open disc D with diameter I (since β is clearly bounded on D). Let h be that harmonic conjugate of β on D such that $h=\operatorname{Im} w$ on $\{\lambda \in D \mid \operatorname{Im} \lambda>0\}$. By 2.10 and $2.13, \alpha$ is the restriction of h to I; hence α is continuously differentiable on I. Now by $2.13, \alpha^{\prime}(\lambda)=0$ except when $\lambda \in F$. Since $F \cap I$ has capacity zero, it has Lebesgue measure zero. So α^{\prime} is identically zero on I, and α is constant on I. So by $2.13, F \cap I=\phi$. This is a contradiction, so $F \cap I$ has positive logarithmic capacity.

Finally, we consider the behaviour of β at endpoints of spectral gaps.
3.6 Proposition. Let $\lambda_{0} \in \mathbf{R}$ be an endpoint of a spectral gap I (i.e. I is a maximal interval in $\mathbf{R} \backslash F)$. If $\lambda_{n} \rightarrow \lambda_{0}$ and $\lambda_{n} \in I$, then $\beta\left(\lambda_{n}\right) \rightarrow \beta\left(\lambda_{0}\right)$.

Proof. Recall the functions $M_{\omega}(z), M_{\omega}^{-}(z)$ discussed in Section 2; for each $\omega \in \Omega$, these are defined and holomorphic for $\operatorname{Im} z \neq 0$. Since the spectrum F of L_{ω} is independent of ω, each $M_{\omega}(z)$ extends meromorphically through I $(\omega \in \Omega)$, and so does each $M_{\omega}^{-}(z)$ [3]. In addition, either $\operatorname{Im} M_{\omega}(\lambda)=0$ or $M_{\omega}^{-}(\lambda)=\infty(\lambda \in I)$, and the same holds for each $M_{\omega}^{-}(\lambda)$.

Now, the vector $\left(1, M_{\omega}(\lambda)\right) \in \mathbf{C}^{2}$ defines a line $l_{\omega}^{+}(\lambda)$ in $\mathbf{P}^{1}(\mathbf{R})$ for each $\lambda \in I$; if $M_{\omega}(\lambda)=\infty$, then $l_{\omega}^{+}(\lambda)$ is the line containing the vector $(0,1)$. Similarly, $\left(1, M_{\omega}^{-}(\lambda)\right)$ defines a line $l_{\omega}^{-}(\lambda)(\lambda \in I)$. We coordinatize the circle $\mathbf{P}^{1}(\mathbf{R})$ with the usual polar coordinate $\theta,-\pi / 2 \leq \theta \leq \pi / 2$, where $\theta=-\pi / 2$ and $\theta=\pi / 2$ are identified. Orient $\mathbf{P}^{1}(\mathbf{R})$ in the direction of increasing θ.

Fix $\omega \in \Omega$. It is remarked in [6] that, if λ increases through I, then $M_{\omega}(\lambda)$ and $M_{\omega}^{-}(\lambda)$ move in opposite directions on $\mathbf{P}^{1}(\mathbf{R})$ (the remark is just [2, Problem 9, p. 257]. It can also be shown that $M_{\omega}(\lambda)$ and $M_{\omega}^{-}(\lambda)$ can never coincide if $\lambda \in I$ [6].

It is clear from these two remarks that, as $\lambda_{n} \rightarrow \lambda_{0}$ in I, the limits

$$
\lim _{n \rightarrow \infty} l_{\omega}^{ \pm}\left(\lambda_{n}\right)
$$

exist in $\mathbf{P}^{1}(\mathbf{R})$. Call these limits $l_{\omega}^{ \pm}$. The sets

$$
S^{ \pm}=\left\{\left(\omega, l_{\omega}^{ \pm}\right) \mid \omega \in \Omega\right\} \subset \Sigma_{\operatorname{Re}}
$$

are measurable sections of $\Sigma=\Omega \times \mathbf{P}^{1}(\mathbf{R})$. Hence they define ergodic measures $\mu^{ \pm}$on Σ via the formulas

$$
\int_{\Sigma} g d \mu^{ \pm}=\int_{\Omega} g\left(\omega, l_{\omega}^{ \pm}\right) d \omega
$$

for continuous $g: \Sigma \rightarrow \mathbf{R}$. We have

$$
-\beta\left(\lambda_{n}\right)=\int_{\Sigma} f_{\lambda_{n}}\left(\omega, M_{\omega}\left(\lambda_{n}\right)\right) d \omega \rightarrow \int_{\Sigma} f_{\lambda_{0}}\left(\omega, l_{\omega}^{+}\right) d \omega=\int_{\Sigma} f_{\lambda_{0}} d \mu^{+}
$$

Using 2.15, we have $\int_{\Sigma} f_{\lambda_{0}} d \mu^{+}=-\beta\left(\lambda_{0}\right)$. This completes the proof of 3.6.

4. Discontinuity of β

We construct a.p. Schrödinger operators for which β is discontinuous. Note that such examples cannot be periodic, for β is always continuous for a periodic Schrödinger operator, and in fact the essential spectrum is determined by the condition $\beta=0$.

We begin with some general remarks. Let $\left\{q_{n}\right\}$ be a sequence of almost periodic function such that $q_{n}(t) \rightarrow q(t)$ uniformly on \mathbf{R}. Then $q(t)$ is almost periodic. Consider the operators

$$
L\left(q_{n}\right)=\frac{-d^{2}}{d t^{2}}+q_{n}(t), \quad L(q)=\frac{-d^{2}}{d t^{2}}+q(t)
$$

From [7, see Section 2 above], we obtain corresponding functions $w\left(q_{n}, \lambda\right)$, $w(q, \lambda)$, holomorphic for $\operatorname{Im} \lambda>0$, such that

$$
\begin{aligned}
\lim _{\varepsilon \rightarrow 0^{+}} w\left(q_{n}, \lambda+i \varepsilon\right) & =-\beta\left(q_{n}, \lambda\right)+i \alpha\left(q_{n}, \lambda\right) \\
\lim _{\varepsilon \rightarrow 0^{+}} w(q, \lambda+i \varepsilon) & =-\beta(q, \lambda)+i \alpha(q, \lambda) \quad(\lambda \in \mathbf{R}) .
\end{aligned}
$$

Here β is defined in 2.3 , and α is the rotation number. From now on, it will be convenient to indicate the potential q in the arguments of β and α.

From now on, we use the term "resolvent of $L(q)$ " to mean the operatortheoretic resolvent of $L(q)$, viewed as a self-adjoint operator on $L^{2}(-\infty, \infty)$.
4.1 Proposition. If $q_{n} \rightarrow q$ uniformly on \mathbf{R}, then

$$
\alpha\left(q_{n}, \lambda\right) \rightarrow \alpha(q, \bar{\lambda})
$$

uniformly on compact subsets of \mathbf{R}. If $I=(a, b) \subset \mathbf{R}$ is a subset of the resolvent of $L(q)$, then $\beta\left(q_{n}, \lambda\right) \rightarrow \beta(q, \lambda)$ for all $\lambda \in I$.

Proof. The first statement is proved in [7, Theorem 6.2]. To prove the second statement, we use 6.3 and 6.4 of [7] to conclude that $w(q, z)$ is continuous as a function of q for fixed $z, \operatorname{Im} z>0$ (in fact, it is differentiable). Hence $w\left(q_{n}, z\right) \rightarrow w(q, z)$ if $\operatorname{Im} z>0$. Now, if $\lambda \in I$, then some interval I_{1} containing λ is in the resolvent of $L\left(q_{n}\right)$ for sufficiently large n, say $n \geq N$. Since the rotation number is constant on intervals in the resolvent [7, Theorem 4.7], we can extend $w\left(q_{n}, \lambda\right)$ and $w(q, \lambda)$ holomorphically through I_{1} if $n \geq N$, and it follows easily that $\beta\left(q_{n}, \lambda\right) \rightarrow \beta(q, \lambda)$.

We remark that, if λ is in the resolvent of $L(q)$, then $\alpha\left(q_{n}, \lambda\right)$ is eventually equal to $\alpha(q, \lambda)$ if $q_{n} \rightarrow q$ uniformly. This uses [7, Theorem 4.7].

Now we borrow two facts from [6]. First, we fix a constant δ :

$$
\begin{equation*}
\delta=2^{-10}=1 / 1024 \tag{4.2}
\end{equation*}
$$

(I) There is a periodic function $q_{0}(t)$, of period $T_{0}>10$, with

$$
\begin{equation*}
1 \geq q_{0}(t) \geq-3 \quad(t \in \mathbf{R}) \tag{4.3}
\end{equation*}
$$

such that the Hill equation

$$
H\left(q_{0}\right): u^{\prime}=\left(\begin{array}{cc}
0 & 1 \\
q_{0}(t) & 0
\end{array}\right) u, \quad u=\binom{\phi}{\phi^{\prime}}
$$

admits two solutions, $u_{ \pm},(t)$, with the following properties. First,

$$
\begin{equation*}
\frac{1}{T_{0}} \ln \left\|u_{ \pm}\left(T_{0}\right)\right\|= \pm \beta_{0}, \quad \beta_{0}>2 / 3 \tag{4.4}
\end{equation*}
$$

If we introduce polar coordinates

$$
r=\left(\phi^{2}+\phi^{\prime 2}\right)^{1 / 2}, \quad \theta=\arg \left(\phi+i \phi^{\prime}\right)
$$

then $H\left(q_{0}\right)$ becomes

$$
\begin{aligned}
\mathscr{R}\left(q_{0}\right): r^{\prime} / r & =\left(1+q_{0}(t)\right) \cos \theta \sin \theta \\
\Theta\left(q_{0}\right): \theta & =-\sin ^{2} \theta+q_{0}(t) \cos ^{2} \theta
\end{aligned}
$$

Writing $u_{ \pm}(t)=r_{ \pm}(t) \exp i \theta_{ \pm}(t)$, we have

$$
\begin{gather*}
-\pi / 4<\theta_{-}(0)=\theta_{-}\left(T_{0}\right)<\theta_{+}(0)=\theta_{+}\left(T_{0}\right)<-\pi / 4+2 \delta ; \tag{4.5}\\
0<\theta_{+}(0)-\theta_{-}(0)<2^{-12}=1 / 4096 \tag{4.6}
\end{gather*}
$$

Using Floquet theory, it is trivial to see that $\beta_{0}=\beta\left(q_{0}, 0\right)$. Observe also the rotation number $\alpha\left(q_{0}, \lambda\right)$ satisfies

$$
\begin{equation*}
\alpha\left(q_{0}, 0\right)=0, \quad \alpha\left(q_{0}, 2\right) \geq 1 \tag{4.7}
\end{equation*}
$$

since $q_{0}(t) \leq 1$ for all t.
(II) Suppose a T_{N}-periodic function $q_{N}(t)$ is given ($N \geq 0$), with the following properties.
(i) The Hill equation $H\left(q_{N}\right)$ admits two solutions, $u_{ \pm}\left(q_{N}, t\right)$, with

$$
\begin{equation*}
\frac{1}{T_{N}} \ln \left\|u_{+}\left(q_{N}, T_{N}\right)\right\|>2 / 3, \quad \frac{1}{T_{N}} \ln \left\|u_{-}\left(q_{N}, T_{N}\right)\right\|<-2 / 3 \tag{4.4}
\end{equation*}
$$

(ii) If $u_{ \pm}\left(q_{N}, t\right)=r_{ \pm}\left(q_{N}, t\right) \exp i \theta_{ \pm}\left(q_{N}, t\right)$, then

$$
\begin{align*}
&-\pi / 4<\theta_{-}\left(q_{N}, 0\right)=\theta_{-}\left(q_{N}, T_{N}\right) \tag{4.5}\\
&<\theta_{+}\left(q_{N}, 0\right) \\
&=\theta_{+}\left(q_{N}, T_{N}\right) \\
&<-\pi / 4+2 \delta \\
& 0<\theta_{+}\left(q_{N}, 0\right)-\theta_{-}\left(q_{N}, 0\right)<2^{-N-12} \tag{4.6}
\end{align*}
$$

Then, there is an integer l_{N}, which may be chosen as large as desired, and a non-negative function $\eta_{N}(t)$, periodic of period $T_{N+1}=l_{N} T_{N}$, satisfying

$$
\begin{gather*}
0 \leq \eta_{N}(t) \leq 3 / 22^{-N-2}<2^{-N-1} \tag{4.8}\\
\text { Support }\left(\eta_{N}\right) \cap\left[0, T_{N+1}\right] \subset\left[T_{N+1}-\delta, T_{N+1}\right]
\end{gather*}
$$

such that, if $p_{N+1}=q_{N}-\eta_{N}$, then the Hill equation $H\left(p_{N+1}\right)$ admits solutions

$$
u_{ \pm}\left(p_{N+1}, t\right)=r_{ \pm}\left(p_{N+1}, t\right) \exp i \theta_{ \pm}\left(p_{N+1}, t\right)
$$

for which $(4.4)_{N+1},(4.5)_{N+1}$, and (4.6) $)_{N+1}$ hold. In addition,

$$
\begin{equation*}
\theta_{-}\left(q_{N}, 0\right)<\theta_{-}\left(p_{N+1}, 0\right)<\theta_{+}\left(p_{N+1}, 0\right)<\theta_{+}\left(q_{N}, 0\right) \tag{4.9}
\end{equation*}
$$

We remark that (I) and (II) can be achieved by replacing the integer n in (6, Section 5] by $N=n-12, n \geq 12$.

We now construct, by induction, a sequence $\left\{q_{N}\right\}$ of periodic functions such that q_{N} converges uniformly to an almost periodic function q. We will show that q has the following properties: $\lambda=0$ is the left endpoint of the spectrum of $L(q)$; also

$$
\beta(q, 0) \geq 2 / 3 ; \lim _{\lambda \rightarrow 0^{+}} \inf \beta(q, \lambda)=0
$$

Let us begin by letting $q_{0}(t)$ be a T_{0}-periodic function satisfying the conditions of (I). Let $T_{1}=m_{0} T_{0}, \eta_{0}(t)$, and $p_{1}=q_{0}-\eta_{0}$ be as in (II). By a theorem of Moser (10, Proposition 1; note $\Phi_{1}>0$], we can find a non-negative, continuous, T_{1}-periodic function $\sigma_{0}(t)$, such that

$$
0 \leq \eta_{0}+\sigma_{0}<2^{-2}=1 / 4 \quad \text { and } \quad \text { Support }\left(\sigma_{0}\right) \cap\left[0, T_{1}\right) \subset\left[T_{1}-\delta, T_{1}\right]
$$

with the following additional property. If $q_{1}=p_{1}-\sigma_{0}$, then, corresponding to each such integer $k \geq 1$, there is a non-empty open interval $I_{1}(k)$ in the resolvent of

$$
L\left(q_{1}\right)=\frac{-d^{2}}{d t^{2}}+q_{1}(t)
$$

such that the rotation number $\alpha\left(q_{1}, \lambda\right)$ equals $k \pi / T_{1}$ on $I_{1}(k)$. We take $I_{1}(k)$ to be the maximal open interval with this property. Since we can choose σ_{0} as small as we please, we can also ensure that conditions (4.4) $)_{1},(4.5)_{1},(4.6)_{1}$, and (4.9) ${ }_{1}$ hold.

Consider an interval $I_{1}(k)=(a, b)\left(1 \leq k<T_{1} / \pi\right)$. Using (4.3) and the fact that $q_{1} \leq q_{0}$, we see that $(a, b) \subset(0,2)$. For each $\lambda \in(a, b)$, consider the Hill equation

$$
H\left(-\lambda+q_{1}\right): u^{\prime}=\left(\begin{array}{cc}
0 & 1 \\
-\lambda+q_{1}(t) & 0
\end{array}\right) u, \quad u=\binom{\phi}{\phi^{\prime}} .
$$

This equation has solutions

$$
u_{ \pm}\left(-\lambda+q_{1}, t\right)=r_{ \pm}\left(-\lambda+q_{1}, t\right) \exp i \theta_{ \pm}\left(-\lambda+q_{1}, t\right)
$$

for which

$$
\frac{1}{T_{1}} \ln \left\|u_{ \pm}\left(-\lambda+q_{1}, T_{1}\right)\right\|= \pm \beta\left(q_{1}, \lambda\right) \neq 0
$$

and for which

$$
\theta_{ \pm}\left(-\lambda+q_{1}, 2 T_{1}\right)=\theta_{ \pm}\left(-\lambda+q_{1}, 0\right) \quad(\bmod 2 \pi) .
$$

Note that, by [2, probs. 8 and 9 , p. 257] $\theta_{ \pm}$may be chosen to be differentiable in λ, and when this is done,

$$
\frac{\partial \theta_{+}}{\partial \lambda}<0, \quad \frac{\partial \theta_{-}}{\partial \lambda}>0
$$

for each fixed t. This fact, and analysis of the discriminant [8] $\Delta(\lambda)$ of

$$
L\left(q_{1}\right)=\frac{-d^{2}}{d t^{2}}+q_{1}(t)
$$

show that one can further assume

$$
\begin{aligned}
& \lim _{\lambda \rightarrow a^{+}} \theta_{+}\left(-\lambda+q_{1}, t\right)-\theta_{-}\left(-\lambda+q_{1}, t\right)=\pi \\
& \lim _{\lambda \rightarrow b^{-}} \theta_{+}\left(-\lambda+q_{1}, t\right)-\theta_{-}\left(-\lambda+q_{1}, t\right)=0
\end{aligned}
$$

for all $t \in \mathbf{R}$. Hence we can choose a closed subinterval $J_{1}(k) \subset I_{1}(k)$, with int $J_{1}(k) \neq \phi$, such that if $\lambda \in J_{1}(k)$, then

$$
\pi>\theta_{+}\left(-\lambda+q_{1}, 0\right)-\theta_{-}\left(-\lambda+q_{1}, 0\right)>\pi / 2-1 / 2
$$

Now suppose that we have constructed functions $q_{1} \geq q_{2} \geq \cdots \geq q_{N}$ such that q_{i} has period $T_{i}=m_{i-1} T_{i-1}$ for some even integer $m_{i-1} \geq 6$ ($i=0,1, N-1$). Suppose that (4.4) $-(4.6)_{i}$ hold for all $i, 1 \leq i \leq N$. Suppose moreover that the following conditions hold.
$(4.10)_{N} \quad 0 \leq q_{i}-q_{i+1} \leq 2^{-i-1}(1 \leq i \leq N-1) ;$
$(4.11)_{N} \quad 1 \geq q_{i} \geq-3-\sum_{l=1}^{i} 2^{-l}(1 \leq i \leq N) ;$
$(4.12)_{N}$ for each $1 \leq i \leq N$, there is a non-empty open interval $I_{i}(k)(1 \leq$ $k<\infty)$ such that $I_{i}(k)$ is in the resolvent of $L\left(q_{i}\right)$, and $\alpha\left(q_{i}, \lambda\right)=k \pi / T_{i}$ for all $\lambda \in I_{i}(k)$.

Using (4.7) and the fact that q_{i} decreases with i, we see that $I_{i}(k) \subset(0,2)$ for $1 \leq k<T_{i} / \pi, i \leq i \leq N$. We assume that $I_{i}(k)$ is the maximal interval with the property stated in $(4.12)_{N}$, and call it a spectral gap.

Now, in each spectral gap $I_{i}(k)=(a, b)$, we can choose differentiable families $\theta_{ \pm}\left(-\lambda+q_{i}, t\right)$ of $2 T_{i}$-periodic solutions $(\bmod 2 \pi)$ of $\Theta\left(-\lambda+q_{i}\right)$ such that $\partial \theta_{+} / \partial \lambda<0, \partial \theta_{-} / \partial \lambda>0$, and

$$
\begin{gathered}
\lim _{\lambda \rightarrow a} \theta_{+}\left(-\lambda+q_{i}, t\right)-\theta_{-}\left(-\lambda+q_{i}, t\right)=\pi \\
\lim _{\lambda \rightarrow b} \theta_{+}\left(-\lambda+q_{i}, t\right)-\theta_{-}\left(-\lambda-q_{i}, t\right)=0 \quad\left(\lambda \in I_{i}(k), t \in \mathbf{R}\right)
\end{gathered}
$$

We assume the following three conditions.
$(4.13)_{N}$ In each spectral gap $I_{i}(k)\left(1 \leq k<T_{i} / \pi\right)$, there is a closed subinterval $J_{i}(k)$, with int $J_{i}(k) \neq \phi$, such that, if $\lambda \in J_{i}(k)$, then

$$
\pi>\theta_{+}\left(-\lambda+q_{i}, 0\right)-\theta_{-}\left(-\lambda+q_{i}, 0\right)>\pi / 2-\sum_{l=r}^{i} 2^{-l}
$$

where r is the smallest integer such that $k \pi / T_{i}=h \pi / T_{r}$ for some integer h $(1 \leq i \leq N)$.
$(4.14)_{N}$ If $k / T_{i}=h / T_{r}$ for some $r<i$ and some integer h, then $J_{r}(h)=J_{i}(k)$, and $\alpha\left(q_{r}, \lambda\right)=\alpha\left(q_{i}, \lambda\right)$ for all $\lambda \in J_{r}(h)(1 \leq i \leq N)$.
$(4.15)_{N} \quad$ If $1 \leq r \leq i \leq N$ and $\lambda \in J_{r}(4)$, then

$$
\beta\left(q_{r}, \lambda\right)<2^{-r} \text { and } \beta\left(q_{i}, \lambda\right)<\sum_{l=r}^{i} 2^{-l}
$$

We will construct a $T_{N+1}=m_{N} T_{N}$-periodic function q_{N+1} with $m_{N} \geq 6$ such that $(4.2)_{N+1}-(4.4)_{N+1}$ hold, and so that $(4.10)_{N+1}-(4.15)_{N+1}$ hold.

Begin by choosing a number $\tau_{0} \geq T_{N}$ such that, if $u(t)$ is any solution of $H\left(-\lambda+q_{N}\right)(0 \leq \lambda \leq 2)$ satisfying $\|u(0)\|=1$, then

$$
\begin{equation*}
\frac{1}{t} \ln \|u(t)\|<\beta\left(q_{N}, \lambda\right)+2^{-N-2}\left(t \geq \tau_{0}\right) \tag{4.16}
\end{equation*}
$$

For completeness, we include a proof that τ_{0} can be so chosen in an appendix.

Next, fix a number $\gamma \in(0,1)$, which will be more precisely determined later. Choose some interval $J_{N}(k), 1 \leq k<T_{N} / \pi$. Let $\lambda \in J_{N}(k)$. Let

$$
\theta_{1}=\theta_{-}\left(-\lambda+q_{N}, 0\right)<\theta_{+}\left(-\lambda+q_{n}, 0\right)=\theta_{2}<\theta_{1}+\pi .
$$

Here $\theta_{ \pm}$are given by the discussion preceding (4.13) ${ }_{N}$. Let $\tau_{1}=c T_{N}$, where c is a positive even integer to be determined. Define

$$
H_{\lambda}:\left[\theta_{1}, \theta_{2}\right] \rightarrow\left[\theta_{1}, \theta_{2}\right)
$$

by

$$
H_{\lambda}(\bar{\theta})=\theta\left(\tau_{1}\right)-\theta(0)+\theta_{1}+\tau_{1} \cdot \frac{\pi k}{T_{N}}
$$

(recall $\left.\alpha\left(q_{N}, \lambda\right)=\pi k / T_{N}\right)$. Here $\theta(t)$ is the solution of $\Theta\left(-\lambda+q_{N}\right)$ satisfying $\theta(0)=\theta$. We see that H_{λ} measures the rotation of $\theta(t)$ with respect to $\theta_{-}(-\lambda$
$\left.+q_{N}, t\right)$. Note that $H_{\lambda}\left(\theta_{1}\right)=\theta_{1}, H_{\lambda}\left(\theta_{2}\right)=\theta_{2}$.
Since $\beta\left(q_{N} ; \lambda\right)>0$, one has

$$
\lim _{m \rightarrow \infty} \theta\left(2 m \cdot T_{N}\right)=\theta_{+}\left(-\lambda+q_{N}, 0\right)=\theta_{2} \quad \text { for all } \bar{\theta}, \theta_{1}<\bar{\theta}<\theta_{2}
$$

Since the families $\theta_{ \pm}$are continuous in λ, and since the right-hand side in equation $\Theta\left(-\lambda+q_{N}\right)$ depends continuously on λ, we can find τ_{1} so that

$$
\begin{equation*}
H_{\lambda}(\theta)>\theta_{2}-\gamma \quad \text { if } \quad \theta_{1}+\gamma \leq \theta<\theta_{2} \quad \text { and } \quad \lambda \in \bigcup_{k=1}^{A} J_{N}(k) \tag{4.17}
\end{equation*}
$$

where A is the greatest integer less than T_{N} / π.
Now fix $\gamma<2^{-N-2}$. Choose $m_{N} \geq 6$ such that m_{N} is even and

$$
T_{N+1}=m_{N} \cdot T_{N}>\max \left(\tau_{0}, \tau_{1}\right) .
$$

Choose a T_{N+1}-periodic function $\eta_{N}(t)$, for which (4.7) $)_{N+1}$ holds, in such a way that $(4.4)_{N+1}-(4.6)_{N+1}$ hold for $p_{N+1}=q_{N}-\eta_{N}$. Then, use the Moser theorem [10, Proposition 1] to find a non-negative function $\sigma_{N}(t)$, with period T_{N+1}, such that

Support $\left(\sigma_{N}\right) \cap\left[0, T_{N+1}\right] \subset\left[T_{N+1}-\delta, T_{N+1}\right]$ and $0 \leq \eta_{N}+\sigma_{N}<2^{-N-1}$,
so that the following conditions hold.
(i) Conditions (4.4) $)_{N+1}-(4.6)_{N+1}$ hold with $q_{N+1}=p_{N+1}-\sigma_{N}$ in place of p_{N+1}.
(ii) The operator $L\left(q_{N+1}\right)$ admits a spectral gap $I_{N+1}(k)$ such that, if $\lambda \in$ $I_{N+1}(k)$, then

$$
\alpha\left(q_{N+1}, \lambda\right)=\frac{k \pi}{T_{N+1}} \quad(1 \leq k<\infty) .
$$

Observe now that $\left(4.10_{N+1},(4.11)_{N+1}\right.$, and $(4.12)_{N+1}$ hold. We show that $(4.13)_{N+1},(4.14)_{N+1}$, and (4.15) $)_{N+1}$ hold with our choices of m_{N} and q_{N+1}.

First, fix $k, 1 \leq k<\pi / T_{N+1}$. If k is not a multiple of m_{N}, i.e., if $k / T_{N+1} \neq$ h / T_{r} for all integers h and all $r<N+1$, then let $J_{N+1}(k)$ be any closed subinterval of $I_{N+1}(k)$ with non-empty interior on which

$$
\theta_{+}\left(-\lambda+q_{N+1}, 0\right)-\theta_{-}\left(-\lambda+q_{N+1}, 0\right)>\pi / 2-\frac{1}{2} .
$$

Here we shoose $\theta_{ \pm}$as in the discussion preceding $(4.13)_{N}$.

Next, suppose $k / T_{N+1}=h / T_{N}$ for some integer h. We examine $J_{N}(h)$. Let $\lambda \in J_{N}(h)$, and consider again the interval [$\left.\theta_{1}, \theta_{2}\right]$, where

$$
\theta_{1}=\theta_{-}\left(-\lambda+q_{N}, 0\right), \quad \theta_{2}=\theta_{+}\left(-\lambda+q_{N}, 0\right)
$$

Define the map

$$
H_{\lambda}:\left[\theta_{1}, \theta_{2}\right] \rightarrow\left[\theta_{1}, \theta_{2}\right]
$$

as above, with T_{N+1} replacing T_{N}. Let $\bar{\theta} \in\left[\theta_{1}, \theta_{2}\right]$. Let $\theta_{N}(t)$, resp. $\theta_{N+1}(t)$, be the solution of $\Theta\left(-\lambda+q_{n}\right)$, resp. $\Theta\left(-\lambda+q_{N+1}\right)$, with

$$
\theta_{N}(0)=\theta_{N+1}(0)=\bar{\theta}
$$

Then $\theta_{N}(t)=\theta_{N+1}(t)$ on [$\left.0, T_{N+1}-\delta\right]$. By Gronwall's inequality applied to the θ-equation, and using $\left|-\lambda+q_{N}\right|<6,\left|-\lambda+q_{N+1}\right|<6$ (this uses (4.7)), we have

$$
\begin{equation*}
0<\theta_{N}\left(T_{N+1}\right)-\theta_{N+1}\left(T_{N+1}\right)<\delta 2^{-N-1} e^{6 \delta}<2^{-N-2} \tag{4.18}
\end{equation*}
$$

Let us now define

$$
R(\bar{\theta})=\theta_{N}\left(T_{N+1}\right)-\theta_{N+1}\left(T_{N+1}\right) \quad \text { for } \bar{\theta} \in\left[\theta_{1}, \theta_{2}\right] .
$$

Compare the graphs of H_{λ} and R. Using $\gamma<2^{-N-2}$, we see that these graphs have exactly two points of intersection, defined by points $\psi_{ \pm}$in $\left[\theta_{1}, \theta_{2}\right]$; moreover

$$
0<\theta_{+}-\psi_{+}<2^{-N-2}, \quad 0<\psi_{-} \theta_{-}<2^{-N-1}
$$

There are no more than two points of intersection, because: (i) any point $\bar{\theta} \in\left(\theta_{1}+\gamma, \theta_{2}-2^{-N-1}\right)$ satisfies $H_{\lambda}(\bar{\theta})>R(\bar{\theta})$; (ii) if there were three points of intersection, then that fundamental matrix solution $\Phi(t)$ of $H\left(-\lambda+q_{N+1}\right)$ satisfying $\Phi(0)=I$ would preserve three driections in \mathbf{R}^{2} at $t=T_{N+1}$; hence $\Phi\left(T_{N+1}\right)$ would be the identity since $\operatorname{det} \Phi(t)=1$; this would contradict (i).

Let $\theta_{ \pm}\left(-\lambda+q_{N+1}, t\right)$ be the solutions of $\Theta\left(-\lambda+q_{N+1}\right)$ satisfying

$$
\theta_{ \pm}\left(-\lambda+q_{N+1}, 0\right)=\psi_{ \pm}
$$

Then $\exp i \theta_{ \pm}$are T_{N+1}-periodic, and $\theta_{ \pm}+\pi$ are $(\bmod 2 \pi)$ the only other solutions of $\Theta\left(-\lambda+q_{N+1}\right)$ with this property. It follows from Floquet theory that λ is in the resolvent of $L\left(q_{N+1}\right)$. Clearly

$$
\alpha\left(q_{N+1}, \lambda\right)=\alpha\left(q_{N}, \lambda\right)
$$

Now set $J_{N+1}(k)=J_{N}(h)$ (recall $k / T_{N+1}=h / T_{N}$). From all that we have said, $(4.13)_{N+1}$ and $(4.14)_{N+1}$ hold.

We must still consider $(4.15)_{N+1}$. First, let λ_{N} be the left endpoint of the spectrum of $L\left(q_{N}\right)$. Note $\alpha\left(q_{N}, \lambda_{N}\right)=0$. We claim that $\alpha\left(q_{N+1}, \lambda_{N}\right) \leq \pi / T_{N+1}$. To see this, note $\Theta\left(-\lambda_{N}+q_{N}\right)$ has a T_{N}-periodic solution $\psi_{N}(t)$. Let $\psi_{N+1}(t)$ satisfy

$$
\Theta\left(-\lambda_{N}+q_{N+1}\right) \quad \text { with } \psi_{N+1}(0)=\psi_{N}(0)
$$

From (4.7), $0<\lambda_{N}<2$; hence we can apply Gronwall's inequality to the Θ equation and obtain

$$
0<\psi_{N}\left(T_{N+1}\right)-\psi_{N+1}\left(T_{N+1}\right)<\delta 2^{-N-1} e^{6 \delta}<2^{-N}
$$

Since $q_{N}=q_{N+1}$ on $\left[T_{N+1}, 2 T_{N+1}-\delta\right]$, we see that

$$
\psi_{N}(t)-\pi<\psi_{N+1}(t)<\psi_{N}(t) \quad \text { for } t \in\left[T_{N+1}, 2 T_{N+1}-\delta\right]
$$

hence applying Gronwall again, we get

$$
-\pi-2^{-N}+\psi_{N}(0)<\psi_{N+1}\left(2 T_{N+1}\right)<\psi_{N}(0)=\psi_{N}\left(2 T_{N+1}\right)
$$

Applying a similar argument to all succeeding periods, we obtain

$$
0<\psi_{N}(0)-\psi_{N+1}\left(l \cdot T_{N+1}\right)<(l-1) \pi+2^{-N} \quad \text { for } l=1,2,3, \ldots,
$$

Hence $\alpha\left(q_{N+1}, \lambda_{N}\right) \leq \pi / T_{N+1}$ (by Theorem 2.13).
Now, on the other hand, if $\lambda \in J_{N}(k)$, then

$$
\alpha\left(q_{N+1}, \lambda\right)=\alpha\left(q_{N}, \lambda\right) \quad\left(1 \leq k<\pi / T_{N}\right)
$$

In particular, if $\lambda \in J_{N}(1)$, then $\alpha\left(q_{N+1}, \lambda\right)=\pi / T_{N}$. Combining this fact with the preceding paragraph, and recalling that $m_{N+1} \geq 6$, we see that, if $\lambda \in$ $J_{N+1}(4)$ (i.e. if $\left.\alpha\left(q_{N+1}, \lambda\right)=4 \pi / T_{N+1}\right)$, then $\beta\left(q_{N}, \lambda\right)=0$.

Let us fix $\lambda \in J_{N+1}(4)$, and let

$$
\xi_{N+1}(t)=\theta_{+}\left(-\lambda+q_{N+1}, t\right) .
$$

Let $r_{N+1}(t)$ be obtained by solving equation $\mathscr{R}\left(-\lambda+q_{N+1}\right)$ with ξ_{N+1} replacing θ, with initial condition $r(0)=1$. If

$$
u_{N+1}(t)=r_{N+1}(t) \exp i \xi_{N+1}(t)
$$

then

$$
\frac{1}{T_{N+1}} \ln \left\|u_{N+1}\left(T_{N+1}\right)\right\|=\beta\left(q_{N+1}, \lambda\right) .
$$

Let $\xi_{N}(t)$ be the solution of $\Theta\left(-\lambda+q_{N}\right)$ satisfying $\xi_{N}(0)=\xi_{N+1}(0)$. Let

$$
u_{N}(t)=r_{N}(t) \exp i \xi_{N}(t)
$$

where r_{N} is obtained as above from $\mathscr{R}\left(-\lambda+q_{N}\right)$. Applying Gronwall's inequality to estimate $\xi_{N}(t)-\xi_{N+1}(t)$, then comparing $\mathscr{R}\left(-\lambda+q_{N}\right)$ and $\mathscr{R}(-\lambda$ $+q_{N+1}$), we obtain

$$
\frac{1}{T_{N+1}}\left|\ln r_{N}\left(T_{N+1}\right)-\ln r_{N+1}\left(T_{N+1}\right)\right|<2^{-N-2}
$$

Using 4.16, we get $\beta\left(q_{N+1}, \lambda\right)<2^{-N-1}$ (recall $T_{N+1}>\tau_{1}$).

By a similar argument, we get

$$
\beta\left(q_{N+1}, \lambda\right)<\sum_{l=r}^{N+1} 2^{-l} \quad \text { if } \lambda \in J_{r}(4), r \leq N+1
$$

Hence $(4.15)_{N+1}$ is finally verified.
By induction, construct a sequence $\left\{q_{N}\right\}$ satisfying (4.2) $)_{N}-(4.4)_{N}$ and $(4.10)_{N}-(4.15)_{N}$ for each $N \geq 1$. Then $q_{N} \rightarrow q$ uniformly on \mathbf{R}, where q is almost periodic. Let $\rho_{N}(t)$, resp. $\rho(t)$, be the spectral function of the singular boundary value problem

$$
L\left(q_{N}\right) \phi=\lambda \phi, \quad \text { resp. } L(q) \phi=\lambda \phi
$$

with boundary conditions

$$
\phi(0)=0, \phi \in L^{2}(0, \infty) .
$$

Using the Helly theorem, one can show that $\rho_{N} \rightarrow \rho$ at all continuity points of ρ.

The arguments of [6, Section 5] show that $\lambda=0$ is the left-most point in the spectrum of $L(q)$, and also that $\beta(q, 0) \geq 2 / 3$. Now, ρ_{N} is constant on each $J_{N}(k)\left(1 \leq k<T_{N} / \pi\right)$, except perhaps for a single isolated jump discontinuity (a discontinuity occurs if and only if $\theta_{-}\left(-\lambda+q_{N}, 0\right)=\pi / 2$ or $3 \pi / 2 \bmod 2 \pi$). By (4.14) $)_{N}, \rho$ is also constant on int $J_{N}(k)$, except perhaps for an isolated jump discontinuity. Hence int $J_{N}(k)$ is in the resolvent of $L(q)$ [3]. From 4.1 and $(4.15)_{N}$, we see that $\beta(q, \lambda)<2^{-N+1}$ on $J_{N}(4)$. Since $\alpha\left(q_{N}, \lambda\right) \rightarrow \alpha(q, \lambda)$, and since $\alpha\left(q_{N}, \lambda\right)=4 \pi / T_{N}$ for $\lambda \in J_{N}(4)$, we conclude from (4.14) ${ }_{N}$ that $\alpha(q, \lambda)=$ $4 \pi / T_{N}$ for $\lambda \in J_{N}(4)$. Since $\alpha(q, \lambda)$ is continuous and $\alpha(q, \lambda)>0$ for $\lambda>0$ (see Theorem 2.13), we see that

$$
\lim _{\lambda \rightarrow 0^{+}} \beta(q, \lambda)=0
$$

We have proved everything that we set out to prove.

Appendix

We prove statement 4.16. Let q be any continuous periodic function, and consider the equations

$$
H(-\lambda+q): u^{\prime}=\left(\begin{array}{cc}
0 & 1 \\
-\lambda+q(t) & 0
\end{array}\right) u
$$

where λ ranges over some compact interval $I \subset \mathbf{R}$. Introduce the hull Ω of q; since q is periodic, Ω is a circle. We denote the element q of Ω by ω_{0}. Let Σ_{Re} be the projective bundle $\Sigma_{R e}=\Omega \times \mathbf{P}^{1}(\mathbf{R})$. As in Section 2, each Hill equation $H(-\lambda+q)$ defines a flow $\left(\Sigma_{\mathrm{Re}}, \mathbf{R}\right)_{\lambda}(\lambda \in I)$.

Suppose for contradiction that there exist $\gamma>0$ and sequences $\lambda_{n} \in I$, $t_{n} \in \mathbf{R}, \bar{u}_{n} \in \mathbf{R}^{2}$, with $t_{n} \rightarrow \infty$ and $\left\|\bar{u}_{n}\right\|=1$, so that

$$
\frac{1}{t_{n}} \ln \left\|u_{n}\left(t_{n}\right)\right\| \geq \beta\left(q, \lambda_{n}\right)+\gamma
$$

here $u_{n}(t)$ satisfies $H(-\lambda+q)$ with $u_{n}(0)=\bar{u}_{n}$. Let l_{n} be the line in \mathbf{R}^{2} containing \bar{u}_{n}. Let $f_{\lambda}: \Sigma \rightarrow \mathbf{R}$ be the function defined in $2.4(\lambda \in I)$.

Using the Cantor diagonal process as in [11, Theorem 9.05], we can find measures μ_{n} on Σ such that $\left\|\mu_{n}\right\|=1$, and

$$
\int_{\Sigma} f_{\lambda_{n}} d \mu_{n}=\frac{1}{t_{n}} \int_{0}^{t_{n}} f_{\lambda_{n}}\left(\left(\omega_{0}, l_{n}\right) \cdot s\right) d s
$$

where $\left(\omega_{0}, l_{n}\right) \cdot s$ is computed using the flow $(\Sigma, \mathbf{R})_{\lambda_{n}}$.
Then

$$
\int_{\Sigma} f_{\lambda_{n}} d \mu_{n}=\frac{1}{t_{n}} \ln \left\|u_{n}\left(t_{n}\right)\right\| \geq \beta\left(q, \lambda_{n}\right)+\gamma
$$

We can assume that $\lambda_{n} \rightarrow \lambda_{0}$, and that $\mu_{n} \rightarrow \mu$ in the weak topology on measures. Since $t_{n} \rightarrow \infty, \mu$ is invariant with respect to $(\Sigma, \mathbf{R})_{\lambda}$.

Now, $f_{\lambda_{n}} \rightarrow f_{\lambda}$ uniformly on Σ. Hence

$$
\int_{\Sigma} f_{\lambda} d \mu=\lim _{n \rightarrow \infty} \int_{\Sigma} f_{\lambda_{n}} d \mu_{n} \geq \varlimsup_{n \rightarrow \infty} \beta\left(q, \lambda_{n}\right)+\gamma
$$

Since $\beta\left(q, \lambda_{n}\right) \geq 0$ and $\beta(q, \lambda) \geq \int_{\Sigma} f_{\lambda} d \mu$ (this uses (2.16)), we see that $\beta(q, \lambda)>0$. But then, by Floquet theory, λ is in the resolvent of

$$
L(q)=\frac{-d^{2}}{d t^{2}}+q(t)
$$

see [8]. By Proposition 4.1,

$$
\beta\left(q, \lambda_{n}\right) \rightarrow \beta(q, \lambda) \geq \varlimsup_{n \rightarrow \infty} \beta\left(q, \lambda_{n}\right)+\gamma
$$

This is a contradiction; (4.16) is proved.
Acknowledgements The author thanks J. Avron, B. Simon, and especially J. Moser for helpful conversations. He also wishes to point out that, in [1], Avron and Simon construct almost periodic Jacobi matrices for which $\beta>0$ on the entire spectrum.

References

1. J. Avron and B. Simon, Singular continuous spectrum for a class of almost periodic Jacobi
matrices, Bull. Amer. Math. Soc., vol. $6(1982)$, pp. 81-86.
2. E. Coddington and N. Levinson, Theory of ordinary differential equations, McGraw-Hill,
New York, 1955.
3. E. Hille, Lectures on ordinary differential equations, Addison-Wesley, Reading, Mass., 1969.
4. R. Johnson, Analyticity of spectral subbundles, J. Differential Equations, vol. 35 (1980), pp. 366-387.
5. ——, Ergodic theory and linear differential equations, J. Differential Equations, vol. 28 (1978), pp. 23-34.
6. ——, The recurrent Hill's equation, J. Differential Equations, vol. 46 (1982), pp. 165-194.
7. R. Johnson and J. Moser, The rotation number for almost periodic potentials, Comm. Math. Phys., vol. 84 (1982), pp. 403-438.
8. W. Magnus and S. Winkler, Hill's equation, Dover, New York, 1979.
9. D. Montgomery and L. Zippin, Topological transformation groups, Interscience, New York, 1955.
10. J. Moser, An example of a Schrödinger equation with almost periodic potential and nowhere dense spectrum, Comm. Math. Helv., vol. 56 (1981), pp. 198-224.
11. V. Nemytski and V. Stepanov, Qualitative theory of differential equations, Princeton Univ. Press. Princeton, N.J., 1960.
12. R. Nevanlinna, Analytic functions, Springer-Verlag, Heidelberg, 1970.
13. R. Sacker and G. Sell, A spectral theory for linear differential systems, J. Differential Equations, vol. 27 (1978), pp. 320-358.
14. G. Scharf, Fastperiodische potentiale, Helv. Phys. Acta, vol. 24 (1965), pp. 573-605.
15. A. Zygmund, Trigonometric series, 2nd ed., Cambridge University Press, 1959.

University of Southern California
Los Angeles, California

