LYAPOUNOV NUMBERS FOR THE ALMOST PERIODIC SCHRODINGER EQUATION

BY

RUSSELL A. JOHNSON

1. Introduction

We consider the almost periodic Schrödinger operator

(1.1)
$$L = \frac{-d^2}{dt^2} + q(t)$$

where q(t) is continuous and Bohr almost periodic. Associated to (1.1) is a rotation number $\alpha(\lambda)$ ($\lambda \in \mathbf{R}$), where

$$\alpha(\lambda) = -\lim_{t\to\infty} \frac{\theta(t)}{t}, \quad \theta(t) = \arg(\phi(t) + i\phi'(t)),$$

and $\phi \neq 0$ satisfies $L\phi = \lambda\phi$. It is known that $\alpha(\lambda)$ is independent of the solution ϕ , that α is continuous and monotone increasing in λ , and that α increases exactly on the essential spectrum F of L [7]. In addition,

$$\alpha(\lambda) = \lim_{\varepsilon \to 0} w(\lambda + i\varepsilon),$$

where w(z) is holomorphic in the upper half plane $H^+ = \{z \mid \text{Im } z > 0\}$, and Im w(z) measures the "complex rotation" of certain solutions of $L\phi = z\phi$. Moreover, w(z) provides information about the higher-order K dV equations with almost-periodic initial data [7].

In this paper, we consider the *real* part $-\operatorname{Re} w(z)$, and its boundary value $\beta(\lambda)$ ($\lambda \in \mathbb{R}$). It will be easy to see that

Re
$$w(z) = \lim_{t \to \infty} \frac{1}{2t} \ln \left[\psi(t)^2 + \psi'(t)^2 \right]$$

where $L\psi = z\psi$ and $\psi \in L^2(0, \infty)$ $(z \in H^+)$. Thus Re w(z) measures the exponential decay of solutions which are in $L^2(0, \infty)$. We will see that the boundary value of Re w also measures exponential decay of solutions. In fact, we *define*

(1.2)
$$\beta(\lambda) = \sup_{\phi \neq 0} \left\{ \overline{\lim_{t \to \infty} \frac{1}{2t}} \ln \left[\phi(t)^2 + \phi'(t)^2 \right] \right\},$$

Received December 30, 1981.

^{© 1984} by the Board of Trustees of the University of Illinois Manufactured in the United States of America

where $L\phi = \lambda\phi$; actually the sup is taken no just over solutions of $L\phi = \lambda\phi$, but over solutions to all equations

(1.3)
$$L_{\omega}\phi = \left(\frac{-d^2}{dt^2} + \omega(t)\right)\phi = \lambda\phi,$$

where $\omega(t)$ is in the *hull* of q (see Section 2). In 1.2, we allow λ to take on real and complex values. It then turns out that $\beta(\lambda) \ge 0$ everywhere, that Re $w(\lambda) = -\beta(\lambda)$ if Im $\lambda > 0$, and that

$$\lim_{\varepsilon \to 0} (-\operatorname{Re} w(\lambda + i\varepsilon)) = \beta(\lambda) \quad \text{for all } \lambda \in \mathbf{R}.$$

Moreover, if λ is real and $\beta(\lambda) = 0$, then all solutions of all equations $L_{\omega} \phi = \lambda \phi$ satisfy

$$\lim_{t \to \infty} \frac{1}{2t} \ln \left[|\phi(t)|^2 + |\phi'(t)|^2 \right] = 0;$$

if $\beta(\lambda) > 0$, then for almost all ω , (1.3) admits a unique (up to constant multiple) solution ψ with

$$\lim_{t\to\infty}\frac{1}{2t}\ln\left[\psi(t)^2+\psi'(t)^2\right]=-\beta(\lambda).$$

In particular, $\psi \in L^2(0, \infty)$.

The function β has several other properties; we prove two. First, it is harmonic on the resolvent set $\mathbb{C}\backslash F$ of the operator L (we give a simple proof based on [7]). This fact is used to prove that, if I is an open interval such that $F \cap I \neq \emptyset$, then $F \cap I$ has positive logarithmic capacity. Second, it is one-sided continuous at an endpoint λ of a spectral gap: if $\lambda_n \in \mathbb{R}\backslash F$ and $\lambda_n \to \lambda$, then $\beta(\lambda_n) \to \beta(\lambda)$.

To throw more light on the function $\beta(\lambda)$ ($\lambda \in \mathbf{R}$), we consider a class of examples, modeled on the example of [6] (in that example, $\beta(\lambda_0) > 0$ for at least one point λ_0 in F, namely the leftmost point in F). We assume

(1.4)
$$q(t) = \lim_{n \to \infty} q_n(t), \quad q_n(t + T_n) = q_n(t)$$

where the limit is *uniform* and the period T_{n+1} of q_{n+1} is an integer multiple of $T_n(n \ge 1)$; we also put various other conditions on the q_n .

We prove that $\beta(\lambda_0) > 0$ for the left endpoint $\lambda_0 \in F$, and that β is discontinuous at λ_0 : in fact, $\beta(\lambda_n) \to 0$ for a sequence $\lambda_n \to \lambda_0$. Now,

$$\lim_{\varepsilon \to 0} w(\lambda + i\varepsilon) = -\beta(\lambda) + i\alpha(\lambda),$$

hence β is the Hilbert transform of the continuous function $-\alpha(\lambda)$. Hence β has the mean value property [14]. So β must oscillate wildly near λ_0 .

2. Preliminaries

We first introduce the hull Ω of q. For $\tau \in \mathbf{R}$, the translate q is given by $q_{\tau}(t) = q(t + \tau)$ ($t \in \mathbf{R}$); then $\Omega = \operatorname{cl} \{q_{\tau} | \tau \in \mathbf{R}\}$, where the closure is taken in the uniform topology. Thus q is a point in Ω ; we denote q also by ω_0 . A flow (Ω , \mathbf{R}) is defined by translation:

$$(\omega \cdot t)(s) = \omega(t+s) \quad (\omega \in \Omega).$$

We give $\boldsymbol{\Omega}$ the structure of a compact, abelian topological group, as follows. If

$$\omega_1 = \lim_{n \to \infty} \omega_0 \cdot t_n, \quad \omega_2 = \lim_{n \to \infty} \omega_0 \cdot s_n,$$

then

$$\omega_1\omega_2 = \lim_{n \to \infty} \omega_0 \cdot (t_n + s_n)$$
 and $\omega_1^{-1} = \lim_{n \to \infty} \omega_0 \cdot (-t_n)$ [11].

Note that ω_0 is the identity of Ω . We may view **R** as a dense subgroup of Ω via the map $t \to \omega_0 \cdot t$.

We "extend q to Ω " in the natural way: define $Q(\omega) = \omega(0)$ ($\omega \in \Omega$); then Q is continuous, and $Q(\omega_0 \cdot t) = q_t(0) = q(t)$. Thus q is regained from Q by evaluation along the orbit through $q = \omega_0$. We will consider the equations

(2.1)_{$$\omega$$} $L_{\omega}\phi = \left(\frac{-d^2}{dt^2} + Q(\omega \cdot t)\right)\phi = \lambda\phi \quad (\omega \in \Omega),$

and the associated two-dimensional systems

(2.2)_{$$\omega$$} $u' = \begin{pmatrix} 0 & 1 \\ \lambda + Q(\omega \cdot t) & 0 \end{pmatrix} u, \quad u = \begin{pmatrix} \phi \\ \phi' \end{pmatrix}$ $(\omega \in \Omega).$

When it is necessary to avoid confusion, we will write $(2.1)_{\omega,\lambda}$ and $(2.2)_{\omega,\lambda}$ instead of $(2.1)_{\omega}$ and $(2.2)_{\omega}$.

2.3 DEFINITION. Fix $\lambda \in C$. Define

$$\beta(\lambda) = \sup \left\{ \overline{\lim_{t \to \infty} \frac{1}{t}} \ln \|u(t)\| : u(t) \text{ is a non-zero} \right.$$
solution of some equation (2)_w

The sup is taken over all u(t) and all $\omega \in \Omega$.

Fix $\lambda \in \mathbb{C}$. It is convenient to introduce the projective flow defined by equations $(2)_{\omega}$. Call a complex 1-dimensional subspace of \mathbb{C}^2 a complex line. For each $\omega \in \Omega$, equation $(2)_{\omega}$ is linear, so the fundamental matrix solution $\Phi_{\omega}(t)$ (with $\Phi_{\omega}(0) = I$) maps complex lines to complex lines. If l is a complex line in \mathbb{C}^2 , let $l(\tau) = \Phi_{\omega}(t) \cdot l$ denote its image after time t. Letting $\mathbb{P}^1(\mathbb{C})$ be the usual space of all complex lines in \mathbb{C}^2 , we define a flow on $\Sigma = \Omega \times \mathbb{P}^1(\mathbb{C})$ as follows:

$$(\omega, l) \cdot t = (\omega \cdot t, l(t)) \quad (\omega \in \Omega, l \in \mathbf{P}^{1}(\mathbf{C})).$$

The point of introducing (Σ, \mathbf{R}) is the following. Write

$$A_{\lambda}(\omega) = \begin{pmatrix} 0 & 1 \\ -\lambda + Q(\omega) & 0 \end{pmatrix} \quad (\omega \in \Omega).$$

Define

(2.4)
$$f_{\lambda} \colon \Sigma \to \mathbf{R} \colon (\omega, l) \to \operatorname{Re} \frac{\langle A_{\lambda}(\omega)u_0, u_0 \rangle}{\langle u_0, u_0 \rangle},$$

where $0 \neq u_0$ is any vector in *l*. Then if u(t) satisfies equation $(2)_{\omega}$ with $u(0) = u_0$, one has

(2.5)
$$\frac{1}{t} \left[\ln \|u(t)\| - \ln \|u(0)\| \right] = \frac{1}{t} \int_0^t f_{\lambda}((\omega, l) \cdot s) \, ds.$$

Thus the exponential growth of u(t) is determined by a time average of f_{λ} . We will use the ergodic theory of the flow (Σ, \mathbf{R}) to study these time averages.

We remark that a flow (Σ, \mathbf{R}) is defined for each $\lambda \in \mathbf{C}$. When confusion can arise, we write $(\Sigma, \mathbf{R})_{\lambda}$ for the flow defined by equations $(2.2)_{\omega,\lambda}$.

If λ is *real*, we obtain also a flow on $\Sigma_{Re} = \Omega \times P^1(R)$, where $P^1(R)$ is the space of (real) one-dimensional subspaces of \mathbb{R}^2 . We will call such subspaces *lines* (as opposed to complex lines). It is convenient to view $P^1(R)$ as a subset of $P^1(C)$, and hence Σ_{Re} as a subset of Σ . To do this, we use the usual identification of the Riemann number sphere S^2 with $P^1(C)$: if [a, b] denotes the complex line on which the non-zero complex vector (a, b) lies, then we define Ident: $S^2 \to P^1(C)$ by

$$z \rightarrow [1, z]$$
, if $z \neq \infty$; Ident $(\infty) = [0, 1]$.

Then $\mathbf{P}^1(\mathbf{R})$ is identified with $\mathbf{R} \cup \{\infty\} \subset S^2$.

We also need to consider the singular boundary value problems

$$(2.6)_{\omega} \quad L_{\omega}\phi = \left(\frac{-d^2}{dt^2} + Q(\omega \cdot t)\right)\phi = \lambda\phi, \ \phi(0) = 0, \ \phi \in L^2(0, \ \infty) \quad (\omega \in \Omega).$$

Fix $\omega \in \Omega$. Since equation (2.6)_{ω} is of limit point type [3], there is a function $M_{\omega}(\lambda)$, defined and holomorphic for Im $\lambda \neq 0$, satisfying

$$\frac{\mathrm{Im}\ M_{\omega}(\lambda)}{\mathrm{Im}\ \lambda} > 0,$$

such that if $\phi(t) \neq 0$ satisfies $L_{\omega} \phi = \lambda \phi$, then $\phi \in L^2(0, \infty)$ iff $\phi'(0) = M_{\omega}(\lambda)\phi(0)$. For fixed λ with Im $\lambda \neq 0$, let $\psi^+(t)$ satisfy

$$L\psi^+ = \lambda\psi^+$$
 and $\psi^+{}'(0) = M_{\omega}(\lambda)\psi^+(0).$

It is not hard to show that

(2.7)
$$\psi^+(t) = \psi^+(0) \exp\left(\int_0^t M_{\omega \cdot s}(\lambda) \ ds\right),$$

(2.8) $M_{\omega}(\lambda)$ is jointly continuous in ω and λ (Im $\lambda \neq 0$).

Problem (2.6)_{ω} admits a monotone increasing spectral function $\rho_{\omega}(t)$ [3]; the points in the spectrum of the singular problem (2.6)_{ω} are the points of increase of ρ_{ω} . The function ρ_{ω} is unique if it is chosen to be right-continuous with $\rho_{\omega}(0) = 0$. We have

Im
$$M_{\omega}(\lambda) = \frac{1}{\pi} \int_{-\infty}^{\infty} \operatorname{Im} \frac{d\rho_{\omega}(t)}{t-\lambda}$$
 (Im $\lambda > 0$).

We note that the essential spectrum of $(2.6)_{\omega}$ is independent of ω , and equals the spectrum F on $L^2(-\infty, \infty)$ of each and every operator

$$L_{\omega} = \frac{-d^2}{dt^2} + Q(\omega \cdot t)$$

(see [14]; viewed on $L^2(-\infty, \infty)$, the L_{ω} 's all have the same spectrum F, and it is always essential).

2.9 DEFINITION [7]. For Im $\lambda \neq 0$, define $w(\lambda) = \int_{\Omega} M_{\omega}(\lambda) d\omega$, where $d\omega$ is normalized Haar measure on the compact topological group Ω .

Using 2.8, one shows that $w(\lambda)$ is holomorphic for Im $\lambda \neq 0$. Since $d\omega$ is the only measure on Ω invariant with respect to the flow (Ω, \mathbf{R}) , we have for fixed ω , λ

Re
$$w(\lambda) = \lim_{t \to \infty} \frac{1}{t} \int_0^t M_{\omega \cdot s}(\lambda) ds$$
,

so using 2.7,

Re
$$w(\lambda) = \lim_{t \to \infty} \frac{1}{2t} \ln (|\psi^+(t)|^2 + |\psi^+'(t)|^2).$$

Thus Re $w(\lambda)$ is the exponential rate of decay of solutions

$$u(t) = (\psi^{+}(t), \psi^{+}(t))$$

of $(2.2)_{\omega}$ for which $\psi^+ \in L^2(0, \infty)$. Note Re $w(\lambda) \le 0$, and since it is harmonic, Re $w(\lambda) < 0$ if Im $\lambda \ne 0$.

For each $\omega \in \Omega$, there is also a holomorphic function $M_{\omega}^{-}(\lambda)$ (Im $\lambda \neq 0$), satisfying

$$\frac{\mathrm{Im}\ M_{\omega}^{-}(\lambda)}{\mathrm{Im}\ \lambda} < 0,$$

such that $\psi^{-}(t) = \exp(\int_{0}^{t} M_{\omega}^{-} s(\lambda) ds)$ is in $L^{2}(-\infty, 0)$; $M_{\omega}^{-}(\lambda)$ is also jointly continuous in ω and λ . It is proved in [7] that

$$w(\lambda) = -\int_{\Omega} M_{\omega}^{-}(\lambda) \, dw \quad (\text{Im } \lambda \neq 0).$$

Using these facts, one can show that

(2.10)
$$\beta(\lambda) = -\operatorname{Re} w(\lambda) \quad (\operatorname{Im} \lambda \neq 0),$$

where β is as defined in 2.3.

Now introduce polar coordinates (r, θ) in equations $(2.2)_{\omega}$, where λ is *real* and fixed. Then θ satisfies

$$(2.11)_{\omega} \qquad \qquad \dot{\theta} = \sin^2 \theta + (-\lambda + Q(\omega \cdot t)) \cos^2 \theta.$$

In [7], the rotation number $\alpha(\lambda)$ is defined as follows:

(2.12)
$$\alpha(\lambda) = -\lim_{t \to \infty} \frac{\theta(t)}{t},$$

where a choice of $\omega \in \Omega$ and $\theta(0) = \theta_0$ is made.

2.13 THEOREM [7]. The rotation number $\alpha(\lambda)$ is independent of ω and θ_0 , and the convergence in (2.12) is uniform in t, ω , θ_0 . Also α is continuous and monotone increasing in $\lambda \in \mathbf{R}$. One has that α increases exactly on the spectrum F of the L_{ω} , and

(2.14)
$$\lim_{\varepsilon \to 0^+} \operatorname{Im} w(\lambda + i\varepsilon) = \alpha(\lambda) \quad (\lambda \in \mathbf{R}).$$

Next we recall some results from the theory of almost periodic linear systems, as applied to equations $(2.2)_{\omega}$.

2.15. Let $\lambda \in \mathbf{R}$, and let f_{λ} be defined in 2.4. If $\beta(\lambda) = 0$, then $\int_{\Sigma} f_{\lambda} d\mu = 0$ for every invariant measure [10] μ on Σ . Every time average,

$$\lim_{|b-a|\to\infty}\frac{1}{b-a}\int_a^b f_{\lambda}(\sigma\cdot s)\ ds\quad (\sigma\in\Sigma),$$

is 0 and the convergence is uniform in a, b, σ (this uses the proof of Lemma 3.5 in [7]). On the other hand, if $\beta(\lambda) > 0$, then there are exactly two ergodic measures on Σ ; one has $\mu_{\pm}(\Sigma_{\text{Re}}) = 1$, and

(2.16)
$$\int_{\Sigma} f_{\lambda} d\mu_{+} = \hat{\beta} > 0, \quad \int_{\Sigma} f_{\lambda} d\mu_{-} = -\hat{\beta}.$$

See [5]; $\hat{\beta}$ is in fact the right end-point of the Sacker-Sell spectrum [12] of equations $(2.2)_{\omega}$. (Note that $\beta(\lambda) \ge 0$ because a fundamental matrix solution of $(2.2)_{\omega}$ has constant determinant; so there are no other possibilities for $\beta(\lambda)$.)

2.17 **PROPOSITION.** If $\lambda \in \mathbf{R}$ and $\beta(\lambda) > 0$, then $\beta(\lambda) = \hat{\beta}$. (It follows directly from 2.3, 2.5, and 2.15 that, if $\beta(\lambda) = 0$, then $\hat{\beta} = 0$.)

Proof. Let $\varepsilon > 0$. Since $\beta(\lambda) > 0$, we can find $\omega \in \Omega$, a sequence $(t_n) \to \infty$, and a line $l \in \mathbf{P}^1(\mathbf{R})$ such that, if $u(t) \neq 0$ is a solution of $(2)_{\omega}$ with $(u(0), u'(0)) \in l$, then $(\sigma = (\omega, l) \in \Sigma)$

$$\lim_{n\to\infty}\frac{1}{t_n}\ln \|u(t_n)\| = \lim_{n\to\infty}\frac{1}{t_n}\int_0^{t_n}f_{\lambda}(\sigma \cdot s) \ ds > \beta(\lambda) - \varepsilon$$

Using the classical Krylov-Bogoliubov argument as in the proof of [7, Lemma 3.5], we can find an invariant measure η on Σ so that

$$\int_{\Sigma} f_{\lambda} \, d\eta > \beta(\lambda) - \varepsilon$$

From 2.15, there are non-negative numbers a, b such that

$$a + b = 1$$
 and $\eta = a\mu_{+} + b\mu_{-}$.

From (2.16), we see that $\hat{\beta} \ge \beta(\lambda) - \varepsilon$, and hence $\hat{\beta} \ge \beta(\lambda)$. On the other hand, 2.15 and the Birkhoff ergodic theorem give us a point $\sigma = (\omega, l) \in \Sigma$ for which

$$\lim_{t\to\infty}\frac{1}{t}\int_0^t f_\lambda(\sigma\cdot s)\ ds=\hat{\beta}.$$

Let u(t) be a solution of $(2.2)_{\omega}$ with $u(0) \neq 0$ on the line l. Then

$$\lim_{t\to\infty}\frac{1}{t}\ln \|u(t)\| = \hat{\beta},$$

and hence $\beta(\lambda) \ge \hat{\beta}$. So $\beta(\lambda) = \hat{\beta}$.

3. Facts about β

We show that

$$\lim_{\varepsilon \to 0^+} - \operatorname{Re} w(\lambda + i\varepsilon) = \beta(\lambda) \quad \text{for all } \lambda \in \mathbf{R}$$

(a more precise statement will be proved), and derive some properties of β .

3.1. THEOREM. (a) If $\lambda \in \mathbf{R}$ and $z \to \lambda$ non-tangentially (n.t.) for $z \in H^+$, the upper half-plane, then $-\operatorname{Re} w(z) \to \beta(\lambda)$. If $\beta(\lambda) = 0$, then β is continuous at λ , and $-\operatorname{Re} w(z) \to \beta(\lambda)$ whenever $z \to \lambda$, non-tangentially or not.

(b) β is upper semi-continuous on **R**.

(c) On **R**, β is non-negative, of first Baire class, and has the mean value property.

Proof. First consider (c). We noted in Section 2 that $\beta(\lambda) \ge 0$ for all λ . That β is of first Baire class follows from (a) or (b). Also, β has the mean value property because it is the Hilbert transform of the continuous function $-\alpha$ (part (a), 2.14, and [15]). So we need only prove (a) and (b).

Let us prove the first statement in (a). Consider the functions $M_{\omega}(z)$ discussed in Section 2 ($z \in H^+$). For fixed $z \in H^+$, define a measure μ_z on Σ as follows:

$$\int_{\Sigma} g \ d\mu_z = \int_{\Omega} g(\omega, \ M_{\omega}(z)) \ d\omega$$

whenever $g: \Sigma \to \mathbf{R}$ is continuous. Using 2.7, we see that

$$(\omega, M_{\omega}(z)) \cdot t = (\omega \cdot t, M_{\omega \cdot t}(z)),$$

where the dot on the left-hand side refers to the flow $(\Sigma, \mathbf{R})_z$. It follows that μ_z is invariant under this flow. In fact, μ_z is *ergodic*, because the set $A_z = \{(\omega, M_{\omega}(z)) | \omega \in \Omega\} \subset \Sigma$ is an invariant set which is flow isomorphic to (Ω, \mathbf{R}) via the projection $\pi: \Sigma \to \Omega: (\omega, l) \to \omega$.

Let ψ^+ be a non-zero solution of $(2.1)_{\omega}$ with $\psi^+{}'(0) = M_{\omega}(z)\psi^+(0)$. Writing $u(t) = (\psi^+(t), \psi^+{}'(t))$, recalling that

Re
$$w(z) = \lim_{t \to \infty} \frac{1}{2t} \ln (|\psi^+(t)|^2 + |\psi^+'(t)|^2),$$

and using (2.5) and (2.10), we get

$$-\beta(z) = \lim_{t \to \infty} \frac{1}{t} \ln \|u(t)\|$$
$$= \lim_{t \to \infty} \frac{1}{t} \int_0^t f_z((\omega, M_\omega(z)) \cdot s) \, ds$$
$$= \lim_{t \to \infty} \frac{1}{t} \int_0^t f_z((\omega \cdot s, M_{\omega \cdot s}(z)) \, ds,$$

and by the Birkhoff ergodic theorem the last limit equals

$$\int_{\Omega} f_z(\omega, M_{\omega}(z)) \, d\omega.$$

Hence we have

(3.2)
$$\beta(z) = -\int_{\Sigma} f_z \ d\mu_z \quad (z \in H^+).$$

Now fix $\lambda \in \mathbf{R}$, and suppose first that $\beta(\lambda) = 0$. Let $z_n \in H^+$, $z_n \to \lambda$, and suppose $\beta(z) = -\operatorname{Re} w(z_n)$ does not tend to zero. We may assume

$$\beta(z_n) \to \delta > 0.$$

Write $\mu_n = \mu_{z_n}$, $f_n = f_{z_n}$, and note that $f_n \to f_{\lambda}$ uniformly on Σ . The sequence $\{\mu_n\}$ of measures has a weakly convergent subsequence $\{\mu_k\}$. Suppose $\mu_k \to \eta$. Then η is invariant with respect to $(\Sigma, \mathbb{R})_{\lambda}$, and hence $\int_{\Sigma} f_{\lambda} d\eta = 0$ (2.15). However, it is clear that this contradicts 3.2. Hence $\beta(z_n) \to 0 = \beta(\lambda)$.

Suppose next that $\beta(\lambda) > 0$. Let μ_{-} be the measure on Σ_{Re} given by 2.15. For μ_{-} -a.a. $(\omega, l) \in \Sigma_{Re}$, any solution $u(t) \neq 0$ of $(2.2)_{\omega,\lambda}$ with $u(0) \in l$ satisfies

$$\lim_{t\to\infty}\frac{1}{t}\ln \|u(t)\| = -\beta(\lambda).$$

Given $\omega \in \Omega$, there can be at most one line l_{ω} in \mathbb{R}^2 with this property. We conclude that, for $d\omega$ -a.a. $\omega \in \Omega$, there is a unique $l_{\omega} \in \mathbb{P}^1(\mathbb{R})$ such that, if ψ is a solution of $(2.1)_{\omega,\lambda}$ such that

$$(\psi(0), \psi'(0))$$

lies on l_{ω} , then $\psi \in L^2(0, \infty)$. Let

 $\Omega_0 = \{ \omega \in \Omega \mid \text{ there exists } l_{\omega} \text{ as above} \}.$

We now claim that if $\omega \in \Omega_0$, then $M_{\omega}(z) \to l_{\omega}$ in $\mathbf{P}^1(\mathbf{C})$ whenever $z \to \lambda$ n.t. To see this, let

$$\theta_{\omega} \in (-\pi/2, \pi/2)$$

be the angle l_{ω} makes with the positive ϕ -axis in (ϕ, ϕ') -space \mathbb{R}^2 , and consider the singular boundary-value problem

$$(3.3)_{\omega} \qquad \qquad L_{\omega} \phi = \left(\frac{-d^2}{dt^2} + Q(\omega \cdot t)\right) \phi = v\phi$$

$$\phi(0) = \cos \theta_{\omega}, \quad \phi'(0) = \sin \theta_{\omega}, \quad \phi \in L^2(0, \infty)$$

This problem admits a spectral function ρ_{ω}^{θ} , which has a jump discontinuity at $v \in \mathbf{R}$ if and only if $(3.3)_{\omega}$ has eigenvalue v [3]. There is also a function

 $M^{\theta}_{\omega}(z)$, holomorphic for Im $z \neq 0$, such that:

(i) the solution ψ^+ of $L_{\omega}\phi = z\phi$ satisfying

$$\phi^+(0) = \sin \theta_\omega + M_\omega^\theta(z) \cos \theta_\omega, \quad \psi^+(0) = \cos \theta_\omega + M_\omega^\theta(z) \sin \theta_\omega$$

is in $L^2(0, \infty)$;

(ii) Im
$$M^{\theta}_{\omega}(z) = \frac{1}{\pi} \int_{-\infty}^{\infty} \operatorname{Im} \frac{d\rho^{\theta}_{\omega}(t)}{t-z}$$
 for Im $z > 0$.

Now, $(3.3)_{\omega}$ has, for each $\omega \in \Omega_0$, an eigenvalue at the point λ under consideration. Hence $M_{\omega}^{\theta}(z) \to \infty$ if $z \to \lambda$ n.t. and $z \in H^+$ [15]. But, using (i), 2.7, and uniqueness of ψ^+ up to constant multiple, we seen that $M_{\omega}(z) \to \tan \theta_{\omega}$; i.e. $M_{\omega}(z) \to l_{\omega}$ in $\mathbf{P}^1(\mathbf{C})$. This is what we wanted to show.

Next let $\{z_n\}$ be any sequence in H^+ such that $z_n \to \lambda$ and $M_{\omega}(z_n) \to l_{\omega}$ for all $\omega \in \Omega_0$. Clearly if $\omega \in \Omega_0$, then $\omega \cdot t \in \Omega_0$ for all $t \in \mathbf{R}$, and $M_{\omega \cdot t}(z_n) \to l_{\omega \cdot t}$. Also

$$-\beta(z_n) = \int_{\Omega} f_{z_n}(\omega, M_{z_n}(\omega)) \ d\omega \to \int_{\Omega} f_{\lambda}(\omega, l_{\omega}) \ d\omega$$

by bounded convergence. However, it is easily seen that the map

$$\omega \rightarrow (\omega, l_{\omega}): \Omega \rightarrow \Sigma$$

defines a d ω -measurable, invariant section of the sphere bundle Σ ; i.e.,

$$(\omega, l_{\omega}) \cdot t = (\omega \cdot t, l_{\omega} \cdot t)$$
 for all $t \in \mathbf{R}$ and $\omega \in \Omega_0$.

Hence we can define an *ergodic* measure μ_0 on Σ by

$$\int_{\Sigma} g \ d\mu_0 = \int_{\Omega} g(\omega, \, l_{\omega}) \ d\omega$$

when $g: \Sigma \to \mathbf{R}$ is continuous; μ_0 is ergodic because the projection $\pi: \Sigma \to \Omega$ restricts to a measurable bijection from $\{(\omega, l_{\omega}) | \omega \in \Omega\}$ to Ω_0 . So, by 2.15,

$$\int_{\Sigma} f_{\lambda} d\mu_0 = \pm \beta(\lambda),$$

and since $0 \ge -\beta(z_n) \rightarrow \int_{\Sigma} f_{\lambda} d\mu_0$, we must have $\int_{\Sigma} f_{\lambda} d\mu_0 = -\beta(\lambda)$. So

$$\beta(z_n) \to \beta(\lambda)$$
 if $z_n \to \lambda$ n.t.

We have proved the first statement in part (a) of the theorem.

There remains to prove that $\beta(\lambda) = 0$ implies β is continuous at λ , and that β is upper semi-continuous on **R**. Since $\beta \ge 0$ everywhere, it suffices to prove that β is upper semi-continuous on **R**.

Suppose for contradiction that there is a sequence $\lambda_n \to \lambda \in \mathbf{R}$ such that $\lim_{n \to \infty} \beta(\lambda_n) > \beta(\lambda)$. Then we can assume that $\beta(\lambda_n) \ge \delta > 0$. By 2.15, the flow $(\Sigma, \mathbf{R})_{\lambda_n}$ admits an ergodic measure μ_n with

$$\int_{\Sigma} f_{\lambda_n} \, d\mu_n \ge \delta \quad \text{for all } n.$$

We can assume that $\mu_n \to \mu$ weakly; one checks that μ is invariant with respect to $(\Sigma, \mathbf{R})_{\lambda}$. Since $f_{\lambda_n} \to f_{\lambda}$ uniformly,

$$\beta(\lambda_n) \to \int_{\Sigma} f_{\lambda} d\mu.$$

By 2.15, $\int_{\Sigma} f_{\lambda} d\mu \leq \beta(\lambda)$. This is a contradiction; we have proved that β is upper semi-continuous. This completes the proof of 3.1.

Next we use the results of [7] to prove that β is harmonic on the resolvent set of $L = -d^2/dt^2 + q(t)$ acting on $L^2(-\infty, \infty)$. The result is also a special case of a more general proposition proved in [4].

3.4 PROPOSITION. Let F be the spectrum of $L = -d^2/dt^2 + q(t)$ acting on $L^2(-\infty, \infty)$. Then β is harmonic on the resolvent set $\mathbb{C}\setminus F$.

Proof. Consider the function $w(\lambda) = \int_{\Omega} M_{\omega}(\lambda) d\omega$ introduced in Section 2; then

$$\beta(\lambda) = -\operatorname{Re} w(\lambda) \quad (\operatorname{Im} \ \lambda \neq 0).$$

Recall that $M_{\omega}(\overline{\lambda}) = \overline{M_{\omega}(\lambda)}$, hence $w(\overline{\lambda}) = w(\overline{\lambda})$. Now if I is an interval in $\mathbb{R}\setminus F$, then

$$-\beta(\lambda) + i\alpha(\lambda) = \lim_{\varepsilon \to 0^+} w(\lambda + i\varepsilon),$$

and $\alpha(\lambda)$ is constant for $\lambda \in I$, say α_I [7]. We also have

$$\lim_{\varepsilon \to 0^-} w(\lambda + i\varepsilon) = \beta(\lambda) - \alpha_I \quad (\lambda \in I).$$

So if we define

$$w^*(\lambda) = \begin{cases} w(\lambda), & \text{Im } \lambda > 0, \\ \beta(\lambda) + i\alpha_I, & \lambda \in I, \\ w(\lambda) + 2i\alpha_I, & \text{Im } \lambda < 0, \end{cases}$$

then w* is holomorphic on $\{\text{Im } \lambda \neq 0\} \cup I$ by the reflection principle. It follows that β is harmonic on the resolvent set.

As a corollary, we prove that F cannot be too small.

3.5 COROLLARY. Let $I \subset \mathbf{R}$ be an open interval such that $I \cap F \neq \emptyset$. Then $F \cap I$ has positive logarithmic capacity [11].

Proof. Suppose $F \cap I \neq \emptyset$ but the logarithmic capacity is zero. By 3.4, β extends harmonically to the entire open disc D with diameter I (since β is clearly bounded on D). Let h be that harmonic conjugate of β on D such that h = Im w on $\{\lambda \in D \mid \text{Im } \lambda > 0\}$. By 2.10 and 2.13, α is the restriction of h to I; hence α is continuously differentiable on I. Now by 2.13, $\alpha'(\lambda) = 0$ except when $\lambda \in F$. Since $F \cap I$ has capacity zero, it has Lebesgue measure zero. So α' is identically zero on I, and α is constant on I. So by 2.13, $F \cap I = \phi$. This is a contradiction, so $F \cap I$ has positive logarithmic capacity.

Finally, we consider the behaviour of β at endpoints of spectral gaps.

3.6 PROPOSITION. Let $\lambda_0 \in \mathbf{R}$ be an endpoint of a spectral gap I (i.e. I is a maximal interval in $\mathbf{R}\setminus F$). If $\lambda_n \to \lambda_0$ and $\lambda_n \in I$, then $\beta(\lambda_n) \to \beta(\lambda_0)$.

Proof. Recall the functions $M_{\omega}(z)$, $M_{\omega}^{-}(z)$ discussed in Section 2; for each $\omega \in \Omega$, these are defined and holomorphic for Im $z \neq 0$. Since the spectrum F of L_{ω} is independent of ω , each $M_{\omega}(z)$ extends meromorphically through I ($\omega \in \Omega$), and so does each $M_{\omega}^{-}(z)$ [3]. In addition, either Im $M_{\omega}(\lambda) = 0$ or $M_{\omega}^{-}(\lambda) = \infty$ ($\lambda \in I$), and the same holds for each $M_{\omega}^{-}(\lambda)$.

Now, the vector $(1, M_{\omega}(\lambda)) \in \mathbb{C}^2$ defines a line $l_{\omega}^+(\lambda)$ in $\mathbb{P}^1(\mathbb{R})$ for each $\lambda \in I$; if $M_{\omega}(\lambda) = \infty$, then $l_{\omega}^+(\lambda)$ is the line containing the vector (0, 1). Similarly, $(1, M_{\omega}^-(\lambda))$ defines a line $l_{\omega}^-(\lambda)$ ($\lambda \in I$). We coordinatize the circle $\mathbb{P}^1(\mathbb{R})$ with the usual polar coordinate θ , $-\pi/2 \leq \theta \leq \pi/2$, where $\theta = -\pi/2$ and $\theta = \pi/2$ are identified. Orient $\mathbb{P}^1(\mathbb{R})$ in the direction of increasing θ .

Fix $\omega \in \Omega$. It is remarked in [6] that, if λ increases through *I*, then $M_{\omega}(\lambda)$ and $M_{\omega}^{-}(\lambda)$ move in opposite directions on $\mathbf{P}^{1}(\mathbf{R})$ (the remark is just [2, Problem 9, p. 257]. It can also be shown that $M_{\omega}(\lambda)$ and $M_{\omega}^{-}(\lambda)$ can never coincide if $\lambda \in I$ [6].

It is clear from these two remarks that, as $\lambda_n \rightarrow \lambda_0$ in *I*, the limits

$$\lim_{n\to\infty} l^{\pm}_{\omega}(\lambda_n)$$

exist in $\mathbf{P}^{1}(\mathbf{R})$. Call these limits l_{ω}^{\pm} . The sets

$$S^{\pm} = \{(\omega, \, l_{\omega}^{\pm}) \, | \, \omega \in \Omega\} \subset \Sigma_{\mathsf{Re}}$$

are measurable sections of $\Sigma = \Omega \times P^1(\mathbf{R})$. Hence they define ergodic measures μ^{\pm} on Σ via the formulas

$$\int_{\Sigma} g \ d\mu^{\pm} = \int_{\Omega} g(\omega, \, l_{\omega}^{\pm}) \ d\omega$$

for continuous $g: \Sigma \rightarrow \mathbf{R}$. We have

$$-\beta(\lambda_n) = \int_{\Sigma} f_{\lambda_n}(\omega, M_{\omega}(\lambda_n)) \ d\omega \to \int_{\Sigma} f_{\lambda_0}(\omega, l_{\omega}^+) \ d\omega = \int_{\Sigma} f_{\lambda_0} \ d\mu^+.$$

Using 2.15, we have $\int_{\Sigma} f_{\lambda_0} d\mu^+ = -\beta(\lambda_0)$. This completes the proof of 3.6.

4. Discontinuity of β

We construct a.p. Schrödinger operators for which β is discontinuous. Note that such examples cannot be periodic, for β is always continuous for a periodic Schrödinger operator, and in fact the essential spectrum is determined by the condition $\beta = 0$.

We begin with some general remarks. Let $\{q_n\}$ be a sequence of almost periodic function such that $q_n(t) \rightarrow q(t)$ uniformly on **R**. Then q(t) is almost periodic. Consider the operators

$$L(q_n) = \frac{-d^2}{dt^2} + q_n(t), \quad L(q) = \frac{-d^2}{dt^2} + q(t).$$

From [7, see Section 2 above], we obtain corresponding functions $w(q_n, \lambda)$, $w(q, \lambda)$, holomorphic for Im $\lambda > 0$, such that

$$\lim_{\varepsilon \to 0^+} w(q_n, \lambda + i\varepsilon) = -\beta(q_n, \lambda) + i\alpha(q_n, \lambda),$$
$$\lim_{\varepsilon \to 0^+} w(q, \lambda + i\varepsilon) = -\beta(q, \lambda) + i\alpha(q, \lambda) \quad (\lambda \in \mathbf{R}).$$

Here β is defined in 2.3, and α is the rotation number. From now on, it will be convenient to indicate the potential q in the arguments of β and α .

From now on, we use the term "resolvent of L(q)" to mean the operatortheoretic resolvent of L(q), viewed as a self-adjoint operator on $L^2(-\infty, \infty)$.

4.1 PROPOSITION. If $q_n \rightarrow q$ uniformly on **R**, then

$$\alpha(q_n, \lambda) \to \alpha(q, \lambda),$$

uniformly on compact subsets of **R**. If $I = (a, b) \subset \mathbf{R}$ is a subset of the resolvent of L(q), then $\beta(q_n, \lambda) \rightarrow \beta(q, \lambda)$ for all $\lambda \in I$.

Proof. The first statement is proved in [7, Theorem 6.2]. To prove the second statement, we use 6.3 and 6.4 of [7] to conclude that w(q, z) is continuous as a function of q for fixed z, Im z > 0 (in fact, it is differentiable). Hence $w(q_n, z) \rightarrow w(q, z)$ if Im z > 0. Now, if $\lambda \in I$, then some interval I_1 containing λ is in the resolvent of $L(q_n)$ for sufficiently large n, say $n \ge N$. Since the rotation number is constant on intervals in the resolvent [7, Theorem 4.7], we can extend $w(q_n, \lambda)$ and $w(q, \lambda)$ holomorphically through I_1 if $n \ge N$, and it follows easily that $\beta(q_n, \lambda) \rightarrow \beta(q, \lambda)$.

We remark that, if λ is in the resolvent of L(q), then $\alpha(q_n, \lambda)$ is eventually equal to $\alpha(q, \lambda)$ if $q_n \rightarrow q$ uniformly. This uses [7, Theorem 4.7].

Now we borrow two facts from [6]. First, we fix a constant δ :

$$\delta = 2^{-10} = 1/1024.$$

(I) There is a periodic function $q_0(t)$, of period $T_0 > 10$, with (4.3) $1 \ge q_0(t) \ge -3$ $(t \in \mathbf{R})$,

such that the Hill equation

$$H(q_0): u' = \begin{pmatrix} 0 & 1 \\ q_0(t) & 0 \end{pmatrix} u, \quad u = \begin{pmatrix} \phi \\ \phi' \end{pmatrix},$$

admits two solutions, u_{\pm} , (t), with the following properties. First,

(4.4)
$$\frac{1}{T_0} \ln \|u_{\pm}(T_0)\| = \pm \beta_0, \quad \beta_0 > 2/3$$

If we introduce polar coordinates

$$r = (\phi^2 + {\phi'}^2)^{1/2}, \quad \theta = \arg(\phi + i\phi'),$$

then $H(q_0)$ becomes

$$\mathcal{R}(q_0): r'/r = (1 + q_0(t)) \cos \theta \sin \theta,$$

$$\Theta(q_0): \theta = -\sin^2 \theta + q_0(t) \cos^2 \theta.$$

Writing $u_{\pm}(t) = r_{\pm}(t) \exp i\theta_{\pm}(t)$, we have

(4.5)
$$-\pi/4 < \theta_{-}(0) = \theta_{-}(T_0) < \theta_{+}(0) = \theta_{+}(T_0) < -\pi/4 + 2\delta;$$

(4.6)
$$0 < \theta_+(0) - \theta_-(0) < 2^{-12} = 1/4096.$$

Using Floquet theory, it is trivial to see that $\beta_0 = \beta(q_0, 0)$. Observe also the rotation number $\alpha(q_0, \lambda)$ satisfies

(4.7)
$$\alpha(q_0, 0) = 0, \quad \alpha(q_0, 2) \ge 1,$$

since $q_0(t) \le 1$ for all t.

(II) Suppose a T_N -periodic function $q_N(t)$ is given $(N \ge 0)$, with the following properties.

(i) The Hill equation $H(q_N)$ admits two solutions, $u_{\pm}(q_N, t)$, with

$$(4.4)_N \qquad \frac{1}{T_N} \ln \|u_+(q_N, T_N)\| > 2/3, \quad \frac{1}{T_N} \ln \|u_-(q_N, T_N)\| < -2/3.$$

(ii) If
$$u_{\pm}(q_N, t) = r_{\pm}(q_N, t) \exp i\theta_{\pm}(q_N, t)$$
, then

$$(4.5)_{N} \qquad -\pi/4 < \theta_{-}(q_{N}, 0) = \theta_{-}(q_{N}, T_{N}) < \theta_{+}(q_{N}, 0) = \theta_{+}(q_{N}, T_{N}) < -\pi/4 + 2\delta; (4.6)_{N} \qquad 0 < \theta_{+}(q_{N}, 0) - \theta_{-}(q_{N}, 0) < 2^{-N-12}.$$

Then, there is an integer l_N , which may be chosen as large as desired, and a non-negative function $\eta_N(t)$, periodic of period $T_{N+1} = l_N T_N$, satisfying

 $(4.8)_{N+1} \qquad 0 \le \eta_N(t) \le 3/2 \ 2^{-N-2} < 2^{-N-1},$

Support
$$(\eta_N) \cap [0, T_{N+1}] \subset [T_{N+1} - \delta, T_{N+1}],$$

such that, if $p_{N+1} = q_N - \eta_N$, then the Hill equation $H(p_{N+1})$ admits solutions

$$u_{\pm}(p_{N+1}, t) = r_{\pm}(p_{N+1}, t) \exp i\theta_{\pm}(p_{N+1}, t)$$

for which $(4.4)_{N+1}$, $(4.5)_{N+1}$, and $(4.6)_{N+1}$ hold. In addition,

$$(4.9)_{N+1} \qquad \theta_{-}(q_N, 0) < \theta_{-}(p_{N+1}, 0) < \theta_{+}(p_{N+1}, 0) < \theta_{+}(q_N, 0).$$

We remark that (I) and (II) can be achieved by replacing the integer n in (6, Section 5] by N = n - 12, $n \ge 12$.

We now construct, by induction, a sequence $\{q_N\}$ of periodic functions such that q_N converges uniformly to an almost periodic function q. We will show that q has the following properties: $\lambda = 0$ is the left endpoint of the spectrum of L(q); also

$$\beta(q, 0) \ge 2/3$$
; $\lim_{\lambda \to 0^+} \inf \beta(q, \lambda) = 0$.

Let us begin by letting $q_0(t)$ be a T_0 -periodic function satisfying the conditions of (I). Let $T_1 = m_0 T_0$, $\eta_0(t)$, and $p_1 = q_0 - \eta_0$ be as in (II). By a theorem of Moser (10, Proposition 1; note $\Phi_1 > 0$], we can find a non-negative, continuous, T_1 -periodic function $\sigma_0(t)$, such that

$$0 \le \eta_0 + \sigma_0 < 2^{-2} = 1/4$$
 and Support $(\sigma_0) \cap [0, T_1) \subset [T_1 - \delta, T_1],$

with the following additional property. If $q_1 = p_1 - \sigma_0$, then, corresponding to each such integer $k \ge 1$, there is a non-empty open interval $I_1(k)$ in the resolvent of

$$L(q_1) = \frac{-d^2}{dt^2} + q_1(t)$$

such that the rotation number $\alpha(q_1, \lambda)$ equals $k\pi/T_1$ on $I_1(k)$. We take $I_1(k)$ to be the maximal open interval with this property. Since we can choose σ_0 as small as we please, we can also ensure that conditions $(4.4)_1$, $(4.5)_1$, $(4.6)_1$, and $(4.9)_1$ hold.

Consider an interval $I_1(k) = (a, b)$ $(1 \le k < T_1/\pi)$. Using (4.3) and the fact that $q_1 \le q_0$, we see that $(a, b) \subset (0, 2)$. For each $\lambda \in (a, b)$, consider the Hill equation

$$H(-\lambda + q_1): u' = \begin{pmatrix} 0 & 1 \\ -\lambda + q_1(t) & 0 \end{pmatrix} u, \quad u = \begin{pmatrix} \phi \\ \phi' \end{pmatrix}.$$

This equation has solutions

$$u_{\pm}(-\lambda + q_1, t) = r_{\pm}(-\lambda + q_1, t) \exp i\theta_{\pm}(-\lambda + q_1, t)$$

for which

$$\frac{1}{T_1} \ln \|u_{\pm}(-\lambda + q_1, T_1)\| = \pm \beta(q_1, \lambda) \neq 0,$$

and for which

$$\theta_{\pm}(-\lambda + q_1, 2T_1) = \theta_{\pm}(-\lambda + q_1, 0) \pmod{2\pi}.$$

Note that, by [2, probs. 8 and 9, p. 257] θ_{\pm} may be chosen to be differentiable in λ , and when this is done,

$$\frac{\partial \theta_{+}}{\partial \lambda} < 0, \quad \frac{\partial \theta_{-}}{\partial \lambda} > 0$$

for each fixed t. This fact, and analysis of the discriminant [8] $\Delta(\lambda)$ of

$$L(q_1) = \frac{-d^2}{dt^2} + q_1(t),$$

show that one can further assume

$$\lim_{\lambda \to a^+} \theta_+(-\lambda + q_1, t) - \theta_-(-\lambda + q_1, t) = \pi,$$
$$\lim_{\lambda \to b^-} \theta_+(-\lambda + q_1, t) - \theta_-(-\lambda + q_1, t) = 0$$

for all $t \in \mathbb{R}$. Hence we can choose a closed subinterval $J_1(k) \subset I_1(k)$, with int $J_1(k) \neq \phi$, such that if $\lambda \in J_1(k)$, then

$$\pi > \theta_+(-\lambda + q_1, 0) - \theta_-(-\lambda + q_1, 0) > \pi/2 - 1/2.$$

Now suppose that we have constructed functions $q_1 \ge q_2 \ge \cdots \ge q_N$ such that q_i has period $T_i = m_{i-1} T_{i-1}$ for some even integer $m_{i-1} \ge 6$ (i = 0, 1, N - 1). Suppose that $(4.4)_i - (4.6)_i$ hold for all $i, 1 \le i \le N$. Suppose moreover that the following conditions hold.

$$(4.10)_N \quad 0 \le q_i - q_{i+1} \le 2^{-i-1} (1 \le i \le N - 1);$$

$$(4.11)_N \quad 1 \ge q_i \ge -3 - \sum_{l=1}^i 2^{-l} (1 \le i \le N);$$

 $(4.12)_N$ for each $1 \le i \le N$, there is a non-empty open interval $I_i(k)$ $(1 \le k < \infty)$ such that $I_i(k)$ is in the resolvent of $L(q_i)$, and $\alpha(q_i, \lambda) = k\pi/T_i$ for all $\lambda \in I_i(k)$.

Using (4.7) and the fact that q_i decreases with *i*, we see that $I_i(k) \subset (0, 2)$ for $1 \le k < T_i/\pi$, $i \le i \le N$. We assume that $I_i(k)$ is the maximal interval with the property stated in (4.12)_N, and call it a spectral gap.

Now, in each spectral gap $I_i(k) = (a, b)$, we can choose differentiable families $\theta_{\pm}(-\lambda + q_i, t)$ of $2T_i$ -periodic solutions (mod 2π) of $\Theta(-\lambda + q_i)$ such that $\partial \theta_+/\partial \lambda < 0$, $\partial \theta_-/\partial \lambda > 0$, and

$$\lim_{\lambda \to a} \theta_+(-\lambda + q_i, t) - \theta_-(-\lambda + q_i, t) = \pi,$$
$$\lim_{\lambda \to b} \theta_+(-\lambda + q_i, t) - \theta_-(-\lambda - q_i, t) = 0 \quad (\lambda \in I_i(k), t \in \mathbf{R}).$$

We assume the following three conditions.

 $(4.13)_N$ In each spectral gap $I_i(k)$ $(1 \le k < T_i/\pi)$, there is a closed subinterval $J_i(k)$, with int $J_i(k) \ne \phi$, such that, if $\lambda \in J_i(k)$, then

$$\pi > \theta_{+}(-\lambda + q_{i}, 0) - \theta_{-}(-\lambda + q_{i}, 0) > \pi/2 - \sum_{l=r}^{i} 2^{-l},$$

where r is the smallest integer such that $k\pi/T_i = h\pi/T_r$ for some integer h $(1 \le i \le N)$.

 $(4.14)_N$ If $k/T_i = h/T_r$ for some r < i and some integer h, then $J_r(h) = J_i(k)$, and $\alpha(q_r, \lambda) = \alpha(q_i, \lambda)$ for all $\lambda \in J_r(h)$ $(1 \le i \le N)$.

 $(4.15)_N$ If $1 \le r \le i \le N$ and $\lambda \in J_r(4)$, then

$$\beta(q_r, \lambda) < 2^{-r}$$
 and $\beta(q_i, \lambda) < \sum_{l=r}^{i} 2^{-l}$.

We will construct a $T_{N+1} = m_N T_N$ -periodic function q_{N+1} with $m_N \ge 6$ such that $(4.2)_{N+1}$ - $(4.4)_{N+1}$ hold, and so that $(4.10)_{N+1}$ - $(4.15)_{N+1}$ hold.

Begin by choosing a number $\tau_0 \ge T_N$ such that, if u(t) is any solution of $H(-\lambda + q_N)$ $(0 \le \lambda \le 2)$ satisfying ||u(0)|| = 1, then

(4.16)
$$\frac{1}{t} \ln \|u(t)\| < \beta(q_N, \lambda) + 2^{-N-2} (t \ge \tau_0).$$

For completeness, we include a proof that τ_0 can be so chosen in an appendix.

Next, fix a number $\gamma \in (0, 1)$, which will be more precisely determined later. Choose some interval $J_N(k)$, $1 \le k < T_N/\pi$. Let $\lambda \in J_N(k)$. Let

$$\theta_1 = \theta_-(-\lambda + q_N, 0) < \theta_+(-\lambda + q_n, 0) = \theta_2 < \theta_1 + \pi.$$

Here θ_{\pm} are given by the discussion preceding $(4.13)_N$. Let $\tau_1 = cT_N$, where c is a positive *even* integer to be determined. Define

$$H_{\lambda}: [\theta_1, \theta_2] \to [\theta_1, \theta_2)$$

by

$$H_{\lambda}(\overline{\theta}) = \theta(\tau_1) - \theta(0) + \theta_1 + \tau_1 \cdot \frac{\pi k}{T_N}$$

(recall $\underline{\alpha}(q_N, \lambda) = \pi k/T_N$). Here $\theta(t)$ is the solution of $\Theta(-\lambda + q_N)$ satisfying $\theta(0) = \theta$. We see that H_{λ} measures the rotation of $\theta(t)$ with respect to $\theta_{-}(-\lambda + q_N, t)$. Note that $H_{\lambda}(\theta_1) = \theta_1$, $H_{\lambda}(\theta_2) = \theta_2$.

Since $\beta(q_N; \lambda) > 0$, one has

$$\lim_{m \to \infty} \theta(2m \cdot T_N) = \theta_+(-\lambda + q_N, 0) = \theta_2 \quad \text{for all } \theta, \, \theta_1 < \theta < \theta_2$$

Since the families θ_{\pm} are continuous in λ , and since the right-hand side in equation $\Theta(-\lambda + q_N)$ depends continuously on λ , we can find τ_1 so that

(4.17)
$$H_{\lambda}(\theta) > \theta_2 - \gamma \quad \text{if} \quad \theta_1 + \gamma \le \theta < \theta_2 \quad \text{and} \quad \lambda \in \bigcup_{k=1}^{A} J_N(k),$$

where A is the greatest integer less than T_N/π .

Now fix $\gamma < 2^{-N-2}$. Choose $m_N \ge 6$ such that m_N is even and

$$T_{N+1} = m_N \cdot T_N > \max(\tau_0, \tau_1).$$

Choose a T_{N+1} -periodic function $\eta_N(t)$, for which $(4.7)_{N+1}$ holds, in such a way that $(4.4)_{N+1}$ - $(4.6)_{N+1}$ hold for $p_{N+1} = q_N - \eta_N$. Then, use the Moser theorem [10, Proposition 1] to find a non-negative function $\sigma_N(t)$, with period T_{N+1} , such that

Support
$$(\sigma_N) \cap [0, T_{N+1}] \subset [T_{N+1} - \delta, T_{N+1}]$$
 and $0 \le \eta_N + \sigma_N < 2^{-N-1}$,

so that the following conditions hold.

(i) Conditions $(4.4)_{N+1}$ - $(4.6)_{N+1}$ hold with $q_{N+1} = p_{N+1} - \sigma_N$ in place of p_{N+1} .

(ii) The operator $L(q_{N+1})$ admits a spectral gap $I_{N+1}(k)$ such that, if $\lambda \in I_{N+1}(k)$, then

$$\alpha(q_{N+1}, \lambda) = \frac{k\pi}{T_{N+1}} \quad (1 \le k < \infty).$$

Observe now that $(4.10_{N+1}, (4.11)_{N+1})$, and $(4.12)_{N+1}$ hold. We show that $(4.13)_{N+1}$, $(4.14)_{N+1}$, and $(4.15)_{N+1}$ hold with our choices of m_N and q_{N+1} .

First, fix k, $1 \le k < \pi/T_{N+1}$. If k is not a multiple of m_N , i.e., if $k/T_{N+1} \ne h/T_r$, for all integers h and all r < N + 1, then let $J_{N+1}(k)$ be any closed subinterval of $I_{N+1}(k)$ with non-empty interior on which

$$\theta_+(-\lambda+q_{N+1}, 0) - \theta_-(-\lambda+q_{N+1}, 0) > \pi/2 - \frac{1}{2}.$$

Here we shoose θ_{\pm} as in the discussion preceding $(4.13)_N$.

Next, suppose $k/T_{N+1} = h/T_N$ for some integer h. We examine $J_N(h)$. Let $\lambda \in J_N(h)$, and consider again the interval $[\theta_1, \theta_2]$, where

$$\theta_1 = \theta_-(-\lambda + q_N, 0), \quad \theta_2 = \theta_+(-\lambda + q_N, 0).$$

Define the map

$$H_{\lambda}: [\theta_1, \theta_2] \to [\theta_1, \theta_2]$$

as above, with T_{N+1} replacing T_N . Let $\bar{\theta} \in [\theta_1, \theta_2]$. Let $\theta_N(t)$, resp. $\theta_{N+1}(t)$, be the solution of $\Theta(-\lambda + q_n)$, resp. $\Theta(-\lambda + q_{N+1})$, with

$$\theta_N(0) = \theta_{N+1}(0) = \bar{\theta}.$$

Then $\theta_N(t) = \theta_{N+1}(t)$ on $[0, T_{N+1} - \delta]$. By Gronwall's inequality applied to the θ -equation, and using $|-\lambda + q_N| < 6$, $|-\lambda + q_{N+1}| < 6$ (this uses (4.7)), we have

$$(4.18) 0 < \theta_N(T_{N+1}) - \theta_{N+1}(T_{N+1}) < \delta 2^{-N-1} e^{\delta \delta} < 2^{-N-2}.$$

Let us now define

$$R(\bar{\theta}) = \theta_N(T_{N+1}) - \theta_{N+1}(T_{N+1}) \quad \text{for } \bar{\theta} \in [\theta_1, \theta_2].$$

Compare the graphs of H_{λ} and R. Using $\gamma < 2^{-N-2}$, we see that these graphs have exactly two points of intersection, defined by points ψ_{\pm} in $[\theta_1, \theta_2]$; moreover

$$0 < \theta_{+} - \psi_{+} < 2^{-N-2}, \quad 0 < \psi_{-}\theta_{-} < 2^{-N-1}$$

There are no more than two points of intersection, because: (i) any point $\bar{\theta} \in (\theta_1 + \gamma, \theta_2 - 2^{-N-1})$ satisfies $H_{\lambda}(\bar{\theta}) > R(\bar{\theta})$; (ii) if there were three points of intersection, then that fundamental matrix solution $\Phi(t)$ of $H(-\lambda + q_{N+1})$ satisfying $\Phi(0) = I$ would preserve three driections in \mathbb{R}^2 at $t = T_{N+1}$; hence $\Phi(T_{N+1})$ would be the identity since det $\Phi(t) = 1$; this would contradict (i).

Let $\theta_{\pm}(-\lambda + q_{N+1}, t)$ be the solutions of $\Theta(-\lambda + q_{N+1})$ satisfying

$$\theta_{\pm}(-\lambda+q_{N+1},0)=\psi_{\pm}.$$

Then $\exp i\theta_{\pm}$ are T_{N+1} -periodic, and $\theta_{\pm} + \pi$ are (mod 2π) the only other solutions of $\Theta(-\lambda + q_{N+1})$ with this property. It follows from Floquet theory that λ is in the resolvent of $L(q_{N+1})$. Clearly

$$\alpha(q_{N+1}, \lambda) = \alpha(q_N, \lambda).$$

Now set $J_{N+1}(k) = J_N(h)$ (recall $k/T_{N+1} = h/T_N$). From all that we have said, $(4.13)_{N+1}$ and $(4.14)_{N+1}$ hold.

We must still consider $(4.15)_{N+1}$. First, let λ_N be the left endpoint of the spectrum of $L(q_N)$. Note $\alpha(q_N, \lambda_N) = 0$. We claim that $\alpha(q_{N+1}, \lambda_N) \le \pi/T_{N+1}$. To see this, note $\Theta(-\lambda_N + q_N)$ has a T_N -periodic solution $\psi_N(t)$. Let $\psi_{N+1}(t)$ satisfy

$$\Theta(-\lambda_N + q_{N+1}) \quad \text{with } \psi_{N+1}(0) = \psi_N(0)$$

From (4.7), $0 < \lambda_N < 2$; hence we can apply Gronwall's inequality to the Θ -equation and obtain

$$0 < \psi_N(T_{N+1}) - \psi_{N+1}(T_{N+1}) < \delta 2^{-N-1} e^{6\delta} < 2^{-N}.$$

Since $q_N = q_{N+1}$ on $[T_{N+1}, 2T_{N+1} - \delta]$, we see that

$$\psi_N(t) - \pi < \psi_{N+1}(t) < \psi_N(t) \text{ for } t \in [T_{N+1}, 2T_{N+1} - \delta];$$

hence applying Gronwall again, we get

$$-\pi - 2^{-N} + \psi_N(0) < \psi_{N+1}(2T_{N+1}) < \psi_N(0) = \psi_N(2T_{N+1}).$$

Applying a similar argument to all succeeding periods, we obtain

$$0 < \psi_N(0) - \psi_{N+1}(l \cdot T_{N+1}) < (l-1)\pi + 2^{-N} \text{ for } l = 1, 2, 3, \dots,$$

Hence $\alpha(q_{N+1}, \lambda_N) \leq \pi/T_{N+1}$ (by Theorem 2.13).

Now, on the other hand, if $\lambda \in J_N(k)$, then

$$\alpha(q_{N+1}, \lambda) = \alpha(q_N, \lambda) \quad (1 \le k < \pi/T_N).$$

In particular, if $\lambda \in J_N(1)$, then $\alpha(q_{N+1}, \lambda) = \pi/T_N$. Combining this fact with the preceding paragraph, and recalling that $m_{N+1} \ge 6$, we see that, if $\lambda \in J_{N+1}(4)$ (i.e. if $\alpha(q_{N+1}, \lambda) = 4\pi/T_{N+1}$), then $\beta(q_N, \lambda) = 0$.

Let us fix $\lambda \in J_{N+1}(4)$, and let

$$\xi_{N+1}(t) = \theta_+(-\lambda + q_{N+1}, t).$$

Let $r_{N+1}(t)$ be obtained by solving equation $\Re(-\lambda + q_{N+1})$ with ξ_{N+1} replacing θ , with initial condition r(0) = 1. If

$$u_{N+1}(t) = r_{N+1}(t) \exp i\xi_{N+1}(t),$$

then

$$\frac{1}{T_{N+1}}\ln \|u_{N+1}(T_{N+1})\| = \beta(q_{N+1}, \lambda).$$

Let $\xi_N(t)$ be the solution of $\Theta(-\lambda + q_N)$ satisfying $\xi_N(0) = \xi_{N+1}(0)$. Let

$$u_N(t) = r_N(t) \exp i\xi_N(t),$$

where r_N is obtained as above from $\mathscr{R}(-\lambda + q_N)$. Applying Gronwall's inequality to estimate $\xi_N(t) - \xi_{N+1}(t)$, then comparing $\mathscr{R}(-\lambda + q_N)$ and $\mathscr{R}(-\lambda + q_{N+1})$, we obtain

$$\frac{1}{T_{N+1}} |\ln r_N(T_{N+1}) - \ln r_{N+1}(T_{N+1})| < 2^{-N-2}.$$

Using 4.16, we get $\beta(q_{N+1}, \lambda) < 2^{-N-1}$ (recall $T_{N+1} > \tau_1$).

By a similar argument, we get

$$\beta(q_{N+1}, \lambda) < \sum_{l=r}^{N+1} 2^{-l} \text{ if } \lambda \in J_r(4), r \le N+1.$$

Hence $(4.15)_{N+1}$ is finally verified.

By induction, construct a sequence $\{q_N\}$ satisfying $(4.2)_N$ - $(4.4)_N$ and $(4.10)_N$ - $(4.15)_N$ for each $N \ge 1$. Then $q_N \rightarrow q$ uniformly on **R**, where q is almost periodic. Let $\rho_N(t)$, resp. $\rho(t)$, be the spectral function of the singular boundary value problem

$$L(q_N)\phi = \lambda\phi$$
, resp. $L(q)\phi = \lambda\phi$,

with boundary conditions

$$\phi(0)=0,\,\phi\in L^2(0,\,\infty).$$

Using the Helly theorem, one can show that $\rho_N \rightarrow \rho$ at all continuity points of ρ .

The arguments of [6, Section 5] show that $\lambda = 0$ is the left-most point in the spectrum of L(q), and also that $\beta(q, 0) \ge 2/3$. Now, ρ_N is constant on each $J_N(k)$ $(1 \le k < T_N/\pi)$, except perhaps for a single isolated jump discontinuity (a discontinuity occurs if and only if $\theta_-(-\lambda + q_N, 0) = \pi/2$ or $3\pi/2 \mod 2\pi$). By $(4.14)_N$, ρ is also constant on int $J_N(k)$, except perhaps for an isolated jump discontinuity. Hence int $J_N(k)$ is in the resolvent of L(q) [3]. From 4.1 and $(4.15)_N$, we see that $\beta(q, \lambda) < 2^{-N+1}$ on $J_N(4)$. Since $\alpha(q_N, \lambda) \rightarrow \alpha(q, \lambda)$, and since $\alpha(q_N, \lambda) = 4\pi/T_N$ for $\lambda \in J_N(4)$, we conclude from $(4.14)_N$ that $\alpha(q, \lambda) =$ $4\pi/T_N$ for $\lambda \in J_N(4)$. Since $\alpha(q, \lambda)$ is continuous and $\alpha(q, \lambda) > 0$ for $\lambda > 0$ (see Theorem 2.13), we see that

$$\lim_{\lambda\to 0^+} \inf \beta(q, \lambda) = 0.$$

We have proved everything that we set out to prove.

Appendix

We prove statement 4.16. Let q be any continuous periodic function, and consider the equations

$$H(-\lambda+q)\colon u'=\begin{pmatrix}0&1\\-\lambda+q(t)&0\end{pmatrix}u,$$

where λ ranges over some compact interval $I \subset \mathbf{R}$. Introduce the hull Ω of q; since q is periodic, Ω is a circle. We denote the element q of Ω by ω_0 . Let Σ_{Re} be the projective bundle $\Sigma_{Re} = \Omega \times \mathbf{P}^1(\mathbf{R})$. As in Section 2, each Hill equation $H(-\lambda + q)$ defines a flow $(\Sigma_{Re}, \mathbf{R})_{\lambda}$ ($\lambda \in I$). Suppose for contradiction that there exist $\gamma > 0$ and sequences $\lambda_n \in I$, $t_n \in \mathbf{R}$, $\bar{u}_n \in \mathbf{R}^2$, with $t_n \to \infty$ and $\|\bar{u}_n\| = 1$, so that

$$\frac{1}{t_n} \ln \|u_n(t_n)\| \geq \beta(q, \lambda_n) + \gamma;$$

here $u_n(t)$ satisfies $H(-\lambda + q)$ with $u_n(0) = \bar{u}_n$. Let l_n be the line in \mathbb{R}^2 containing \bar{u}_n . Let $f_{\lambda}: \Sigma \to \mathbb{R}$ be the function defined in 2.4 ($\lambda \in I$).

Using the Cantor diagonal process as in [11, Theorem 9.05], we can find measures μ_n on Σ such that $\|\mu_n\| = 1$, and

$$\int_{\Sigma} f_{\lambda_n} d\mu_n = \frac{1}{t_n} \int_0^{t_n} f_{\lambda_n}((\omega_0, l_n) \cdot s) ds,$$

where $(\omega_0, l_n) \cdot s$ is computed using the flow $(\Sigma, \mathbf{R})_{\lambda_n}$.

Then

$$\int_{\Sigma} f_{\lambda_n} d\mu_n = \frac{1}{t_n} \ln \|u_n(t_n)\| \ge \beta(q, \lambda_n) + \gamma.$$

We can assume that $\lambda_n \to \lambda_0$, and that $\mu_n \to \mu$ in the weak topology on measures. Since $t_n \to \infty$, μ is *invariant* with respect to $(\Sigma, \mathbf{R})_{\lambda}$.

Now, $f_{\lambda_n} \rightarrow f_{\lambda}$ uniformly on Σ . Hence

$$\int_{\Sigma} f_{\lambda} d\mu = \lim_{n \to \infty} \int_{\Sigma} f_{\lambda_n} d\mu_n \ge \overline{\lim_{n \to \infty}} \beta(q, \lambda_n) + \gamma.$$

Since $\beta(q, \lambda_n) \ge 0$ and $\beta(q, \lambda) \ge \int_{\Sigma} f_{\lambda} d\mu$ (this uses (2.16)), we see that $\beta(q, \lambda) > 0$. But then, by Floquet theory, λ is in the resolvent of

$$L(q) = \frac{-d^2}{dt^2} + q(t);$$

see [8]. By Proposition 4.1,

$$\beta(q, \lambda_n) \rightarrow \beta(q, \lambda) \geq \overline{\lim_{n \to \infty}} \beta(q, \lambda_n) + \gamma.$$

This is a contradiction; (4.16) is proved.

Acknowledgements The author thanks J. Avron, B. Simon, and especially J. Moser for helpful conversations. He also wishes to point out that, in [1], Avron and Simon construct almost periodic Jacobi matrices for which $\beta > 0$ on the entire spectrum.

REFERENCES

- 1. J. AVRON and B. SIMON, Singular continuous spectrum for a class of almost periodic Jacobi matrices, Bull. Amer. Math. Soc., vol. 6 (1982), pp. 81–86.
- 2. E. CODDINGTON and N. LEVINSON, Theory of ordinary differential equations, McGraw-Hill, New York, 1955.

- 3. E. HILLE, Lectures on ordinary differential equations, Addison-Wesley, Reading, Mass., 1969.
- 4. R. JOHNSON, Analyticity of spectral subbundles, J. Differential Equations, vol. 35 (1980), pp. 366–387.
- 5. ——, Ergodic theory and linear differential equations, J. Differential Equations, vol. 28 (1978), pp. 23–34.
- 6. , The recurrent Hill's equation, J. Differential Equations, vol. 46 (1982), pp. 165-194.
- 7. R. JOHNSON and J. MOSER, The rotation number for almost periodic potentials, Comm. Math. Phys., vol. 84 (1982), pp. 403-438.
- 8. W. MAGNUS and S. WINKLER, Hill's equation, Dover, New York, 1979.
- 9. D. MONTGOMERY and L. ZIPPIN, Topological transformation groups, Interscience, New York, 1955.
- 10. J. MOSER, An example of a Schrödinger equation with almost periodic potential and nowhere dense spectrum, Comm. Math. Helv., vol. 56 (1981), pp. 198-224.
- 11. V. NEMYTSKII and V. STEPANOV, Qualitative theory of differential equations, Princeton Univ. Press. Princeton, N.J., 1960.
- 12. R. NEVANLINNA, Analytic functions, Springer-Verlag, Heidelberg, 1970.
- 13. R. SACKER and G. SELL, A spectral theory for linear differential systems, J. Differential Equations, vol. 27 (1978), pp. 320-358.
- 14. G. SCHARF, Fastperiodische potentiale, Helv. Phys. Acta, vol. 24 (1965), pp. 573-605.
- 15. A. ZYGMUND, Trigonometric series, 2nd ed., Cambridge University Press, 1959.

UNIVERSITY OF SOUTHERN CALIFORNIA LOS ANGELES, CALIFORNIA