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LYAPOUNOV NUMBERS FOR THE
ALMOST PERIODIC SCHRODINGER EQUATION

BY

RUSSELL A. JOHNSON

1. Introduction

We consider the almost periodic Schr6dinger operator

_d2

(1.1) L-
dt2 + q(t).

where q(t) is continuous and Bohr almost periodic. Associated to (1.1) is a
rotation number (2) (2 R), where

() -lim O(t, O(t) arg ((t) + i’(t)),

and 0 satisfies L 2. It is known that (2) is independent of the
solution , that is continuous and monotone increasing in 2, and that
increases xactly on the essential spectrum F of L [7]. In addition,

(2) lim w(2 + ie),
e0

where w(z) is holomorphic in the upper half plane H+ {zl Im z > 0}, and
Im w(z) measures the "complex rotation" of certain solutions of L z.
Moreover, w(z) provides information about the higher-order K dV equations
with almost-periodic initial data [7].

In this paper, we consider the real part -Re w(z), and its boundary value
fl(2) (2 R). It will be easy to see that

1
Re w(z)= lim In [if(t)2 + ’(t)2]

where Lff zff and L2(0, )(z H+). Thus Re w(z)measures the expo-
nential decay of solutions which are in L2(0, ). We will see that the bound-
ary value of Re w also measures exponential decay of solutions. In fact, we

define

(1.2) (X) sup In [(t) + ’(t)]
0
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where Lb 2b; actually the sup is ta.:en no just over solutions of Lq
but over solutions to all equations

(1.3) L,o q - + o9(0 b 2b,

where 09(0 is in the hull of q (see SeCtion 2). In 1.2, we allow 2 to take on real
and complex values. It then turns out that /3(2)> 0 everywhere, that
Re w(2) -fl(2) if Im 2 > 0, and that

lim (-Re w(2 + ie)) fl(2) for all 2 R.

Moreover, if 2 is real and/3(2) 0, then all solutions of all equations L,o q
24 satisfy

1
lim In I-I (t)I + 14’(t)12] 0;

if fl(2)> 0, then for almost all , (1.3) admits a unique (up to constant
multiple) solution q with

1
lim In E(t) + /(t)2] -(2).

In particular, L2(0, c).
The function/3 has several other properties; we prove two. First, it is har-

monic on the resolvent set C\F of the operator L (we give a simple proof
based on [7]). This fact is used to prove that, if I is an open interval such
that F I 4: 0, then F c I has positive logarithmic capacity. Second, it is
one-sided continuous at an endpoint 2 of a spectral gap: if 2, R\F and
2,-- 2, then fl(2.)-- fl(2).
To throw more light on the function //(2) (2 R), we consider a class of

examples, modeled on the example of [6] (in that example, fl(2o)> 0 for at
least one point 2o in F, namely the leftmost point in F). We assume

(1.4) q(t) lim q.(t), q.(t + T)= qn(t)

where the limit is uniform and the period T,+ of q.+ is an integer multiple
of T.(n > 1); we also put various other conditions on the q..
We prove that/3(20) > 0 for the left endpoint 20 F, and that/3 is discon-

tinuous at 20: in fact, fl(2.)---} 0 for a sequence 2.---} 20. Now,

lim w(2 + ie)= -/3(2) + i(2),

hence fl is the Hilbert transform of the continuous function -(2). Hence
has the mean value property [14]. So fl must oscillate wildly near 20.
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2. Preliminaries

We first introduce the hull f of q. For R, the translate q is given by
q(t) q(t + z) (t R); then f cl {ql z R}, where the closure is taken in
the uniform topology. Thus q is a point in t); we denote q also by COo. A flow
(f, R) is defined by translation:

(co. O(s) ,o(t + s) (co n).

We give f the structure of a compact, abelian topological group, as
follows. If

COl lim COo" tn, CO2 lim COo sn,

then

colCO2 lim COo (t, + s.) and COi-1 lim COo (-t.) [11].

Note that COo is the identity of f. We may view R as a dense subgroup of f
via the map COo t.
We "extend q to " in the natural way: define Q(CO) CO(0) (CO f0; then Q

is continuous, and Q(COo’ t)= qt(O)= q(t). Thus q is regained from Q by
evaluation along the orbit through q COo. We will consider the equations

(2.1),o L,o b - + Q(CO. t) b Ark (CO e t),

and the associated two-dimensional systems

(2.2),o u, (02 1)+Q(CO’t) 0
u, u= (COef).

When it is necessary to avoid confusion, we will write (2.1),o,x and (2.2),o,
instead of (2.1),o and (2.2),o.

2.3 DEFINITION. Fix 2 C. Define

(2) sup fl 1
In u(t)l

kt--

u(t) is a non-zero

some equation (2),o.solution of

The sup is taken over all u(t) and all CO f.
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Fix 2 C. It is convenient to introduce the projective flow defined by equa-
tions (2),o. Call a complex 1-dimensional subspace of C2 a complex line. For
each o9 f, equation (2),o is linear, so the fundamental matrix solution ,o(t)
(with ‘o(0) I) maps complex lines to complex lines. If is a complex line in
C2, let/(z) ‘o(t) denote its image after time t. Letting Px(C) be the usual
space of all complex lines in C2, we define a flow on E f PI(C) as
follows:

(o9, l) (09. t, l(t)) (09 K, P I(C)).

The point of introducing (E, R) is the following. Write

Define

(2.4)

A()= (- + Q(o) 1o) (n).

fa: E- R: (o9, l)--- Re
(A(o)Uo, Uo)

(Uo, UO)

where 0 4= Uo is any vector in l. Then if u(t) satisfies equation (2)‘o with u(0)
Uo, one has

(2.5)
1
[ln Ilu(OII- In Ilu(O)ll]-- f((o, l). s)ds.

Thus the exponential growth of u(t) is determined by a time average of f.
We will use the ergodic theory of the flow (:, R) to study these time aver-
ages.
We remark that a flow (X, R) is defined for each 2 C. When confusion

can arise, we write (E, R)x for the flow defined by equations (2.2),o,x.
If 2 is real, we obtain also a flow on XRe f x P(R), where PX(R) is the

space of (real) one-dimensional subspaces of R. We will call such subspaces
lines (as opposed to complex lines). It is convenient to view P:(R) as a subset
of Pa(C), and hence ERe as a subset of :. To do this, we use the usual
identification of the Riemann number sphere S2 with PI(C): if [a, b] denotes
the complex line on which the non-zero complex vector (a, b) lies, then we
define Ident: S2 P(C) by

z [1, z], if z 4: ; Ident (c) [0, 1-1.

Then Px(R) is identified with R w {c } c S2.
We also need to consider the singular boundary value problems

(2.6),o L,ob
dt2 + Q(og. t) d 2, (0)= 0, L(0, ) (o e f).
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Fix 09 f. Since equation (2.6),o is of limit point type [3], there is a func-
tion M,o(2), defined and holomorphic for Im 2 =/= 0, satisfying

Im M,o(2)
> 0,

Im 2

such that if b(t) =/: 0 satisfies L,o b 2b, then b L2(0, ) iff tk’(0)
M,o(2)b(0). For fixed 2 with Im 2 :p 0, let /(t) satisfy

Lg, + 2g, + and g,+’(0) M,o(2)g, +(0).

It is not hard to show that

(2.7) k *(t) k +(0) exp M,o.,(2) ds

(2.8) M,o(2) is jointly continuous in o and 2 (Im 2 :p 0).

Problem (2.6),o admits a monotone increasing spectral function p,o(t) [3]; the
points in the spectrum of the singular problem (2.6),o are the points of
increase of p,o. The function p,o is unique if it is chosen to be right-
continuous with p‘o(0)= 0. We have

M‘o(2) -nl f?oo Im dp‘o(t)t_ (Im 2 > 0).Im

We note that the essential spectrum of (2.6)‘o is independent of o, and equals
the spectrum F on L2( , ) of each and every operator

_d2

L,o-
dt2 + Q(co t)

(see [14]; viewed on L2(- , ), the L,o’s all have the same spectrum F, and
it is always essential).

2.9 DEFINITION [7]. For Im 2 q: 0, define w(2)= n M,o(2)do, where do9
is normalized Haar measure on the compact topological group f.

Using 2.8, one shows that w(2) is holomorphic for Im 2 :p 0. Since do9 is
the only measure on f invariant with respect to the flow (D, R), we have for
fixed 09, 2

so using 2.7,

1
w(2) lim -/M,o.,().) ds,

do

1
Re w(2) lim In (I k + (t)12 + I$ +’(t)12).
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Thus Re w(2) is the exponential rate, of decay of solutions

u(t) (q +(t), 0 +’(t))

of (2.2),o for which q + L2(0, ). Note Re w(2) _< 0, and since it is harmonic,
Re w(2) < 0 if Im 2 4= 0.
For each 09 f, there is also a holomorphic function M,7,(2) (Ira 2 4= 0),

satisfying

Im M,7, (2)
< 0,

Im 2

such that q-(t)= exp ( M,7,.(2)ds) is in L(-, 0); M,7,(2) is also jointly
continuous in 09 and 2. It is proved in [7-1 that

w(2) -foMg(2) dw (Im 2 4= 0).

Using these facts, one can show that

(2.10) fl(2) -Re w(2) (Im 2 =/= 0),

where fl is as defined in 2.3.
Now introduce polar coordinates (r, 0) in equations (2.2),0, where 2 is real

and fixed. Then 0 satisfies

(2.11)o g sin2 0 + (--2 + Q(co t)) cos2 0.

In [7], the rotation number (2) is defined as follows"

(2.12) (2) -lim O(t.__),

where a choice of 09 f and 0(0) 0o is made.

2.13 THEOREM [7]. The rotation number (,) is independent of 09 and 0o,
and the convergence in (2.12) is uniform in t, 09, 0o. Also is continuous and
monotone increasing in 2 R. One has that increases exactly on the spectrum
F of the L,o, and

(2.14) lim Im w(2 + ie,) (2) (2 R).
e--,O

Next we recall some results from the theory of almost periodic linear
systems, as applied to equations (2.2),o.

2.15. Let 2 R, and let f be defined in 2.4. If fl(2) 0, then r. f d# 0
for every invariant measure [10] # on E. Every time average,

lim
1 fbIb-al-’oo b a

fz(a s) ds (a Y.,),
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is 0 and the convergence is uniform in a, b, tr (this uses the proof of Lemma
3.5 in [7]). On the other hand, if fl(2) > 0, then there are exactly two ergodic
measures on X;; one has #+/-(Xae 1, and

(2.16) ff d#+ l > O, ff d#_ -l.

See [5];/ is in fact the right end-point of the Sacker-Sell spectrum [12] of
equations (2.2),0. (Note that fl(2)> 0 because a fundamental matrix solution
of (2.2),0 has constant determinant; so there are no other possibilities for
/(,).)

2.17 PROPOSITION. If 2 R and fl(2) > 0, then fl(2) =/. (It follows directly
from 2.3, 2.5, and 2.15 that, if fl(2) 0, then 1 0.)

Proofi Let > 0. Since (2) > 0, we can find 09 fl, a sequence (t,)
and a line l P(R) such that, if u(t)=p 0 is a solution of (2),o with (u(0),
u’(0)) l, then (a (09, l) )

lim
1

In Ilu(t)ll lim
1 f/"-oo t, -.oo tn

fx(a s) ds > fl()- .
Using the classical Krylov-Bogoliubov argument as in the proof of [7,
Lemma 3.5-1, we can find an invariant measure r/on E so that

dr/> fl(2)- e.

From 2.15, there are non-negative numbers a, b such that

a+b=l and r/=a#+ +b#_.

From (2.16), we see that/ > fl(2)- e, and hence/ > fl(2). On the other hand,
2.15 and the Birkhoff ergodic theorem give us a point a (o, l)e for
which

lim -1 ff(a s)ds l.

Let u(t) be a solution of (2.2),0 with u(0) :p 0 on the line I. Then

lim
1

In Ilu(t)ll
t’-’}

and hence (2)> ]. So fl(2)=/.
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3. Facts about

We show that

lim -Rew(2+ie)=fl(2) for all2R
e-.O

(a more precise statement will be proved), and derive some properties of/3.

3.1. THEOREM. (a) If 2 R and z--, 2 non-tangentially (n.t.)for z H +, the
upper half-plane, then -Re w(z)-- fl(2). If fl(2)= O, then fl is continuous at 2,
and -Re w(z)-- fl(2) whenever z-. 2, non-tangentially or not.

(b) fl is upper semi-continuous on R.
(c) On R, fl is non-negative, of first Baire class, and has the mean value

property.

Proof. First consider (c). We noted in Section 2 that fl(2)>_ 0 for all 2.
That fl is of first Baire class follows from (a) or (b). Also, fl has the mean
value property because it is the Hilbert transform of the continuous function- (part (a), 2.14, and [15]). So we need only prove (a) and (b).

Let us prove the first statement in (a). Consider the functions M,(z) dis-
cussed in Section 2 (z H+). For fixed z H+, define a measure #z on Z as
follows:

gd,=fng(o, Mo(z))do

whenever g" Z-. R is continuous. Using 2.7, we see that

(, M,(z)) (w t, M,.t(z)),

where the dot on the left-hand side refers to the flow (3, R)z. It follows that
#, is invariant under this flow. In fact,/, is eroodie, because the set A, {(o,
Mo,(z)) o9 e ll} = Z is an invariant set which is flow isomorphic to (1), R) via
the projection

Let ff + be a non-zero solution of (2.1)o, with @ +’(0)= M,o(z) +(0). Writing
u(t) ( +(t), +’(t)), recalling that

1
Re w(z) lim In (I ff +(t) 12 + ff +’(t)12),

and using (2.5) and (2.10), we get

--fl(z)-" lim
1

In Ilu(t)ll

lim
1 fo:f,-.oo

((09, M,(z)) s) ds

lim
1 If((o). s, M,o.s(z)) ds,o
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and by the Birkhoff ergodic theorem the last limit equals

Hence we have

Mo,(z)) do.

(3.2) /(z) -Jzf d#z (z H+).

Now fix 2 R, and suppose first that /(2)= 0. Let z. H +, z. 2, and
suppose (z) -Re w(z.) does not tend to zero. We may assume

(z.) > 0.

Write . ,,, f, =f,., and note that f,fx uniformly on . The sequence
{,} of measures has a weakly convergent subsequence {}. Suppose q.
Then q is invariant with respect to (E, R), and hence z fx dq 0 (2.15).
However, it is clear that this contradicts 3.2. Hence (z.) 0 (2).

Suppose next that (2)> 0. Let
_

be the measure on E given by 2.15.
For #_-a.a. (, l) E, any solution u(t) 0 of (2.2), with u(0) satisfies

lim In u(t)11 fl(2).

Given fl, there can be at most one line l in R2 with this property. We
conclude that, for d-a.a. , there isa unique l P(R) such that, if ff
is a solution of (2.1),a such that

((0), 10))

lies on l, then ff L2(0, ). Let

o { 1 there exists l as above}.

We now claim that if o, then M(z) l in P(C) whenever z 2 n.t.
To see this, let

0 (-z/2, z/2)

be the angle l makes with the positive -axis in (, ’)-space R2, and con-
sider the singular boundary-value problem

(3.3) L4= +Q(.t) 4=v4

(0) cos 0, ’(0) sin 0, s L(0, ).

This problem admits a spectral function 0, which has a jump discontinuity
at v e if and only if (3.3) has eigenvalue v [3]. There is also a function
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M(z), holomorphic for Im z 0, such that"

(i) the solution / of Lo b z satisfying

/(0) sin 0o 4- M(z) cos 0, /’(0) cos 0o + Mo(z) sin

is in L2(0, );

Im 0 _1 f_ Im
dp(t)

for Im z > 0.(ii) Mo(z)
z

Now, (3.3) has, for each o flo, an eigenvalue at the point 2 under con-
sideration. Hence M,(z) c if z 2 n.t. and z H / [15]. But, using (i), 2.7,
and uniqueness of + up to constant multiple, we seen that M,(z) tan 0;
i.e. M,(z) l,o in P(C). This is what we wanted to show.
Next let {z,} be any sequence in H+ such that z, 2 and Mo,(z,) lo for

all o flo. Clearly if o flo, then o. o for all R, and M,.t(z.) lo.t.
Also

by bounded convergence. However, it is easily seen that the map

o (o,/,): -defines a do-measurable, invariant section of the sphere bundle Z; i.e.,

(o,l,).t=(o.t,l,.t) for alltR and o’lo.

Hence we can define an eroodic measure #o on Z by

when 9" R is continuous; #o is ergodic because the projection r’Y
restricts to a measurable bijection from {(,/o,) o } to o. So, by 2.15,

f
duo +/(),

and since 0 > -fl(z.) fx d#o, we must have fx dto -/3(2). So

fl(z.) fl(2) if z, 2 n.t.

We have proved the first statement in part (a) of the theorem.
There remains to prove that fl(2) 0 implies fl is continuous at 2, and that

fl is upper semi-continuous on R. Since fl > 0 everywhere, it suffices to prove
that fl is upper semi-continuous on R.
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Suppose for contradiction that there is a sequence 2, 2 R such that
lim._.oo fl(2,) > fl(2). Then we can assume that fl(2.) > 6 > 0. By 2.15, the flow
(E, R), admits an ergodic measure #, with

for all n.

We can assume that #, # weakly; one checks that # is invariant with
respect to (Z, R)x. Since fx,fx uniformly,

fl(,,)--+ fa
By 2.15, z f d# _< fl(2). This is a contradiction; we have proved that fl is
upper semi-continuous. This completes the proof of 3.1.
Next we use the results of [7-1 to prove that fl is harmonic on the resolvent

set of L -d2/dt2 + q(t) acting on L2( o, o). The result is also a special
case of a more general proposition proved in [4].

3.4 PROPOSITION. Let F be the spectrum of L =-d2/dt2+ q(t) acting on
L2( zt), ). Then fl is harmonic on the resolvent set C\F.

Proof
then

Consider the function w(2) n M,o(2) do introduced in Section 2;

fl(2) -Re w(2) (Im 2 =p 0).

Recall that M,o(2)= Mo,(2), hence w(2)= w(2). Now if I is an interval in R\F,
then

-fl(2) + ie(2)= lim w(2 + ie),
e0+

and (2) is constant for 2 I, say , [7]. We also have

So if we define

lim w(2 + ie) fl(2) , (2 I).
e0

w*(,)
w(2), Im 2 > 0,
/(2) + i, 2 e I,
w(2)+2i0q, Im2<0,

then w* is holomorphic on {Im 2 4: 0} w I by the reflection principle. It
follows that fl is harmonic on the resolvent set.
As a corollary, we prove that F cannot be too small.

3.5 COROLLARY. Let I c R be an open interval such that I F :/: O. Then
F I has positive logarithmic capacity [11].
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Proof. Suppose F I :/: 0 but the logarithmic capacity is zero. By 3.4, fl
extends harmonically to the entire open disc D with diameter I (since fl is
clearly bounded on D). Let h be that harmonic conjugate of fl on D such that
h Im w on {2 D lIm 2 > 0). By 2.10 and 2.13, 0 is the restriction of h to
I; hence 0 is continuously differentiable on I. Now by 2.13, 0((2)= 0 except
when 2 F. Since F I has capacity zero, it has Lebesgue measure zero. So

’ is identically zero on I, and 0 is constant on I. So by 2.13, F c I b. This
is a contradiction, so F c I has positive logarithmic capacity.

Finally, we consider the behaviour of fl at endpoints of spectral gaps.

3.6 PROPOSITION. Let 20 R be an endpoint of a spectral gap I (i.e. I is a
maximal interval in R\F). If 2.-- 20 and 2, I, then fl(2.)-- fl(2o).

Proof Recall the functions M,(z), M,(z) discussed in Section 2; for each
09 f, these are defined and holomorphic for Im z :/: 0. Since the spectrum F
of L,o is independent of o, each Mo,(z) extends meromorphically through I
(09 f), and so does each M,(z) [3]. In addition, either Im M,(2)= 0 or
M,7,(2) (2 I), and the same holds ,for each M,(2).
Now, the vector (1, M,(2)) C2 defines a line/o,+(2) in PI(R) for each 2 1;

if Mo,(2)= , then /o+(2) is the line containing the vector (0, 1). Similarly,
(1, M(2)) defines a line /,(2) (2 I). We coordinatize the circle PI(R) with
the usual polar coordinate 0, -r/2 < 0 < r/2, where 0 -n/2 and 0 n/2
are identified. Orient PX(R) in the direction of increasing 0.

Fix 09 t). It is remarked in [6-1 that, if 2 increases through I, then M,(2)
and M(2) move in opposite directions on PX(R) (the remark is just [2,
Problem 9, p. 257]. It can also be shown that M,(2) and M,7,(2) can never
coincide if 2 1 [6].

It is clear from these two remarks that, as 2, 20 in I, the limits

lim /(2,)

exist in PX(R). Call these limits l. The sets

S +/- {(o, 1)1o t)}
are measurable sections of Z t)x P(R). Hence they define ergodic mea-
sures #+/- on X; via the formulas

f.g d# +/-

for ontinuous g" E R. We have

-fl(2,)=fr.f;tn(c,Mo,(2,))dc--fr.f;to(c,l+o)dc=fr.fxod+"
Using 2.15, we have fxo d# + -fl(2o). This completes the proof of 3.6.
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4. Discontinuity of

We construct a.p. Schr6dinger operators for which fl is discontinuous.
Note that such examples cannot be periodic, for fl is always continuous for a
periodic Schr6dinger operator, and in fact the essential spectrum is deter-
mined by the condition/3 0.
We begin with some general remarks. Let {q.} be a sequence of almost

periodic function such that q,(t) q(t) uniformly on R. Then q(t) is almost
periodic. Consider the operators

_d2 _d2

L(q.)
dt2 + q,(t), L(q)=- / q(t).

From [7, see Section 2 above], we obtain corresponding functions w(q,, 2),
w(q, 2), holomorphic for Im 2 > 0, such that

lim w(q,, 2 + ie) -fl(q,, 2) + io(q., 2),
e--,O

lim w(q, 2 + ie) -fl(q, 2) + i(q, 2) (2 R).
e--,0

Here fl is defined in 2.3, and is the rotation number. From now on, it will
be convenient to indicate the potential q in the arguments of
From now on, we use the term "resolvent of L(q)" to mean the operator-

theoretic resolvent of L(q), viewed as a self-adjoint operator on LZ(

4.1 PROPOSITION. If q.--, q uniformly on R, then

(q,,, 2)-- a(q, 2),

uniformly on compact subsets of R. If I (a, b) c R is a subset of the resolvent
of L(q), then fl(q,, 2)---, fl(q, 2)for all 2 1.

Proof The first statement is proved in [7, Theorem 6.2]. To prove the
second statement, we use 6.3 and 6.4 of [7] to conclude that w(q, z) is contin-
uous as a function of q for fixed z, Im z > 0 (in fact, it is differentiable).
Hence w(q,, z)--, w(q, z) if Im z > 0. Now, if 2 I, then some interval 11 con-
taining 2 is in the resolvent of L(q,) for sufficiently large n, say n > N. Since
the rotation number is constant on intervals in the resolvent [7, Theorem
4.7], we can extend w(q,, 2) and w(q, 2) holomorphically through 11 if n _> N,
and it follows easily that fl(q,, 2) fl(q, 2).
We remark that, if 2 is in the resolvent of L(q), then (q,, 2) is eventually

equal to (q, 2) if q,--* q uniformly. This uses [7, Theorem 4.7].
Now we borrow two facts from [6]. First, we fix a constant 6:

(4.2) 6 2-10 1/1024..
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(I)

(4.3) > qo(t) > 3

such that the Hill equation

H(q)" u’ ( Oqo(t) 10)

There is a periodic function qo(t), of period TO > 10, with

(t R),

U U

admits two solutions, u e, (t), with the following properties. First,

1
(4.4) In u +/- (To)II /o, /o > 2/3.To
If we introduce polar coordinates

/. ((2 .+. t’2)1/2,
then H(qo) becomes

0 arg (q5 + ib’),

(qo)" r’/r (1 + qo(t)) cos 0 sin 0,

tg(qo)"/9 --sin2 0 + qo(t) COS2 0.

Writing u+/-(t) r+/-(t) exp iO+/-(t), we have

(4.5) --r/4 < 0_(0)= O_(To) < 0+(0)= O+(To) < -re/4 + 26;

(4.6) 0 < 0/(0)- 0_(0) < 2-12 1/4096.

Using Floquet theory, it is trivial to see that flo fl(qo, 0). Observe also the
rotation number a(qo, 2) satisfies

(4.7) a(qo, 0) 0, a(qo, 2) > 1,

since qo(t) < 1 for all t.

(II) Suppose a Tc-periodic function qc(t) is given (N > 0), with the follow-
ing properties.

(i) The Hill equation H(q) admits two solutions, u+/-(q, t), with

1
(4.4)N 1TN In Ilu+(q, T)I[ > 2/3, -s In liu-(qs, Ts)ll < -2/3.

(ii) If u +/-(q, t) r +/-(qs, t) exp iO +/-(qN, t), then

(4.5)s --r/4 < O_(qs, O)= O_(qs, Ts)

< 0+(q, O)

O+(qs, T)

< -n/4 + 26;

(4.6)N 0 < O+(q, O) O_(q, 0) < 2 -N-12.
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Then, there is an integer lu, which may be chosen as large as desired, and a
non-negative function r/u(t), periodic of period Tu /1 lu Tu, satisfying

(4.8)u+1 0 < r/N(t) < 3/2 2 -N- 2 < 2-u-1,

Support

such that, if Pu + qu r/s, then the Hill equation H(pu / 1) admits solutions

u +(Pu + 1, t) r + (Pu + 1, t) exp iO + (Pu + 1, t)

for which (4.4)u + 1, (4.5)u + 1, and (4.6)u +1 hold. In addition,

(4.9)u + O-(qu, O) < O-(pu + 1, O) < 0 +(Pu + 1, O) < 0 +(qu, 0).

We remark that (I) and (II) can be achieved by replacing the integer n in
(6, Section 5] by N n- 12, n > 12.
We now construct, by induction, a sequence {qs} of periodic functions

such that qu converges uniformly to an almost periodic function q. We will
show that q has the following properties: it 0 is the left endpoint of the
spectrum of L(q); also

fl(q, 0) _> 2/3; lim inf fl(q, 2) 0.
,-.0

Let us begin by letting qo(t) be a To-periodic function satisfying the condi-
tions of (I). Let T1 mo To, r/,o(t), and Pl qo r/o be as in (II). By a theorem
of Moser (10, Proposition 1; note 1 > 0], we can find a non-negative, con-
tinuous, Tl-periodic function ao(t), such that

0 < r/o + ao < 2-2 1/4 and Support (ao)

with the following additional property. If q --Pl- ao, then, corresponding
to each such integer k > 1, there is a non-empty open interval I i(k) in the
resolvent of

_d2

L(ql) + ql(t)

such that the rotation number a(ql, 2) equals kniT1 on Ii(k). We take Ix(k) to
be the maximal open interval with this property. Since we can choose ao as
small as we please, we can also ensure that conditions (4.4)1, (4.5)1, (4.6)1, and
(4.9)1 hold.

Consider an interval I1(k)= (a, b) (1 < k < T1/n). Using (4.3) and the fact
that q < qo, we see that (a, b) (0, 2). For each 2 e (a, b), consider the Hill
equation

)t + ql(t)
u, u
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This equation has solutions

u+(-2 + qx, t)= r+(--2 + qx, t) exp iO+(-2 + q, t)

for which

--In Ilu(- + qx, Tx)ll +-.fl(qx, 2) 4: O,
T1

and for which

0+/-(-2 + qx, 2Tx) 0+/-(-2 + ql, 0) (mod 2n).

Note that, by I-2, probs. 8 and 9, p. 257] 0+/- may be chosen to be differentia-
ble in 2, and when this is done,

80+
02

<0, -->0
for each fixed t. This fact, and analysis of the discriminant [8] A(2) of

_d2

L(qx)
at + qx(t),

show that one can further assume

lim 0+(-2 + qx, t)- 0_(-2 + qx, t)
Z-.a

lim 0+(-2 + qx, t)- 0_(-2 + qx, t) 0

for all R. Hence we can choose a closed subinterval Jx(k)c Ix(k), with
int Jx(k) 4: b, such that if 2 e Jx(k), then

rr > 0 +(--), + qx, O) 0_(--2 + qx, O) > x/2 1/2.

Now suppose that we have constructed functions q > q2 >-’">- qN such
that qi has period T=mi_ T_ for some even integer m-x >_6
(i 0, 1, N 1). Suppose that (4.4)-(4.6) hold for all i, < < N. Suppose
moreover that the following conditions hold.

(4.10) O<qi-qi+x <2-i-x(1 <i<N-1);

(4.11) l>_q,>_-3- 2-’(1_< _< N);
/=1

(4.12) for each <i< N, there is a non-empty open interval I(k) (1 <
k < oz) such that I(k) is in the resolvent of L(q), and a(qi, 2) krc/T for all
2 Ii(k).
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Using (4.7) and the fact that q decreases with i, we see that It(k)c (0, 2)
for 1 < k < TdT, < < N. We assume that It(k) is the maximal interval with
the property stated in (4.12)s, and call it a spectral 9ap.

Now, in each spectral gap It(k)= (a, b), we can choose differentiable fam-
ilies 0+/-(-2 + q, t) of 2T-periodic solutions (mod 270 of 0(-2 + q3 such
that c30+/c32 < 0, c30_/c32 > 0, and

lim 0+(-2 + q, t) 0_(-2 + q, t) 7,
2--,a

lim 0+(-2 + q, t) 0_(-2 q, t) 0 (2 It(k), R).
Z--*b

We assume the following three conditions.

(4.13)s In each spectral gap It(k) (1 < k < T/Tt), there is a closed subinter-
val J(k), with int J(k) , such that, if 2 J(k), then

> 0+(-, + q, 0)- 0_(- + q, 0) > 7/2 2 -,
l=r

where r is the smallest integer such that krc/T hrc/T, for some integer h
(1 <i<N).

(4.14)s If k/T h/T, for some r < and some integer h, then J,(h) J(k),
and or(q,, 2) (q, 2) for all 2 J,(h) (1 < < N).

(4.15)s Ifl<r<i<NandAJ,(4),then

fl(q,, 2) < 2-’ and //(q, 2) < 2 -.
We will construct a Ts/ ms Ts-periodic function qs/ with ms > 6

such that (4.2)s / 1-(4.4)s / hold, and so that (4.10)s / 1--(4.15)s / hold.
Begin by choosing a number Zo > Ts such that, if u(t) is any solution of

n(-2 + q) (0 < 2 < 2) satisfying Ilu(0)ll 1, then

1
(4.16) -In Ilu(t)ll </(qt, 2) + 2-s-2(t >_ Zo).

For completeness, we include a proof that Zo can be so chosen in an appen-
dix.

Next, fix a number (0, 1), which will be more precisely determined later.
Choose some interval Js(k), 1 < k < Ts/rc. Let 2 Js(k). Let

01 0_(--2 "l- qN, O) < 0+(--2 -I- qn, O) 02 < 01 "Jl"

Here 0+/- are given by the discussion preceding (4.13)s. Let zl cTs, where c
is a positive even integer .to be determined. Define

H: [01, 02]---, 1-01, 02)
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by

Hx(0) 0(zl)- 0(0) + i + z

(recall ff(qs, 2)= rk/Ts). Here O(t) is the solution of (9(-2 + qs) satisfying
0(0) 0. We see that HA measures the rotation of O(t) with respect to 0_(-2
+ qs, t). Note that H(01) 01, Hx(02) 02.
Since fl(qs; 2) > 0, one has

lim O(2m Ts) 0 /(-2 + qs, O) 02
m--*

for all 0, 01 < 0 < 02.

Since the families 0+/- are continuous in 2, and since the right-hand side in
equation (R)(-2 + qs) depends continuously on 2, we can find 1 so that

A

(4.17) HA(O)>O2--y if 01+y<0<02 and 2e 3Js(k),
k=l

where A is the greatest integer less than
Now fix y < 2 -s- 2. Choose ms > 6 such that ms is even and

max (Zo, z 1).

Choose a Ts+ x-periodic function qs(t), for which (4.7)s+1 holds, in such a
way that (4.4)s+ 1-(4.6)s+1 hold for Ps+l qs- r/s. Then, use the Moser
theorem [10, Proposition 1] to find a non-negative function as(t), with
period Ts + t, such that

Support (as) c [0, Ts+ 1] = [Ts+ 6, Ts+ 1] and 0 < rts + as < 2-s-l,

so that the following conditions hold.

(i) Conditions (4.4)s/ 1-(4.6)s/ hold with qs / Ps / as in place of
PN+I"

(ii) The operator L(qN+ i) admits a spectral gap IN+ 1(k) such that, if
IN + 1(k), then

kn
a(qs + 1, 2) (1 < k < o).

Ts+l

Observe now that (4.10s+1, (4.11)s+1, and (4.12)s+1 hold. We show that
(4.13)s+ 1, (4.14)s+ x, and (4.15)s+ hold with our choices of ms and

First, fix k, 1 < k < niTs+ 1. If k is not a multiple of ms, i.e., if k/Ts +1 =/=
h/T, for all integers h and all r < N + 1, then let Js+ l(k) be any closed sub-
interval of Is + l(k) with non-empty interior on which

0 +(-- I "Jt- qN + 1, O) O_ (-- 2 -" qN + 1, O) >" r/2 1/2.
Here we shoose 0+/- as in the discussion preceding (4.13)s.
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Next, suppose k/Tv+l h/Tv for some integer h. We examine dv(h). Let
2 Jv(h), and consider again the interval [01, 02-1, where

0 0_(-2 + q, 0), 02 0+(-2 + q, 0).

Define the map

H" I-0i, 02]---* E01, 02]

as above, with T+ replacing Ts. Let 0 e [0i, 02]. Let O(t), resp. 0+ l(t), be
the solution of 19(-2 + qn), resp. t9(--2 + q+ 1), with

0(0) 0/ (0) 0.

Then ON(t)= ON+ 1(0 on I-0, TN+I--di]. By Gronwall’s inequality applied to
the 0-equation, and using I-2 + qNl< 6, I-2 + qN/ 11< 6 (this uses (4.7)),
we have

(4.18) 0 < ON(TN+I)- ON+I(TN+I) < 62-N-le6’ < 2 -N-2.

Let us now define

R O) Ov(Tv + 1) Ov + 1(T+.1) for [01, 02].

Compare the graphs of Hx and R. Using < 2-N- 2, we see that these graphs
have exactly two points of intersection, defined by points $+/- in [01, 02i;
moreover

0<0+-k+ <2--2, 0<_0_ <2--1.

There are no more than two points of intersection, because" (i) any point
i (01 + y, 02 2-- 1) satisfies H(i) > R(i); (ii) if there were three points
of intersection, then that fundamental matrix solution t) of H(-2 + q/ 1)
satisfying (0)= ! would preserve three driections in R2 at TN/ 1; hence
(T / 1) would be the identity since det o(t) 1; this would contradict (i).
Let 0 +/-(-2 + q/ 1, t) be the solutions of O(-2 + q/ 1) satisfying

0+/-(-2 + q+, 0)= +/-.
Then exp iO+/- are T+ 1-periodic, and 0+/- + n are (mod 2n) the only other
solutions of 19(-2 + q/ 1) with this property. It follows from Floquet theory
that 2 is in the resolvent of L(q / 1). Clearly

0(qs + 1, 2) 0(qs, 2).

Now set Jv+l(k)= JN(h) (recall k/Tv+l h/Tv). From all that we have
said, (4.13)s+ and (4.14)v/ hold.
We must still consider (4.15)N/1. First, let 2 be the left endpoint of the

spectrum of L(qN). Note o(qN, ’V)= 0. We claim that o(qN+ 1, ’)<--n/TN+ 1.

To see this, note (R)(--2N + qs) has a Ts-periodic solution @N(t). Let @N+ 1(0
satisfy

(R)(-- ;t + qs + ) with ,+ (0) (0).
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From (4.7), 0 < 2s < 2; hence we can apply Gronwall’s inequality to the 19-
equation and obtain

0 < IN(TN+I)- IIN+I(TN+I) < 2-N-le6 < 2 -N.

Since qN qs + on l-Ts + 1, 2TN + gi], we see that

’s(t)- n < ’s+ 1(0 < Ps(t) for [Ts+ 1, 2Ts+l 6"1;

hence applying Gronwall again, we get

-n- 2-s + s(0) < ffs+ l(2Ts+ 1) < ffs(0)= ffs(2Ts+

Applying a similar argument to all succeeding periods, we obtain

0 < ff(0) +(l. T+ ) < (1- 1) + 2- for 1= l, 2, 3,...,

Hence 0(q+ 1, 2s) _< rr,/Ts+l (by Theorem 2.13).
Now, on the other hand, if 2 Js(k), then

a(qs+l, 2) a(qs, 2) (1 <k<

In particular, if 2 Js(1), then a(qs+ 1, 2)= r/Ts. Combining this fact with
the preceding paragraph, and recalling that ms+ > 6, we see that, if 2 e
Js + 1(4) (i.e. if a(qs + , 2) 4rc/Ts + 1), then fl(qs, 2) O.
Let us fix 2 Js + 1(4), and let

N+ 1(t) 0+(--2 -- qN+ 1, t).

Let rN+ 1(0 be obtained by solving equation 9t(-2 + qN+ 1) with N+ replac-
ing 0, with initial condition r(0) 1. If

us + (t) rs + (t) exp i+ (t),

then

1
In Ilu/ x(T / x)ll fl(qs + 1, ).

Let s(t) be the solution of 0(-2 + qs) satisfying s(0)= s+ 1(0). Let

us(t) rs(t exp is(t),

where rs is obtained as above from R(-2 + qs). Applying Gronwall’s
inequality to estimate s(t) s+ 1(0, then comparing (-2 + qs) and R(-2
+ q/ x), we obtain

1
Iln r(r+t)- In r+t(r+x)l < 2 -s-2.

TN+
Using 4.16, we get
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By a similar argument, we get
N+I

fl(q + ,, ) < ., 2-’ if 2 J,(4), r < N + 1.

Hence (4.15)N+1 is finally verified.
By induction, construct a sequence {qN} satisfying (4.2)-(4.4) and

(4.10)n-(4.15)n for each N > 1. Then qNq uniformly on R, where q is
almost periodic. Let pv(t), resp. p(t), be the spectral function of the singular
boundary value problem

L(q)ck b, resp. L(q)dp

with boundary conditions

(o) 0, (o, o).

Using the Helly theorem, one can show that pu p at all continuity points
of p.
The arguments of [6, Section 5] show that 2 0 is the left-most point in

the spectrum of L(q), and also that fl(q, 0) > 2/3. Now, ps is constant on each
JN(k) (1 < k < Tu/n), except perhaps for a single isolated jump discontinuity
(a discontinuity occurs if and only if 0_(-2 + qu, 0) n/2 or 3n/2 mod 2n).
By (4.14), p is also constant on int Jv(k), except perhaps for an isolated
jump discontinuity. Hence int JN(k) is in the resolvent of L(q) [3]. From 4.1
and (4.15), we see that fl(q, 2) < 2 -N+I on JN(4). Since a(qv, 2)-+ a(q, 2), and
since a(qs, 2) 4n/Tv for 2 JN(4), we conclude from. (4.14) that a(q, 2)
4n/Tv for 2 Ju(4). Since a(q, 2) is continuous and (q, 2) > 0 for 2 > 0 (see
Theorem 2.13), we see that

lim inf fl(q, ) O.
g0

We have proved everything that we set out to prove.

Appendix

We prove statement 4.16. Let q be any continuous periodic function, and
consider the equations

H(-2 + q)" u’= (_o
+ q(t) U

where 2 ranges over some compact interval I c R. Introduce the hull of q;
since q is periodic, f is a circle. We denote the element q of f by o. Let ERe
be the projective bundle ZR f x P(R). As in Section 2, each Hill equation
H(-2 + q) defines a flow (Ze, R) (2 I).
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Suppose for contradiction that there exist y > 0 and sequences 2. e I,
t. R, ft, Rz, with t, and Ilfi, 1, so that

1
In Ilu.(t.)ll >- fl(q, 2.) + 7;

tn
here u.(t) satisfies H(-2 + q) with u.(0) ft.. Let l. be the line in R2 contain-
ing ft.. Let fz" Z R be the function defined in 2.4 (2 I).

Using the Cantor diagonal process as in [11, Theorem 9.05], we can find
measures #. on E such that IIm 1, and

lfA. d, A.((o, l,) s) ds,

where (o, l.) s is computed using the flow (E, R)..
Then

We can assume that 2n 2o, and that #, # in the weak topology on mea-
sures. Since tn , # is invariant with respect to (E, R).
Now, f,.f uniformly on E. Hence

ff d# lim ff. d#n lim fl(q, 2,) +

Since (q, 2.) 0 and (q, 2) f d# (this uses (2.16)), we see that
(q, 2) > 0. But then, by Floquet theory, 2 is in the resolvent of

_d
L(q) + q(t);

see [8]. By Proposition 4.1,

(q, 2.) (q, 2) lim (q, 2,) + y.

This is a contradiction; (4.16) is proved.
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