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THE ROLE OF TOTAL CURVATURE ON COMPLETE
NONCOMPACT RIEMANNIAN 2-MANIFOLDS

BY

KATSUHIRO SHIOHAMA

I. Introduction

The total curvature c(M) of a complete noncompact and oriented Rie-
mannian 2-manifold M is defined by an imporper integral of the Gaussian
curvature G with respect to the volume form do induced from the Rie-
mannian structure over M. A classical theorem due to Cohn-Vossen [2]
states that if such an M is finitely connected and if the total curvature exists,
then

c(m) _t’G do9 < 2n(M),

where z(M) is the Euler characteristic of M. In the case where M is not
finitely connected, a result due to A. Huber [4] States that if the total curva-
ture of an infinitely connected M exists, then c(M)= -. In contrast with
the Gauss-Bonnet theorem for compact case, the total curvature of a non-
compact M is not a topological invariant but it depends upon the choice of
Riemannian structure. The total curvature should describe a certain property
of the Riemannian .structure which defines it.
The purpose of the present paper is to investigate a geometric significance

on the existence (or non-existence) of total curvatures on complete, finitely
connected and noncompact Riemannian 2.manifolds. It is the nature of com-
pleteness and noncompactness of M that through each point p on M there
passes at least a ray " [0, c)--- M with (0)= p. A Busemann function
Fr" M R with respect to a ray y is defined by

F(x) lim It d(x, y(t))],

where d is the distance function induced from the Riemannian structure of
M. Busemann functions play essential roles in the study of complete non-
compact manifolds. For instance, they are convex if the sectional curvature is
nonnegative and the negative of Busemann functions are convex if the sec-
tional curvature is nonpositive and if M is simply connected. A function
h" M-- R is said to be an exhaustion if h’l((-, a]) is compact for all
a R. By definition h is a non-exhaustion if it is not exhaustion.
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The present work was motivated by a recent paper [8] of the author in
which the following theorem was proved.

THEOREM [8]. Let M be a complete, noncompact and oriented Riemannian

2-manifold of nonneoative Gaussian curvature. Then the total curvature exists
in [0, 2r] and:

(1) c(M) <_ r if and only if all Busemann functions on M are non-
exhaustions.

(2) c(M) > r if and only if all Busemann functions on M are exhaustions.

As a direct consequence of the theorem, M cannot admit both exhaustion
and non-exhaustion Busemann functions simultaneously if G > 0. Thus the
behavior of Busemann function is in some sense controlled by the total cur-
vature.
The phenomenon stated above will suggest a role of total curvature in

general ease. It will be anticipated from the above observation that the exis-
tence of a total curvature on M will imply that M will not simultaneously
admit both exhaustion and non-exhaustion Busemann functions. However as
is seen in Section 2, this phenomenon also depends on the end structure of
M. In fact, Proposition 2.1 states that if an n-dimensional (n > 2) complete
noneompact Riemannian manifold N has more than one end then any Buse-
mann function on N takes its infimum to be -o, and hence is a non-
exhaustion.
From now let M be a connected, complete, noncompact, finitely connected

and oriented Riemannian 2-manifold with one end. Sufficient conditions for a
Busemann function to be a non-exhaustion are proved in Section 4. And
sufficient conditions for a Busemann function to be an exhaustion are proved
in Section 5. Summing up these arguments we have"

MAIN THEOREM. Assume that the total curvature exists on M.

(1) If c(M)<(27.(M)-1)r, then all Busemann functions are non-
exhaustions.

(2) If c(M) > (2;t(M)- 1)r, then all Busemann functions are exhaustions.

In the case where c(M)= (2;t(M)- 1)r, it is shown in Section 6 that there
are surfaces M1, M2 and Ma in Euclidean 3-space Ea with the same total
curvature (2x(M)- 1)r such that their Gaussian curvatures are nonpositive
outside compact sets, and all Busemann functions on M (M2 respectively)
are non-exhaustions (exhaustions respectively). There are both exhaustion
and non-exhaustion Busemann functions on Ma. This example of Ma was
recently discovered by N. H. Kuiper. There is an example of a complete
metric on R2 with respect to which the total curvature does not exist and on
which there are both exhaustion and non-exhaustion Busemann functions.
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Recently some relations between the total curvature and the mass of rays
emanating from an arbitrary fixed point on M have been investigated in 16]
and [7].
The idea of the proof is to construct a 1-parameter (not necessarily

continuous) family of (possibly broken) geodesics along an arbitrary fixed
ray, contained in a domain homeomorphic to a closed half. cylinder. Each
member of the family has the property that it has the minimum length
among all loops at a point on the ray in the closed half cylinder. The idea of
this construction is based on the technique developed by Cohn-Vossen in 12]
and is used here to investigate the relation between the total curvature and
the behavior of Busemann functions.
The author would like to express his hearty thanks to N. H. Kuiper who

provided M3 and some other interesting examples of surfaces with singu-
larities.

II. Busemann functions and ends

In this section let N be a complete noncompact Riemannian n-manifold
and let ),: [0, )--, N be a ray. Fundamental properties of Busemann func-
tions are investigated in I1]. The Lipschitz continuity property is stated here
for later use. It follows by definition that F(x)- F(y)I < d(x, y) for every
point x, y on N. Thus F is Lipschitz continuous with the Lipschitz constant
1, and hence it is differentiable except on a set of measure zero. Busemann
functions play an essential role in the study of complete noncompact Rie-
mannian manifolds because they are convex (respectively subharmonic) if the
sectional curvature (repectively Ricci curvature) is nonnegative, and they are
concave if N is simply connected and if the sectional curvature is non-
positive.

If K x, K2 are compact sets of N such that K1 c K2, then every com-
ponent of N K2 is contained in a unique component of N K1. An end of
N is an element of the inverse limit system {components of N- K; K
compact} indexed by compact sets of N and directed by the inclusion rela-
tion as indicated above.

PROPOSITION 2.1. Let N be a complete noncompact Riemannian n-manifold.
If N has note than one end, then every Busemann function F on N satisfies
infs F -, and hence it is non-exhaustion.

Proof Let " [0, )---, N be a ray and set p (0).

There is a compact set K c N such that p K and such that N K has at
least two unbounded components, say U and V, where U is chosen so as to
satisfy ([0, )) = K u U. Take any point x in V and fix. For each > 0 let
%: [0, st]---, N be a minimizing geodesic with (0)= x, ,(st)= (t). Clearly
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z,([0, s,])c K 4:0 holds for every > 0. If y, is a point on zt([0, st])c K,
then

d(x, 7(t)) d(x, Yt) d(yt, 7(t)) <_ d(x, K) d(yt, 7(t)).

Therefore if {y,,} tends to a point y K for some divergent sequence {t},
then

Fr(x) < lim [t d(y,, 7(t))] d(x, K)= F(y) d(x, K).

Since Fr takes minimum on K and since for any positive R x can be chosen
such that d(x, K) > R, inft/Fr -. Thus Fr is non-exhaustion.

IlL Basic construction

From now let M be a 2-dimensional, complete, connected, noncompact,
oriented and finitely connected Riemannian manifold with one end. M is
homeomorphic to a compact 2-manifold with one point removed. Thus there
is a compact set K c M such that M- int (K) has a unique unbounded
component and is homeomorphic to a closed half cylinder Six [0, o),
where int (K) is by definition the interior of K. The boundary gK of K is
replaced by a simply closed geodesic polygon which is homotopic to c3K. Let
Po be such a simply closed geodesic polygon and let Ko be a compact set
bounded by Po and let Uo M- int (Ko). Uo is homeomorphic to a closed
half cylinder S x [0, oo).
To investigate the relations between the total curvature and the behavior

of Busemann functions on M, it is useful to construct a 1-parameter (not
necessarily continuous) family of simply closed geodesic polygons {Pt} in Uo
each of which is freely homotopic to Po and which is obtained along a fixed
ray. Let y: [0, oo)---} M be an arbitrary fixed ray. If (0) Uo, then Ko can
be replaced by a larger K Ko whose boundary is a simply closed geodesic
polygon P and which satisfies ?(0) e cK and

?([0, c)) U M int (K).

If y(0) Ko, the there is an a > 0 such that if (t) y(t + a), then (0) cKo
and ([0, c)) Uo. Since F-Fr a, F is an exhaustion (or a non-
exhaustion) if and only if so is F. Therefore in order to check the exhaus-
tion (or non-exhaustion) property of F, one may consider without loss of
generality that K, U and P OK are chosen so as to satisfy ),(0) P OK
and y([0, oo))c U. Further additional condition is imposed on the choice of
P for later use in Sections 4 and 5.

Let ,: I-0, oo) M be an arbitrary fixed ray and choose a compact set K
and set U M int (K), P dU which satisfy the above mentioned proper-
ties. Let /7 be the universal Riemannian covering of U and let r" 0---} U be
the covering projection. 0 is homeomorphic to a closed half plane and its
boundary consists of a continuous broken geodesics homeomorphic to R. Let



TOTAL CURVATURE ON RIEMANNIAN 2-MANIFOLDS 601

be the fundamental domain with boundary consisting of two rays , 2"
[0, o)-. 0, r n 2 Y, and a broken geodesic P with r(P) P such
that the endpoints of P are t(0) and 2(0). Any two points $ and , in 0 can
be joined by a minimizing (possibly broken) geodesic in ; such a is
called a segment in joining and ). This fact follows from "Verteilungs-
satz" (see p. 120 of [2]) and its consequences (see also 12 of [2]). If a segment

is a broken geodesic, then every corner of it is a corner of P and the angle
of at a corner is not smaller than n if it is measured with respect to the
unbounded domain. If does not intersect/, then is smooth. If d is the
distance function of induced from the metric of through n, then the
length L() of a segment in joining $ and realizes the d-distance d($, )).
Note that

d(, ) > ((), ())

for any 2, ) 0, where d is the distance function on M.
For each t _> 0 let be the set of all segments in 0 joining (t) and (t).

For 1, 2 and for every >_ 0 let 2(t) + and 2(t)- be the supremum and the
infimum of the angles at (t) between and/ . If all elements of do
not intersect /, then d-distance minimizing property implies that any two
elements in intersect only at their endpoints. If two elements of inter-
sect except their endpoints, then all points on the intersection except end-
points belong to P. Hence there exists a unique element/+ such that
all elements of are in the compact domain of 0 bounded by P, ([0, t])
and ([0, t]) and P+. Similarly, there exists a unique element P- , such
that all elements of are not contained in the interior of the compact
domain bounded by/, ([0, t]), ([0, t]) and/-. It follows from the choice
of P+ and P- that 2(t) + and 2(t)- are equal to the angles between P+ and, and between P- and respectively.

LEMMA 3.1.
properties"

Proof

and

For every > 0, the angles As(t) + and 2(t)- have the following

lim 2(u) + lim 2(u)- 2t)-,
ut ut

lim 2(u) + lim 2(u)- 2(t)+.
ut ut

It follows from the construction of/st+ and Pt- that

lim 2(u) + > lim 2(u)- 2(t)-
ut ut

lim 2(u)- lim 2(u) + < 2(t)+.
ut

If limner (u)+ _< (t)- is proved, then the same method establishes limner
(u)- > (t)+. And hence only the first inequality is proved.
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Suppose there is a monotone increasing sequence {u} with lim_.oo u
such that lim_.o 2i(u) + > 2t(t)-. Let r > 0 be the radius of a convex ball
around (t) in U. For sufficiently large j choose a point on/3f such that
d(l, t(t))= r/2. Then the angle, (, f(t), f(u))
tends to lim 2(u)+ as j--, . Since lim 2(u)+ > 2(t)-, does not belong
to the compact domain bounded by /3, 3([0, t]), 2([0, t]) and Pt- for all
large j. In particular is on/3t-. This means that Pf ,=/3 intersects Pf- at
two interior points, say, rh and hr. Since every subarc of a segment is
d-distance minimizing, d(th, h) is attained by two distinct segments which
are proper subarcs of Pf and/f, a contradiction. Similarly, limu, 22(u) / <
22(0- for any monotone increasing sequence {u} with lim u t.
Now the functions t L(/3,) and L(/,)/2 play important roles in finding

sufficient conditions for F to be an exhaustion or a non-exhaustion. The
properties of these functions are therefore discussed in the following:

PROPOSITION 3.2. The function t---, L(P,) for
[0, )-- M has the followino properties:

an arbitrary fixed ray

(1) It is Lipschitz continuous with Lipschitz constant 2 and is differentiable
except on a set of measure zero.

(2) It is differentiable at if and only if P+ e.g., there is a unique
element in ,.

(3) L(.#,)- L(.#,,) ’,, [cos 2t(u) + cos 22(u)] du, where 2i(u),= 2(u) +
2(u)- almost everywhere.

(4) L(P,)/2 is strictly monotone increasing with t.

Proof. For every t, t’ > 0 and for every/3, e :#, and
([t, t"]) /3,, U 2(I-t, t’-])

is a broken geodesic joining f(t) and f(t) in O. Then the triangle inequality
implies that

L(P,) L(P,,) < 2It t’l.
It follows from Lemma 3.1 that

lim/3t-+ t6[ and lim Pt+_h
o hO

and hence /3t-+ , is contained in a small tubular neighborhood of/3t+ if h is
small. Thus the first and second variation formulas for a 1-parameter varia-
tion along/3 imply that for sufficiently small h > 0,

L(P;-)- L(/3,+_)= h[cos 2t(t)- + cos 22(t)- ] + o(h),

L(Pi-+h)- L(Pt+) h[cos 2t(t) + + cos 22(0 +] + o(h).
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Therefore L(/3,) is differentiable at if and only if At(t)- (t) + for 1, 2.
In other words, the function is differentiable at if and only if t consists of
a unique element, e.g., Pt+ P,--. Thus (1) and (2) are proved. (3) is obvious
from

d
.2_ L(P,) cos l(t) + cos 22(t).
dt

(4) is a straightforward consequence of the triangle inequality.
It should be noted that if the function L(/3) is not differentiable at t, then

there exists a compact domain bounded by /3+ and P[. If/3- does not
intersect P and if L(/3) is not differentiable at t, then the compact domain
bounded by these segments (say, t) is homeomorphic to a closed 2-disk and
the Gauss-Bonnet theorem implies that

2

c(h,) e d,o E l;t,(t) +
A=I

;t#)-] > 0.

Now it follows from the d-distance minimizing property of/3, that if/3 c
/3 0 for some > 0 and some/3, e #,, then/3,, /3 for all t’> and
all P,, e Jc. Also if/3 c P 0 for some > 0 and some Pte Jt, then/3,
/3 } for all t’ < and all Pc e Pc. If Pt c P 0, then Pt n(Pt) is a simple
geodesic loop on M at y(t). Note also that Pt is freely homotopic to P n(P)
for any Pt. Therefore the following two cases occur for the family

_> 0} of segments in .
Case I. For any > 0 and any Pt e t, Pt intersects P.

Case II. There is a to _> 0 such that if > to then any /3 e ,. does not
intersect/3, and there is a/3to o which intersects P.

It will be shown later that Case I corresponds to F being a non-
exhaustion and Case II with certain inevitable conditions corresponds to F
being an exhaustion.
The following Lemma 3.3 is originally proved by Cohn-Vossen (see Section

5 in [2]), the statement of which is slightly modified for the later use.

LEMMA 3.3. Let a" [0, c)--} U be a ray and let {y} be a sequence of
points in U which converges to a point in U. For any e > O, there is a mono-
tone increasing divergent sequence {tg} and a family of segments {zj} in U with
each joining y to a(tj) such that the angle at a(tj) between and tr is less
than e.

Proofi Suppose that for each fixed j there is no segment joining y to any
point a(t) which makes an angle at a(t) not less than e. Then d(y, a(t + h))

d(y, a(t)) < h cos e for small h > 0 and for all t. Thus

d(y:i, 7(t2) d(y, 7(tl) _< (t2 tl) COS 8
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for all 2 > t. It follows from the triangle inequality that

(t2 t)- d(yi, a(t)) d(yi, a(t2)) _< (t2 t) cos e + d(y, a(t)).

Thus for every fixed l, this inequality is violated if 2 is taken sufficiently
large, a contradiction. By iterating this procedure, one obtains the desired
sequence and a family of segments.

IV. Sufficient conditions for Busemann functions to be
non-exhaustions

This section discusses when Fr becomes a non-exhaustion, dealing mainly
with Case I.
From now let ?: [0, 03)---, M be an arbitrary fixed ray. Choose a compact

set K and U M- int (K) such that P cOU is a simply closed geodesic
polygon and U is homeomorphic to a closed half cylinder and such that
?(0) e P. Moreover P is chosen so as to satisfy Fr(x)< 0 for all x e P; the
parameter of y will be changed if necessary. This is possible because if

max {Fr(x); x P} a > 0,

then two sides of P with corner ?(0) are replaced by minimizing geodesics in
a ball of radius a centered at ),(0) joining points on the sides in the ball and
?(a). By changing the parameter of ? to t’= + a, one obtains the new
polygon P and 9, which satisfy the desired property. This property is used to
prove Lemma 4.1 (1). Let 0,/ and 3I, 32 be chosen for the new U, P and ?.

LEMMA 4.1. Let x be any interior point on U and let z: [0, 1] M be a
minimizing geodesic joining x to a point 7(t), > O. Let Y int (0) be such that
t(Yc) x and let " be the lift of z with "(0)= c. Then:

(1) d(&,/3) d(x, P).
(2) If : [0, l]-, U is well defined, then

a(x, ?(t)) 1= d(y, i(t))

for some i= 1, 2. Conversely if d(x, ?(t))= d(&, l(t)) #r some i= 1, 2, then
there is a minimizin8 8eodesic a: [0, l’] U in M joinine x to ?(t) such that a
has a complete lt e: [0, q 0.

(3) If cannot be lted completely in O. then z([0, I]) intersects int (K) and
for any 1, 2,

d(, $,(t)) d(x, ?(t)) d(x, P) + t- L(P)/2.

Moreover, d(, (t)) > d(x, ?(t)) for any 1, 2, then every minimizine eeo-
desic z joining x to 7(t) intersects int (K) and z cannot be lted in O.
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Proof of (1) and (2). It follows from the choice of P that Fv(y) < 0 for all
y e P, and hence d(y(t), P)= for all >_ 0. In fact, suppose that there is a
t’ > 0 and y P with

d(y(t’), y) d(y(t’), P) < t’.

Then Fr(y) lim,_.o It d(y, 7(0)] > t’- d(y, 7(t’)) > 0, a contradiction to
the choice of P. This inequality follows from the fact that t- d(y, ?(t)) is
monotone increasing with t. Let a" [0, l’]-- M be a minimizing geodesic such
that a(0)= x, r(l’) P and 1’= d(x, P). It follows from the minimizing pro-
perty of y and r in M that a([0,/)) cannot intersect y([0, oo)) and P. Let # be
the lift of r with #(0)= . ? intersects neither f nor f2, and hence # is
completely lifted in 0. Thus ?(1’) e P. Since L(a) L(#) l’, d(x, P) d(yc, P).
(2) is now obvious.

Proof of (3). Note that z([0, 1)) does not intersect y([0, c)). Therefore
z([0,/]) intersects P at a point z(s), 0 < s < I. From triangle inequality,

d(x, y(t)) d(x, z(s)) + d(z(s), y(t)) >_ d(x, P) + (t d(y(0), z(s)))

>_ d(x, P) + t- L(P)/2.

If d(x, y(t)) < d(, i(t)) for 1, 2, then every segment in 0 joining to i(t)
has length > d(x, y(t)). Therefore z cannot be lifted completely in 0.

TrmOREM 4.2. Assume that Case I hold for . Then:

(1)
(2)

Fv is a non-exhaustion.
If the total curvature exists, then c(M) (2z(M) 1)n.

Proof of (1). Let R > L(P) + 1 be a fixed number and let VR-I(P) be the
unique unbounded component of {x U; d(x, P)> R- 1}. By Lemma 4.1
every segment in 0 joining a point to a point on /3 such that L()=
dffc,/3) intersects neither 1([0, oo)) nor 2([0, oo)), and is contained entirely
in 0. Therefore

d(, P)= d(n(Sc), P).

There exists a curve ?:: [0, 1]--} ’R_t(P) such that f:(0) (R) and f:(1)
f2(R). Take a monotone increasing divergent sequence {t}. For large j with

t > R, the function f: [0, 1]--* R with

f(u) d((u), /(t))- d(b.(u), /2(t))
takes value 0 on the interval. Indeed, by hypothesis, every segment in
joining I(R) to z(R) intersects /3, and hence

f(0) < (t- R)- [R + tj- L(/3)] < -2R + L(P).
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Similarly,

f(1) > [t + R L)/3)] -(t- R)= 2R L(/3).
Continuity off implies the existence of a u (0, 1) such that f(u)= 0. Set

(u), x r(Sc) and (u), x z(), where u is the limit of a con-
vergent subsequenc {Uk} of {U}. Let Zk be a minimizing geodesic in M
joining Xk to (tk), and let k be the lift of Zk such that ,(0)= ,. If z, inter-
sects P, then

L(Zk) >_ tk + R- 1

follows from the triangle inequality. Hence tk- d(Xk, (tk))< --R. If Zk does
not intersect P, then it is contained entirely in U. This follows from the fact
that z, and are minimizing in M and hence their lifted image in cannot
intersect except at the endpoints. Therefore

d(Xk, (tk)) d(SCk, (tk)) > L(/3,)/2 > tk L(P)/2
if z, does not intersect P. The last inequality follows from P c P** :p
together with the triangle inequality. In any case,

t, d(x,, y(t,)) < L(P)/2

for all large k. This implies Fr(x)< L(P)/2 and d(x, P)> R- 1. Since R is
taken arbitrarily large, the proof of (1) is complete.

Proof of (2). For a monotone increasing divergent sequence {tj) choose a
monotone increasing family {D} of compact domains such that K D,
) D M, cD is a simply closed geodesic polygon on which y(t) lies and
c3D is freely homotopic to P. Such a family is obtained by taking a curve

" [0, 1]--,

_
1(/3) as in the proof of (1), replacing it by a Simple geodesic

polygon and finally projecting it by n.
Set b 0 rr-(Dj) and for each j consider 0 0 int (D) instead of

0. The boundary 9/$ takes the place of/3. For each j and each > t, either
segment (., in 0j joining 33(t) and 332(0 intersects d/)g or else there is a

t > t such that if > t, then (,. does not intersect c3/3. It follows from the
definition of Pt and Qj., that L((.t > L(13,) for all > t. Thus the proof is
divided into two cases.

If there is a subsequence {t} of {tg} such that for each k every segment
in O joining 33(t) and 332(0 intersects d/) for all t> t, then Lemma 3.3
implies that for each k, if e is any positive number then there is an s > t
such that the angle of 7r((.,) at (s) is less than . Recall that every corner of
Q. 7r((.) except (s) makes an angle not greater than 7r, and hence for,
small e, Q. bounds a convex domain/$ in M. It follows from D/ that
(,,) L3 M. Since the total curvature exists,

c(M) lim c(D) < (2z(M)- 1)n + .
The proof is complete since e is arbitrary.
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In the next case assume that there is a subsequence {tk) of {t) such that
for each k there is a t >_ tk such that for any > tf and for any segment
in Ok, k. does not intersect t0k. Since the distance restricted to Ok is not
less than d, L(k.) >_ L(/3) for all t > tk. For an arbitrary fixed > 0, there is
an Sk > tf such that k. makes angles with f and f2 less than e/2. In fact, if
(t) is the angle between f and k. at f(t), where L(Ok.) is differentiable at
and if/x(t) _> e/2 or 2(t) >_ e/2 for all _> t’, then Proposition 3.2 (3) implies
that

L(Q,.,)- L(Q,.,,,) < (t t’)(cos (e/2) + 1).

But on the other hand, L(0,.,) > L(/3,) for all > t,, and hence

t(0.,)- L(0.,,) > L(/3,)- L(.,,) > (2t- L(/3))- t(O.,,).
This leads to a contradiction for all sufficiently large t.

It should be noted that Case II does not necessarily imply that Fr is an
exhaustion. This is because the family of compact domains {D+ } bounded by
P+ does not cover the whole M even when Case II holds for y.

THEOREM 4.3. Let : [0, )---, M be a fixed ray and K, U M- int (K)
and P tU be taken as before. Assume that Case II holds for . Then F is a
non-exhaustion if either

(a) there is a point z M- (.J D+,
or

(b) lim_.oo [t- L(P)/2] <

Moreover, in addition to the above assumption, if the total curvature exists,
then c(M) <_ (2z(M)- 1)rr.

Remark. It follws from the triangle inequality that under the assumption
of Case II for y, (a) implies (b). However the converse is not true in general
even if the total curvature exists.

Proof in case (a). It follows by hypothesis that there is a to > 0 such that
every Pt in ’, does not intersect P for all > to. Thus every P, in is a
geodesic loop at y(t) for all > to. The midpoint m, of a fixed Pt is not
necessarily the cut point to y(t) (It will be shown in Lemma 5.1 that m, is the
cut point to y(t) along Pt if ), D,+ M.) It follows from the hypothesis that
if b: [0, 1]--} M is a curve with b(0) P and b(1) z, then every P, intersects
b([0, 1]) for all > 0.
Assume in the first case that there is a monotone increasing divergent

sequence {t} such that for each j the midpoint m of some P
is not a cut point to y(t) along P. Then every minimizing geodesic in
M joining m to y(t) intersects P. For a fixed large R, choose a curve
b" [0, I] bz-(/3) such that b(0) f(R), b(1) 32(R and c n b is freely
homotopic to P. Such a curve is obtained as in the proof of Theorem 4.2 (I).
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Lcmma 4.1, (1) implies that d(c(u), P) > R 1 for all u e I0, 1]. For each j
with t# > R there is a point # on frO, 1"1) such that

If a minimizing geodesic in M joining xi (i) and (t) intersects P, then

d(x, (ti)) d(x, P) + d((t), P) > t + R- 1.

If a minimizing geodesic in M joining x to (t) does not intersect P, then it
has a .complete lift in 0 and Lemma 4.1 (2) implies

(x, (t)) d(, ,(t)) c(e)/2, i= , 2.

If is a point on the intersection of g([O, 1]) and P, where b is the lift of b
in U, then the triangle inequality implies

(P) 2q- [d(, (0)) + d(, (0))] 2q- c
where C L(b) + L(P). In any case,

ts- d(x, (t)) t- min {t + R 1, ti- C/2}.
Thus, if x is the limit of a subsequence {x} of {x}, then Fv(x C/2 and
d(x, P) > R 1. This proves that F is a non-exhaustion.
Assume in the next case that there is a t’> to such that for any > t’ and

for any Pt in t the midpoint m of Pt is the cut point to (t) along P,.
Choose a curve " [0, 1] Va_x(P) and let {ti} be a monotone divergent
sequence as before. For each j with > R let y be a point on the intersec-
tion of Pi 6 , with b([0, 1]) and let i be a point on 8([0, 1]) with

d(, ,(t))= d(, (t))
as before. If lim x x c([0, 1]) and lim y y ([0, 1]) for a sub-
sequence {t} of {q}, then

t d(x, (t)) t L(P)/2 t d(y, (t)).

Hence

F(x) lim [t d(x, (t))] lim [t d(y, (t))] F(y).
Since R is any, this implies that F(( , F(y)]) is noneompaet and the
proof is omplete.

Proof in Case (b). With the same notation as in the first proof,

t- (x, y(t)) t- L(&)/2.

If lim It- L(P,)/2] , then Proposition 3.2, (4) implies that F(x) . Sine
R is arbitrary, F((- , ]) is nonompact. The proof is omplete.

For the proof of the final statement of Theorem 4.3 in the case of (a), let
P be a straight line obtained as the limit of {P}. Let (t) be the angle of
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the corner of Pj at V(tj). If i)c is the domain bounded by/3o0, it is homeo-
morphic to a closed half plane. Set V (i. Since the total curvature exists,

c(M) c(V) + c(M V)

where M- V D and D is the compact domain bounded by P. Then
it has already been proved by Cohn-Vossen in [3! that e(V) <_ O. From

c(D) 2;t(M) (n O(tj))

and lim O(t) 0 (Lemma 3.3), c(M) <_ c(M V) (2;(M) 1)n.
For the proof of the final statement in the case of (b), it suffices to check

lim O(t) 0. But this is a direct consequence of

t- L(P)/2 I[1 -cos O(u)/2] du + L(Po).
o

V. Sufficient conditions for Busemann functions to be exhaustions

Let y: l-0, )--} M be a fixed ray and let K, U M- int (K), P OU be
defined as in the previous section. In view of Theorems 4.2 and 4.3, one
considers the following three assumptions"

(1)
(2)
(3)

Case II holds for ,
[,.)t D M,
if(t) t- L(P)/2 is unbounded above.

It follows from definition of Busemann functions that

F(x)- F(y) I<_ d(x, y) for all x, y M.

Therefore if x Pt for some Pt t, then

Fr(x)- Fr(T(t)) d(x, T(t)) <_ L(P,)/2.

Thus from F((t))= t, one has Fr(x) > t- L(Pt)/2 if x e Pt. It follows from
this inequality that if g(t) is unbounded above, then Case II holds for ,, and
D M. In fact, the above inequality for any x P implies that d(P, P)

is unbounded above.
In order to find sufficient conditions for Fr to be an exhaustion, it is

necessary to construct complete lifts of minimizing geodesics joining y(t) to
points on P for s > t. The following Lemmas 5.1 and 5.2 show the existence
of complete lifts of minimizing geodesics on M.

LEMMA 5.1. Under assumptions (1) and (2), there exists t, > o such that for
any t >_ t, and any Pt t, if rht is the midpoint of Pt then d(rht, i(t))=
d(mt, y(t)) L(Pt)/2 for 1, 2, where mt rr(tht). Moreoer if t’ >_ t,, then

min {d(rh,, x(t’)), d(rh,, (t’))} d(m,, (t’))
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and there is a minimizinl teodesic z in M joining mt and (t’) whose image is in
M- int (D,) and which has a complete lift in 1, where D is the compact
domain bounded by P.

Proof Suppose that there is a divergent sequence {tj} and for each j there
is a/j e such that if thj is the midpoint of/j, then

(h, i(t)) > d(m, (t)) for i= 1, 2.

If zj is a minimizing geodesic joining mj and (tj), then Lcmma 4.1 (3) implies
that zj intersects P and

d(m, y(t)) >_ d(m, P) + t- L(P)/2.

It follows from Proposition 3.2 (3) that if O(t) 2i(0 + ,2(t) (where the func-
tion L(P) is differentiable at t), then

L(P)/2 <_ ;/cos (O(u)/2) du + L(Po)/2.

On the other hand L(P)/2=d(h, (t))> d(m, (t)). Combining these
inequalities with L(Po) _< L(P) yields

[1 cos (O(u)/2] < L(P) d(m, P) <_ L(P) d(P, P).du

But the right hand side of the latter inequality is negative for all large j, a
contradiction. Thus the existence of t. is proved.

Next, for every t’ >_ >_ t. and every Pt let z’: [0, l’]- M be a mini-
mizing geodesic with z’(O) m, z’(l’) (t’). Each subarc of P with endpoint
mt and y(t) is minimizing from the first part of the proof of the lemma. Hence
z’([0,/’]) c Pt {m}. It follows from ),(t’) M- Dt that z’([0,/’]) is con-
tained entirely in M int (D), and thus z’ has a complete lift in 0 int (/t).
This proves the desired equality.

LIMMA 5.2. Under assumptions (1) and (2), let s > t. be a non-differentiable
point of the function t--. L(Pt) and let 0 be the domain bounded by
and +. If is a point on int Os with

then

d(y, ?(s))= d(, (s)) for i= i, 2,

where y (). Moreover if s’ >_ s >_ t., then

d(y, (s’))= man {d(, l(s)), (, 2(s))}
and every minimizing geodesic ’ joininf y to (s’) has its imafe in M- D and
has a complete lift in , where D is the compact domain bounded by P-.
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Proof. Let z: [0,/]--}M be a minimizing geodesic with z(0)=.y,
z(/) y(s). If z has a complete lift : [0,/-J---} 0 with (0)= , (/)= $(s) for
some 1, 2, then the desired equality holds and the convexity of ts implies
([0,/-I) c s. Suppose that z does not have a complete lift. Then z intersects
P, and hence z intersects P- at an interior point q of P-. Thus q and ,(s) are
joined by two distinct minimizing geodesics, one of which is a proper subarc
of z. This is a contradiction.

Let z’: [0, l’]---} M be a minimizing geodesic with z’(O) y, z’(l’) (s’). For
1, 2 let " [0,/]---} 0 be a segment in 0 with (0) )3, (/) (s). Then

f110,/-I) w 2([0,/]) divides into two components. If z’ intersects P, then z’
also intersects one of the zl n(l) and z2 n(2) at an interior point. But
this contradicts the minimizing property of z and z’. Since z’([0,/"!) is con-
tained entirely in M- D-, z’ has a complete lift in U D-. Therefore

d(y, y(s’))= min {d(, 91(s’)), d(, $2(s’))}
and the proof is complete.

THEOREM 5.3. Let y: [0, )--- M be a ray. Assume that the total curvature
exists. If #(t)= t- L(Pt)/2 is unbounded above, then

(1) c(M) >_ (2z(M) 1)r and
(2) Fr is an exhaustion.

Proof of (1). Let {t} be a monotone divergent sequence such that for
each j, #’(t)> 0. If D is the compact domain bounded by Pt and if O(ty) is
the angle of Po at ),(t), then O(t)< n follows from #’(t)> 0. Since 0(t) is
unbounded, d(P, P)--. as j--, , and hence ) D M. Since

c(D) (2;(M)- 1)n + O(t),
the proof of (1) is complete.

Here is the idea of the proof of (2). Suppose that Fr is non-exhaustion.
Then a contradiction is derived by showing that the total curvature does not
exist. This is achieved by constructing a family of disjoint compact domains
in 0 each of which is bounded by a geodesic loop, on which the curvature
integral is greater than r. If Fr is a non-exhaustion, then there is a c R and
a divergent sequence {x} of points on M such that Fr(x)< c for all j. There
is a number Jo such that ifj > Jo, then there is an sj > 0 such that xj Pt for
all Pt in and for all > to, and in particular x is contained in the interior
of O n(t), and lim st . In fact, suppose that x is on some Pu for all
large j. As has already been noted at the beginning of this section, Fr(z)>
O(t) holds for any z on P and for all Pin . Thus

c > F(x) > u- d(x, (u)) >_ a(u).
Since /is strictly monotone increasing by Proposition 3.2, this implies that
{u) is bounded above, and {x} is bounded, a contradiction. Thus x
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int (f) for all j > Jo, and # is not differentiable at s. The desired domains
bounded by geodesic loops may be found in j’s or around them as follows.

Proof of (2). Fix aj with sj>t, such that g(sj)>c+l and fix k>j.
Recall that . is contained in the interior of t st which is bounded by
the segments P+ P and P-..= P. Let be the midpoint of ;, and for
i= 1, 2 let #,: [0, l]-* be segments such that t(0)= , #i(13 (s). By
Lemma 5.1,

#([0,/]) c int (b-) for i= 1, 2.

Thus j is divided into three components by the subarc of/3;,/3+ and the
subarcs of #1([0,/1]) and #2([0,/2]).

If j is contained in the compact domain bounded by the geodesic triangle
with vertices i(s), ?v and the intersection P+ c #([0,/]) for some i= 1, 2,
then the circumference of the triangle with sides

(I-0, Is]), 33([sg, Sk’l)

and a subarc of/3- is less than 2d(, 33(sk)). In fact,

2d(, (Sk)) >-- 2d(x, Y(Sk)) > 2 1Fr(xj)- Fr(y(s,)) 2(Sk Fr(x)).
The circumference of the triangle is less than

2{(s s) + L(P)/2} 2(s e(s)) < 2(s c 1) < 2(s Fr(x)).
This inequality makes it possible to proceed to the standard length-
decreasing deformation of this triangle with the base point (Sk) fixed. No
length-decreasing curve of this deformation passes through , and the limit
/ of the deformation exists and is a geodesic loop at (Sk).

If belongs to the interior of the compact domain bounded by the geo-
desic triangle whose sides are on/3f, #1([0,/1]) and #2([0, /2-]), then

+ > d(L d(L
In fact, one has

2 2 2

2 d(2,. ,(s))- . d(]v, 33,(s)) >_ 2(s c)- X d(, ;3,(sk)).
i=1 i=1 i=1

It follows from triangle inequality that

2

i=1

Therefore

2

2(Sk C) d(9, ,(Sk)) > 2(0(Sj)- C) > 2.
i=1
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The latter inequality ensures that the broken geodesic

t(E0,/xl) t2(E0,/2])

is continuously deformed by length-decreasing deformation of curves with
base points (s) and $2(s) fixed. Consider a compact domain L3- which is
bounded by 3(E0, s]),/3, 32([0 sl) and two segments joining to (s) and
2(s). Then there is a (not minimizing) geodesic joining #l(s) to 2(s)
whose length realizes the infimum of all curve lengths joining the same end-
points in the domain. Moreover has the properties" (1) j 6 g; (2) the sum
of distances from any two points on g to j is greater than the length of the
subarc of determined by the two points; (3) the compact domain bounded
by g and/+ contains in its interior.
On the other hand since j is not on any/3j #j,

+ >

Thus there is a sufficiently small x > 0 such that if is the midpoint of/3;,
then for any s [-s- x, s],

%(s)) >

and such that is in the interior of a compact domain bounded by
$1([-0, s]),/3, $2([0, s]) and two segments joining to t(s) and 2(s). Then the
standard length-decreasing deformation procedure is again applied to find a
(not minimizing) geodesic ’joining $1(s) to 2(s) which attains the infimum of
all curvelengths which have the common ndpoints and which are contained
in the domain bounded by 3([s, or)), $2([s, )) and the two segments joining
: to $(s) and 2(s). Moreover has the following properties’ (1) 6 ; (2)
the sum of distances from any two points on to is greater than the
length of the subarc of determined by the two points; (3) the compact
domain bounded by "and g contains in its interior.
Let/ be the domain bounded by and and let and be the corner of

/. Let , b^: [0, 1] 0 be the geodesics with (0) =/(0) , (1) b(1)
and ([0, 1])= ,/([0, 1]) .. Then

d(, )= min {L(h), L(b’)}.
In fact, let f:" [0, 1]---, 0 be a minimizing geodesic with (0)= , (1)= .
Then ([0, 1-1) follows from the above mentioned property (2). Unless
coincides with h or/, then ((0, 1)) is contained in the interior of one of the
three domains which are bounded by St(Is, or)), ,, 2([s, )) and 1([0, s]),
/3, 2([0, sl), g and L3. But in any case this contradicts the length minimizing
properties of g and ’in the corresponding domains.
The final step of the proof of (2) in this case is to find a geodesic loop in L3

which has basepoint at h(1/2) or b(1/2). Recall that / is contained in t,
where j is fixed. In order to find the desired geodesic loop, the length-
decreasing deformation proceeds in /, and this is possible when d(, )+
d(L ) is greater than L() or L(b’).
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Without loss of generality one may now assume that d(, )= L(h)< L(b’).
This is because the arguments developed below will show that the case
L(b’) < L(gt) is covered by this case. Then property (2) for a, together with
what is assumed above, ensures the existence of a small positive h such that
if h’ is in [0, h), then

d(j,/(h’)) + d(j,/(1 -h’)) > d(l(h’), (1/2)) + d(/(1 h’), (1/2)).

Thus the same procedure as before implies the existence of a geodesic
fib’: [0, 1] which has the minimum length among all curves joining (h’)
and (1 -h’) and they are in the subdomain of bounded by ([0, 1]), ([0,
h’]), 6([1- h’, 1]) and two segments joining to (h’) and b]l- h’). For
every h’ in [0, h) this fib’ has the same properties (1), (2) and (3) as do and

Let ho (0, 1/2] be the supremum of the set of all parameters h’ each fib’ of
which has the properties (1), (2) and (3) in the above stated subdomain of D.
If ho 1/2, then /2 is clearly a geodesic loop in at (1/2) and the desired
domain is obtained.

Suppose that ho is less than 1/2. Then a contradiction is derived as follows.
It follows from the choice of ho that

d((ho), )+ d((1 ho), )= L(aho).

On the other hand, property (2) for b implies that

L(aho) > L(l [ho, 1 ho]).

Therefore there exists an ha in [0, ho) such that

L(I [ha, 1 hx])= L(h,).

Because h < ho, the subdomain in b which is bounded by

an,([0, 1]) and b[h,, 1-hx])

contains & in its interior., Moreover it follows that

d((hx), (1 h))= L(b’l [h,, 1 h])=

For simplicity let fi fi. The same argument as before shows that there is
a small positive u such that if u’ is in [0, u), then

da(.), ) + da(1 u), ) > d(a(u), 6(1/2)) + d(a(1 u), 6(1/2)).
Thus there exists a geodesic ." [0, 1] b with

6.(0) a,(u), b()= a(1 u)

such that L(g.) is the infimum of all lengths of curves joining the common
endpoints fix(u) and fix(1 u) and they are contained in the subdomain of b
bounded by

a([0, u]), a([1 u, 1]), 6([h h])
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and two segments joining to &t(u) and fit(1 u). By the construction of/,
L(/) < d(,/;(0)) + d(, b(1)) and/; has properties (1), (2) and (3). Let Uo
be the supremum of all parameters u in [0, 1/2) each/u of which has proper-
ties (1), (2), (3) in the subdomain. Then the length of/uo is equal to

d(j, fi(Uo))+ d(cj, 1(1 Uo)).

From the property (2) for fi this equality means that the length of the limit
geodesic is greater than L( IIUo, 1- Uol) and hence there is a ux (0, Uo)
such that

L(fil I[Ua, 1 u]) L(/x) (fi(u), fi(1 ul)),

where/ ,=/ux. Thus the subdomain of/J bounded by

/x([0, 1]) and l([ux, 1-ul])

contains in its interior and hence 4: b^ Moreover it follows from tri-
angle inequality that

L(b"l [hx, 1 h])= L(fi)

L(a, I[0, u,]) + L(b^) + L(a, I[u,, 1 Ul]

> L(/l I[hl, 1 h]).

But this is a contradiction.
The above argument shows that there are countably many disjoint

domains bounded by geodesic loops or geodesic biangles on each of which
the curvature integral is greater than n/2, and hence the total curvature does
not exist. This contradiction is derived by supposing that Fr is a non-
exhaustion. Thus the proof is complete.

As a direct consequence of Theorems 4.2, 4.3 and 5.3 one has"

COROLLARY. Assume that F is an exhaustion. Then, (1) Case II holds for
(2) t D, M, (3) O(t) L(Pt)/2 is unbounded and (4)/f c(M) exists, then

C(M) > (2t(M)- 1)n.

Proof of the main theorem. Assume that the total curvature exists and

c(M) < (2x(M) 1)n.

Then a contrapositive of the above corollary implies that every Busemann
function on M is a non-exhaustion. Assume that c(M)> (2;(M)- 1)n, and
suppose that F is a non-exhaustion for some ray ,. Then a contrapositive of
Theorem 5.3 implies that #(t) is bounded above, and Theorem 4.3, (b) implies
that if Case II holds for then

c(M) < (2jg(M)- 1)r,
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and Theorem 4.2 implies that if Case I holds for y, then

c(M) < (2z(M) 1

a contradiction.

VI. Examples in the case that c(M)= (2;t(M)- 1)n

In this section the discussion is divided into two cases; the simple case is
the one where G > 0 outside a compact set of M.

PROPOSITION 6.1. Assume that G >_ 0 outside a compact set of M and
assume that c(M)= (2jr(M)- 1)zr. Then all Busemann functions are non-
exhaustions.

Proof. Suppose that Fr is an exhaustion for some ray y: [0, o) M.
Then, the corollary in the preceeding section implies that Case II holds for y.
Hence for > to, P, is a geodesic loop at y(t) and

c(O,) (2z(O)- 1)n + O(t).

It follows from G > 0 outside a compact set that if t > to and if G > 0
outside Dto,, then the function O(t) is monotone non-decreasing for > tb.
Therefore

c(M) lim c(Dt) >_ (2x(M)- 1) + O(t’o),

a contradiction.
In the case where G _< 0 outside a compact set and c(M)= (2jr(M)- 1)rr,

the situation is more complicated, as shown in the examples below.

Example 1. Let M1 be an immersed surface in Ea, K a compact set, and
U M- int (Kx) be isometric to a portion of a flat right cone which is
obtained by rotating the half line with the slope v/. Then
c(M) (2z(M)- 1) is obvious. Every Busemann function on M is a non-
exhaustion. In fact, for any fixed ray : [0, ) M1 there is a constant b
such that y([b, )) is contained in the right cone. Then F x({b}) contains a
ray in U which starts at y(b) and is orthogonal to y(b). Therefore F is a
non-exhaustion. Furthermore, there is a point z Mt- to Dt and if(t) is
bounded above.

Example 2. An immersed surface M2 in E3 is constructed in such a way
that G < 0 outside a compact set, c(M)= (2z(M)- 1)n, and all Busemann
functions on M2 are exhaustions. The construction of a closed half cylinder
U2 c M2 is done as follows.

First of all consider a non-differentiable surface U[ of revolution around
the z-axis whose profile curve is a union of line segments in the (xz)-plane
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with monotone decreasing slopes which tends to x; it is expressed as
z h(x), x > 1 and h(1) 1,

h(x) (x x) cot O + h(x) for x < x < x+ ,
where {xj} is a divergent monotone sequence with xl 1 and {Oj} is mono-
tone increasing such that lim O /6. This curve is later approximated by a
smooth curve such that Uz is obtained by rotating it around z-axis.

It turns out that for given {0} with the above properties, {x} is chosen in
such a way that if ), is a profile curve of U, (and hence it is a ray on M),
then g(t)= t- L(P,)/2 is unbounded. If g(t) is unbounded for this , then
every Busemann function on M2 is an exhaustion. In fact let a: [0, c)---, M2
be a ray. Without loss of generality assume that a([0, )) is contained in U2.
Let z: [0, ) U2 be a profile curve with tr(0) (0). Then g, is unbounded
for . For every > 0 let Pt and Qt be geodesic loops at z(t) and a(t) which
are obtained in the basic construction along z and a. If r is the distance
function in Ea to z-axis, then r(z(t) > r(a(t)) for all > 0. And since the graph
of the profile curve is strictly increasing, L(P)>_ L(Q,) holds for all >_ 0.
Thus g,(t) _< 0,(t). Since 0,(t) is divergent by assumption, so is ,.

It remains to find for a given {0} a {x} so that if y’: [0, )---, U[ is a
profile curve then 0r, is divergent. Thus sufficient conditions for {x} with the
desired properties are discussed. Let " [0, 0)--, U[ be a profile curve with
x((0)) z((0))= 1, y0’(0))= 0. For every j let l be the length of the line
segment on ’ between x and xj+ 1. Then

l (x+ x)/sin 0.
In order to simplify the construction and make it possible to find the desired
smooth approximation U2 of U[, we must choose l so that if s _- lk
then P lies in the portion of the right cone z h(x), x <_ x <_ x+ for each

(1+ ,Jk-=llk sin Ok) ((1-b Jn=llk sin Ok)1(1)
sin 0

<
sin 0

x cos (n sin 0) forj=l, 2,

In fact, when the piece of the right cone between x and xj+ is cut open and
developed in R2, (1) is implied by the condition that the chord joining
V(s+ 1) and ),[(s+ 1) does not touch the inside circle.
For a given positive monotone increasing {0} with lim 0 n/6, it is pos-

sible to choose a divergent sequence {/j} with

11 1 + csc 01(see (n sin 01) 1).

This is because (1) reduces to

l> F(1+ k-] lk sin Ok)1 (sec (n sin 0)- 1) forj > 2.
sin O/

j. This is guaranteed if
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To check the divergent property of 0r’ on U, each piece of the right
cone is developed into the (uv)-plane so that y"([s, s+ ]) is symmetric to
([st, st+ 1]) with respect to the v-axis and

lim v(;(s))= lira v(’(s)).

Note that and are not continuous at every s s (when developed) but
every ,;([st, st+ 1]) is a line segment with slope cot (rr sin 0t) and they are
placed in such a way that s v(,;(s)) is continuous. Then it follows from the
monotone increasing property of {0} that for every j,

lira u(,’(s)) < lim u(’(s)).
,s. s sj

This inequality makes it possible to give an upper bound for L(Ps):

L(P)/2 < lk sin (n sin 0) + sec 0 sin (n sin 0).
k=l

Hence

Or,(st) > lk(1 sin (rr sin Ok))- sec 01 sin (rr sin 01).
k=l

If {lj} is chosen so that

l > [j(1 sin ( sin 0_ ))]- t,
then

j> 2,

k=l

sec 0x sin (n sin 01),

and thus 0r’ is divergent. For a given positive monotone increasing sequence
{0t} with lim 0t rr/6, it is possible to choose {/t} such that the above two
inequalities are satisfied for j 1, 2,

Finally, U is approximated by U2 in such a way that for every j there is
an s < st which is sufficiently close to s such that Psr on U2 is contained
entirely in the portion of the right cone between x and xt+ 1. Then Psi, coin-
cides with some Psr on Uz. But because the approximation is sufficiently
close, s)’- s) is uniformly bounded. Therefore gr(s) on U2 is divergent. This
completes the construction on M2.

Example 3 (N. H. Kuiper). We will construct a complete metric on R2

with respect to which G < 0 outside a compact set so that the total curvature
is n and on which both exhaustion and non-exhaustion Busemann functions
exist.

First of all a Cl-surface Mr in E3 is defined as the boundary of a metric
r-ball in E3 (where r > 0 is small) around a fiat board

Wo {(x, y, z); x > 0, y > (log (x + 1))/2}
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in the (xy)-plane. This surface can be approximated by Ma without changing
the properties mentioned above. The Gauss normal map of this surface gives
the total curvature and is equal to 2n (around the origin) + (-n) (along the
curve y 1/2 log -(x + 1)

Consider the curves Co, c" [1, ov) Ea and Mr where

Co(X (x, (log (x + 1))/2, 0)

and c(x) is the point of intersection of Mr with the (xy)-plane such that c(x)
-Co(X) is normal to C’o(X). Then Ilcofx)- c(x)ll r and the difference of their
lengths between 1 and x satisfies

L(co [1, x])- L(cl[1, x])= r x(u) du,

where x > 0 is the curvature of o. By definition of Co it follows that

0 < L(co] [1, x])- L(c] [1, x]) < nr/6 for x > 1.

G r-2 in a neighborhood of (-x/ r/2, -r/2, 0), G <_ 0 in the r-ball around
c, and G 0 outside these neighborhoods. Elementary calculus shows that
e([1, o)) is the image of a geodesic ray on Mr (Mr is a smooth surface
around the curve). Thus the computations show that if p (0, y, r) M, is
an arbitrary fixed point with y > O, then d(p, e,(x)), the distance from (x) to
the half line passing through p and parallel to y-axis, equals x. Hence

L(c [1, x-l) d(p, c(x)) <_ L(co [1, x]) + rcr/6 x

foX[(1 + (4(u + 1))-2) 1/2 1] du + nr/6.

This means that the Busemann function with respect to this ray is a non-
exhaustion. If ), is a ray on M which is parallel to y-axis, then Fr is an
exhaustion because Fr((- , a]) is contained in the compact set
{q Mr; y(q) y((a))}.

Example 4. We will construct a surface M, in Ea so that (1) the total
curvature does not exist, (2) there are both exhaustion and non-exhaustion
Busemann functions. Let 0 0r/3, zr/2) be a fixed number and consider the
following right cone in E3"

{(x,y,z); x=rcos0cos,y=rcos0sin,

z r sin 0, r > 0, 0 < 0 < 2rr}.
For a monotone divergent sequence {s} let

p (s cos 0, 0, s sin 0)
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and at each point pj on the cone hang down a string of length

sj cos (n sin (9).

This figure can be approximated by a smooth surface M, withoug singularity
such that each string is replaced by a sufficiently narrow fiat cylinder with a
cap. Therefore the distance function on M, is approximately measured on
the original right cone.

Since the integral of the positive part of Gaussian curvature on M4 is o,
the total curvature does not exist on M4.

If the figure is cut open along the half line

s--) (s cos 0, 0, s sin 0)

and developed into the (u, v)-plane so that it is symmetric with respect to the
v-axis then every string has its endpoint on the u-axis. The Busemann func-
tion with respect to this half line is a non-exhaustion because for any a > 0,
the function’s a-level set is the union of the segment of length 2a tan (n sin (9)
and the points which are the intersections of the line v a with strings.
However all the other Busemann functions are exhaustions.

Remark. It should be noted that if M is non-orientable with one end,
then all the results obtained above are valid. For a non-orientable M with
one end, c(M) is defined as the half of the total curvature on its orientable
double cover.

Kuiper also constructed a surface of revolution in Ea, homeomorphic to
R2, with a singularity on which all Busemann functions are exhaustions and
so that the total curvature is n. For the definition of total curvature of a
surface with a singularity, see [5].
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