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A CHARACTERIZATION THEOREM FOR L.C.S.
VALUED FUNCTIONS

BY

JOSE L. DE MARIA

Introduction. One of the key theorems in the study of the Bochner inte-
gration is the Pettis theorem, because it gives a complete description of the
behavior of Bochner measurable functions.
Chi I-1] (1973), Gilliam [2] (1976) and Rodriguez-Salinas [4-1 (1979), [5-1

(1982) have successively extended integration theory by means of the intro-
duction of a more general class of the vector functions. These lead to new
Radon-Nikodym theorems and help to explain the geometric structure of
some locally convex spaces that are more complicated than Banach spaces.
We are going to study the/-measurable functions which have been intro-

duced by Rodriguez-Salinas in l"4] and which are the most general among
those appearing in the papers above.

In this work we obtain a characterization of these functions which is
similar to the Pettis Theorem; it enables us to obtain an Egorov theorem for
functions with values in a locally convex space (l.c.f.) which is LF.

Also, as a consequence, it is easy to prove that the almost everywhere limit
of a sequence of /-measurable functions is a /-measurable function. The
theorem has been used in a later integration theory on strictly localizable
measure spaces where it has been a good tool because it simplifies several
proofs.
Throughout this paper (f, 2;,/t) will be a finite complete measure space, E

will be a Hausdorff locally convex space and f,f functions from f to E.

DEFINITIONS. A function f is simple (f So(X;, E)) if

where Yt e E, At Z and A, is the characteristic function of
A function f is u-simple (f S(E, E)) if it is the uniform limit of a net

(f)A in So(Z, E).
We say that f is #-measurable (f M(Z,/, E) if for every > 0, there exists

K, e Z such that/(f\K,) <, and f. ;x, is/-simple.
Next we define the functions which are the subject of our study.
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A function f is f-measurable (f /r(2;, #, E)) if it is the uniform limit of a
net (f) ^ in M(2;,/, E).

These functions have been introduced by Rodriguez-Salinas [4].
It is easy to deduce that if E is metrizable then M(E, #, E)= M(2, /, E),

and there also exists an example where E is not metrizable and M(2;,/, E) :
M(2;, #, E).

It is clear that a function f is u-simple if and only iff(f) is precompact and
for every continuous seminorm p on E, for every element x in E, the function
p(f- x) is measurable. This last condition is weaker than Borel measurability
and shows that f is measurable for the a-algebra generated for the convex
neighborhoods of E.

DEFINITION 1. Let f be a function from f to E; f is called co-precompact if
for every V neighborhood of O in E, there exist a/-null subset Zv = f and a
countable set M = E such thatf(f\Zv) M + V.

The following theorem generalizes the Pettis theorem for the Bochner mea-
surability.

TI-IEOREM 2. A function f is -measurable if and only if
(2.1)f is co-precompact, and
(2.2) for every continuous seminorm p on E and for every element x of E, the

function p(f x) is measurable.

Proof (=(2.1)). Let f be a /]-measurable function; there exists a net
(f) ^ in M(2;,/, E) that converges uniformly to fi
Given V, a convex neighborhood of O in E, there exists go such that if

a > ao and f, thenf(t)-f(t) 1/2V.
Fix > ao; since f, is g-measurable there exists a sequence of disjoint mea-

K such thatsurable sets ,),= x,

# f\ K, =0 and f,= Ef,’xc.+f,’Xz

where Z f\, K,, and f" Xx. 6 S(E, E) (This is a direct consequence of
the definitions).

Since f,(K,) is precompact, there exists a finite set F, such that

L(g.) = v. + 1/2v.
Hence f(f\Z) =f,(f\Z) + 1/2V = M + V, where M , F, is a countable
subset of E.

(= (2.2)) Given a continuous seminorrn p on E, and x E, the net p(f x)
converges uniformly to p(f- x). It follows that p(f- x) is measurable.
(:) Let V be a closed absolutely convex neighborhood of O and let p be

its Minkowski functional; there exist a #-null subset Z, and a countable
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subset M (x,),% in E such that f(tl\Z) M + V. It is easily proved that
A oo of fl\Z in such that f(t)- x, V for everythere exists a partition ,)=

A,. Hence we can construct a g-measurable function

f, E x. "Za. +f’Zz

so that p(f(t)-f(t)) < 1 for every in ft.
It follows that the net (f,),r converges uniformly to jr, where F is the set

of the continuous seminorms on E and the order is the natural order for the
seminorms. Hence fis/-measurable. |

With this characterization it is very easy to prove that M(Z, #, E) is closed
for the almost everywhere limits of sequences.

PoeOSITmq 3. /f (f.)o=, is a sequence offunctions in M(Z, #, E) that con-
verges almost everywhere to a function f, then f is f-measurable.

Proof We can suppose that f(t) limn fn(t) for every .
Let U be a closed absolutely convex neighborhood of O in E and ft.

There exists no N such that f(t) f.(t) + x2U for every n > no.
Since f. is #-measurable, there exist a subset Z in t, #(Z)= 0 and a

countable subset M. in E such that

M. +
If Z , Z, and M , M, it follows that #(Z)= 0, M is countable,

and f(\Z) M + U. Thusf is co-precompact.
Let p be a continuous seminorm on E, and let x be in E; then

p(f x) lim p(fn x) everywhere,

and as p(f. x) is measurable, p(f- x) is also measurable.
Therefore, by Theorem 2, f is/-measurable. |

Next we obtain some Egorov theorems for #-measurability as an applica-
tion of the preceding theorems.

THEOREM 4. Let E be a metrizable l.c.s, and let (f.)o= be a sequence of
#-measurable functions that converges almost everywhere to f. Then (f)=
converges almost uniformly to f.

Proof. We may assume that (f.)= converges everywhere to f. Since E is
metrizable, there exists a countable family of continuous seminorms (p.)=
which defines the E-topology. As M(Z, #, E) is a vector space, we can
suppose that (fn)= converges everywhere to O.
Given m N, since f. is Borel measurable, by the Egorov theorem in the

real case, there exists a subset Z. such that #(Zm)< el2 and lim P. fn 0
uniformly on t\Zm, for every e > 0.
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If we let Z , Z,, then (f,)= converges to O uniformly in f\Z.
Indeed, let ’ {Pro1, P,k} be a family of continuous seminorms on E,
and let 6 be positive; for every Pi, there exists n e N such that if n > n we
have

pm,(fn(t)) < 6

for every f\Z. If n > sup (nl, nk}, then P(fn(t)) < di, for every f\Z
and for every p ’. I
We state two lemmas about the behavior of the functions in M(E, #, E)

and M(E, #, E). The proofs are straightforward.

LEMMA 5. If Eo is a vector subspace of E, f M(E,/z,E) (resp.
f M(E, #, E)) and f(f) c Eo, then f is t-measurable from to Eo (resp. f is

v-measurable from to Eo).

LEMMA 6. If E is a l.c.s., f M(E, #, E) (resp. f M(E, #, E), f S(E, E),
f e So(E, E) and t)’c f, f’ Y, then the restriction of f to f’, flu, is a

fi-measurable function (resp. #-measurable, u-simple, simple).

With aid of these lemmas we prove the following analogue of Egorov’s
Theorem when E is an LF-space. (E is a strict inductive limit of a sequence
(En)= of locally convex Frechet spaces).

THEOREM 7. Let E be an LF-space. Let (f)= be a sequence in
M(,, #, E). If (f)=t converges almost everywhere to f, then (f)o=t converges
almost uniformly to f.

Proof. By Lemma 13.1 in [6], since Ek is metrizable, there exists a
decreasing sequence (U,)__ of closed, absolutely convex neighborhoods of
O in E such that (U, Ek)-_ is a base of neighborhoods of O in Ek, for
every k.
We will prove first that every Ek belongs to the smallest a-algebra gener-

ated by the family of scalar-valued uniformly continuous functions defined
in E.

Let p be the Minkowski functional of Un, then the function

p(x) inf (p(x y)" y El}
has the following property: If x e E then p,(x)= 0 for every n N, and if
x Ek\Et then there exists no such that (x + U) c E for every n > no;
hence pn(x) > 1 if n > no.
We define h(x)= min {1, p(x)} and h(x)= lim, h(x). They are uniformly

continuous. As h(x) is 0 if x e E and 1 if x El, then E is the zeroset for a
function which is a limit of a sequence of uniformly continuous functions.
Thus E is in the desired a-algebra. Clearly this proof can be repeated with
any Ek in place of Et.
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We shall now prove the theorem. Assume pointwise convergence. Since the
composition of a/-measurable function with a scalar uniformly continuous
function on E is a measurable function [4, page 3751, we see thatf X(Ek) is
measurable for every k, and thus the sets

f, ( f-X(E,)
k=l

are measurable.
It is clear that f ,oo__ fp and ft c ’)2 c"" hence given e > 0 there

exists p such that #(ta\fp) < e/2 and fm(t),) E, for every m.
Using Lemma 6 it is inmediate that fm In," t) E is/-measurable, and as

fmlta,(f,) c E, and E is metrizable, we can conclude, using Lemma 5, that
f,lnp is #-measurable from t), to E,. Hence, by Theorem 4, there exists
Ho c f measurable such that #(ta\Ho) < e/2 and f, lap converges uniformly
on Ho. Since/(ta\Ho) < e and (fn)--t converges uniformly on Ho, the proof
is finished. |
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