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FACTORIZATION OF POSITIVE MULTILINEAR MAPS

BY
A. R. Scuep!

1. Introduction

Let (X, u) be a finite measure space and let Ly(X, u) denote the space of
(equivalence classes of) all u-measurable functions on X. E. M. Nikisin [6]
and B. Maurey [5] proved several factorization theorems for linear and sub-
linear operators, where a (sub-)linear operator T from a Banach space E into
L X, p) (p = 0) factors through (weak-) L, (r > 1), if there exists ¢ € L, for
some s > 0 with ¢ > 0 a.e., such that

7:; . T(E) < (weak-)L,.

For an excellent survey of these theorems and the many applications of them
we refer to J. E. Gilbert’s paper [2]. In this same article Gilbert indicates
that there are available versions of weak-type factorizations for maximal
operators defined by multilinear operators, but it was also noticed that
strong-type factorizations for multilinear operators had not yet been studied.
In this paper we shall prove strong-type factorizations for positive multilinear
operators. Our approach uses the positive projective tensor product of
Banach lattices and we also use some of the linear operator results of Nikisin
and Maurey. The results for bilinear operators are typical for the multilinear
case, but we could not restrict ourselves to the bilinear case. To prove
Theorem 3.2 and Theorem 3.5 for bilinear operators with values in L, with
r > 0, we need the result of the same theorems for trilinear operators. There-
fore we consider the general multilinear case. For the same reason we shall
consider tensor products of n Banach lattices. The organization of this paper
is as follows. In Section 2 we develop the necessary machinery of the theory
of tensor products of Banach lattices. In Section 3 we prove the factorization
theorems for positive multilinear operators from L, x -+ x L, — L, where
q=0.
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2. Tensor product of Banach lattices

For terminology about Riesz spaces and Banach lattices, see [4] and [7].
For notations concerning the tensor products of Banach lattices we follow
[1], where the theory was developed for the tensor product of two such
spaces. The development of the theory for n Banach lattices is completely
analogous to the case n = 2, so that we shall omit the proofs of the general
results, but only present proofs which are relevant for our application.

Let E,, ..., E, and F be Archimedean Riesz spaces. An n-linear map

B:E, x-xE,—»F

is called positive if B(x, ..., x,) € F* whenever x, € E;f (k=1,2,...,n);itis
called a Riesz n-morphism if B(|x,|, ..., | X,|) = | B(xy, ..., x,)| for all x, €
E, (k=1, ..., n). Following [1] or [8] one can construct an Archimedean
Riesz space E; ® - - - ® E, and a Riesz n-morphism

®:E,x xE,~E ®  Q®E,.

We now list only these properties of this construction which are relevant for
what follows:

(@ E,® - ®E,is dense in E; ® - ® E, in the sense that for any u e
E,® - ®E, there exist x, € Ef (k=1, 2, ..., n) such that for all ¢>0
thereisave E,® - ®E, with |[u —v|<éex; ® " ®x,).

(b) IfueE,®: - ®E,, then there exist x, € E; (k= 1, ..., n) such that
lul<x; @ - ®x,.

() If F is a uniformly complete Archimedean Riesz space, then there is a
one-to-one correspondence between positive n-linear maps B: E; x
x E,—~F and positive linear maps T:E,® - ® E,—» F such that
B=TQ®.

In what follows we shall be mainly interested in the case that E, = L, (X,
w) for some p, > 1. In that case one can identify E; ® --- ® E, with the
Riesz space generated by

{fl(xl), "-,f;y(xn):f;c € Epk, k - 1 }
in
Lo(Xy %+ X Xy iy X 00 X i)

If E,, ..., E, are Banach lattices, then we can define the positive-projective
norm || |, on E; ® -+ ® E, by means of

lull iy = inf { Y Tkl xi i € Ef such that [u| < Y x; ; ® -'-®x,‘,,}.

i<mk<n ism



FACTORIZATION OF POSITIVE MULTILINEAR MAPS 581

One can show that || ||, is a Riesz norm on E; ® - ®E,, so that we
define the Banach lattice E, ® --- ® E, to be the completion of E; ® -+ ®
E, with respect to || || . As in [1] one now proves:

(d) For any Banach lattice F there is a one-to-one normpreserving corre-
spondence between continuous positive n-linear maps f: E; x -+ x E,— F
and continuous positive linear maps T:E, ® - ® E,— F such that
B=T®.

The following theorem is, for n = 2, partly contained in [1].

THEOREM 2.1. Let Ey, ..., E, be Banach lattices, Suppose that the function-
al p defined on E;® --- ® E, by

p(u)=inf{l_lllxkllixkeEk+ k=1,...,n), IuI$x1®'--®xk}
k<n

is subadditive. Then:

() p) = |4l on By ® - B,
(i) IfueE,® - ®E,, then there exist x, € Ej (k=1, ..., n) such that
lul<x; ®: - ®x,
(ii)) E, ®: - ®E is relatively uniform dense in E1 ® - ®E,; that is, if
ucE,® - ®E,, then there exist x, € E} (k=1,...,n) such that for all
e>0wecanfindve E, ® - ® E, such that

lu—v|<ex; @+ @ x4

(iv) If F is a uniformly complete Archimedean Riesz space, then there is a
one-to-one correspondence between positive n-linear maps

B:E,® -QE,—»F
and positive linear maps

T:E;® - QE,—»F
suchthat B=T®.

Proof. (i) If p is subadditive, then p is a Resiz seminorm, since clearly
pla) = || p(|u]). Since p(u) > |uly on E, ® - ® E,, we see that p is
actually a Riesz norm on E, ® - ® E,. Let G denote the completion of
E, ® -+ ® E, with respect to p and let

By:E, x - xE,—»G
denote the positive n-linear map (x,, ..., x,) > x; ® - ** ® x,,. Then

[Boll = sup (p(x; ® - ®x,): x| <1) < L
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Hence by (d) above there exists a continuous linear map T: E,; ® - ®
E,— G of norm < 1 such that B, = T ®, which implies that

p) = p(Tu) < |lull,, forallueE, ® - ®E,.

Hence p(u) = [|uf|j, forallue E, ® -+ ® E,. ) i
(i) Letue E,® - ®E,. Then there exist u, € E; ® - - ® E, such that

I — thylljy <271 form=1,2,...,.
Thus
st — upll <27™ form=1,2,...,
and we conclude via (i) that there exist x,,, € E; (k =1, ..., n) such that

[t 1 = Uy | S Xy @ @ X and []lIxpsll <27™form=1,2,...,.
k<n

It is no loss of generality if we assume that |x, .|| <2™™ for each m =1,
2,...,and k=1, ..., n. Then x, = Y, X, exists in each E; for k=1,...,n
and we have

lul Slugl+ X sy — Ul
m21

SIul"*- me,l®“.®xm,n

m=1
Slugl+x, @ ®x,
By (b) above there exist y, € E; such that |u,| <y, ® -*- ® y,. Hence
lul <(x; + ) @ ®(xy + yu)

(i) LetueE,® - Q®E,. Then there exist u, € E; ® - ® E, such that
lu — thlljy < 1/4™ Let w=Y .., 2"|u —u,| in E; ® - ® E,. Then by (ii)
there exist x, € E; such that [w| < x; ® - - ® x,. Hence for all m we have

lu—u,| <277 (X, ® " @ X,).
(iv) By (c) above we can find a unique positive linear operator
T:-E,;® - Q®E,—»F
suchthat B=T®. Let uec E; ® - - ® E,. Then by (iii) we can find
u,€E,® -®E, and x,e€E} (k=1,...,n)
such that
lu—u,|<2™™x;® - ®x,) foralln=1,2,....

Hence |Tu; — Tu,,| <2 ""!'T(x;,® - ®x,) in F for all [ >m. It follows
that the relative uniform limit of {Tu,} exists in F. If we define Tu as this
limit, then one verifies easily that Tu is well defined and extends T uniquely
to a positive linear operator from E; ® -+ ® E,— F.
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The following theorem occurs in [1] for n =2 and E, = E, = L,[0, 1].

THEOREM 2.2. Let
Ek=ka(Xk’ l"'k) (k= l, 2,..., n)
and assume that Y, ., pi * = 1. Then

p) =1inf (| fillpy - 1 fullp: [ /1 ® - ®f)
is subadditive on E, ® --- ® E,,.

Proof. Letu, u,e E;® - ®E, and ¢ > 0. Then we can find f, and g,
in E} (k=1, ..., n) such that
|ullsf1®.”®fna IuZISgk®”'®gna

pwy) = |l fillpys ooos I fullpy — & and  puz) = 1 gillpys - o5 Gl — &
Let

=t Ay - (pluy) + &) fork=1,...,n—1

and put
fu= {k l_[_lllfkll,,,,(p(ul) + 8)’”‘”‘}fn~
Then
f1® - ®f,=fi® - ®f,
and

I fill e < (p(uy) + &)V fork=1,...,n
It follows that we may assume that
I fill oo < (p(uy) + &)V7 fork=1,...,n
Similarly we may assume that
I gill e < (p(uy) + &7 fork=1,...,n
Next we observe that E; ® - - ® E, can be considered a subspace of
Lo(Xy X =00 x Xy g X 000 X ),

so that we can apply Holder’s inequality for n factors. In case all p, < o0 we
get

[y +u | <fi®  ®f,+9:1® " ®yg,
< (ftlu + gxlu)l/m ® ®(f,l"n + g'l:n)l/l’n'
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Hence
pluy + uy) < kl_[ PR+ gB9 7|
<n

= [T + gl ite

k<n

< kl_[ (p(uy) + p(us) + 26)'/P = p(uy) + plu) + 2e.
<n
Since ¢ > 0 was arbitrary, we have that p(u, + u,) < p(u;) + p(u,). In case
one or more of the p,’s is co we have to replace each (f; + g,)'/* by sup
(fx»> 9), but for the rest the argument remains the same.
The following theorem is now an immediate consequence of the two pre-
vious theorems.

THEOREM 2.3. Let B be a positive n-linear map from
Lpl(Xb By) X e X Lp,.(Xna W into Lq(X’ D}

where ¢ >0 and Y, p; ' = 1. Then there exists a unique positive linear oper-
ator

T:L,® -®L,—L,
such that B=T ®.

Remark. If ¢ >1 we do not need to assume that ), p, ! =1 in above
theorem, since B induces then a continuous linear map T from L, ® -
®L,— L,. In case 0 < g <1 the bilinear map B is jointly continuous, but
does not necessarily induce a continuous linear operator from L, ® - --
® L,,— L,, except when Y, p; ! = 1. In the next section we shall show that
there exist a jointly continuous B: L, x L, — L,;; which does not induce a
continuous linear operator from L, ® L;— L,;3. Moreover we only use
above theorem for 0 < g < 1 in the next section.

3. Factorization of positive multilinear maps

Let (X, p) be a o-finite measure space. Then the following theorem is fun-
damental for factorization of linear maps with values in Ly(X, p).

THEOREM 3.1. (Maurey-Nikisin, see [5]). Let A < Ly(X, u) be a convex
set of non-negative functions bounded in measure. Then there exists ¢ > 0 in
Lo(X, u) such that (1/¢) - A is bounded in L,(X, p).

We now present our first factorization result.
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THEOREM 3.2. Let B: L, (X,, uy) X *** x L,(X,, )= Lo(X, p) be a posi-
tive n-linear map and let r > 1 be such that ¥, ., pi ' =r~*. Then there exists
¢ € Lo(X, u) with ¢ > 0 a.e. such that

1
a “B(L, x -+ xL,)<S L(X, p.

Proof. Define B,: L,, x -+ x L, x L,— L, by means of
B\(f1s s SusJar 1) =Jar1 - B(f1s o5 )

where 7! + (¥)"! = 1. Then by Theorem 2.3 there exists a unique positive
linear map

T:L,,® - Q®L,®L,— L,

such that T ® = B;. By the above theorem we can find ¢ € Ly(x, u), ¢ >0
a.e. such that

1 = ~ ~
a ’ T(Lp1 ® e ® Lp,. ® Lr') = LI(X’ /")'

This implies immediately that
1

" B(L, x ‘- xL,)<sL,.

We note that for n = 1 we have:

CorOLLARY 3.3 (Nikisin [6], THEOREM 4). If T: L, (Y, v)— Lo(X, p) is
a positive linear map, then there exists ¢ € Lo(X, p), ¢ >0 a.e. such that
(1/¢) - T(L,) = L,.

We now show, that if B in Theorem 3.2 takes its values in L (X, ) for
some g > 0, then ¢ can be chosen in L, for some s determined by r and g.
The following theorem takes the place of Theorem 3.1, and does not seem to
have been stated explicitly in the literature before, although our proof was
partially inspired by Maurey’s work.

THEOREM 3.4. Let A< L(X, p) be a convex set of non-negative functions
such that | f2du <1 for all fe A. Assume 0 < q < 1. Then there exists ¢ > 0
in L, with | @), <1and r~* = g~ — 1 such that

J(—;—d,usl for all fe A.
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Proof. Let s=(1—gq)~! and let U, be the positive unit ball of L. Then
U, is weakly compact, since 1 < s < c0. Define F: U; x A—> R, U {00} by

Fih,f) = f L

where we employ 0/0 =0 as a convention. Then for every fe A, F(h, f) is
convex and lower semicontinuous with respect to the weak topology of L,
(see [5], p. 11). Moreover, for every h € U,, F(h, f) is trivially concave on A.
It follows that we can apply a slightly extended version of Ky Fan’s minimax
theorem (extended since we allow + oo as a value of F). Thus

min max F(h, f) = max min F(h, ).
heUs feA feA heUs

Since F(h, f) < 1 for h = f91 9 it follows that there exists hy € U, such that

Flhy, f) = J# du<1 forallfe A.

Put ¢ = hl/® and one sees readily that ||¢|, < 1.
THeoReM 3.5. IfB: L, x--- x L, — L, (q > 0) is a positive n-linear oper-
ator and r > 1 is such that r~' =Y, p;' ' and r = g, then there exists 0 < ¢ €

Ly with s~ = q~ ! — r~! such that

1
3 By x - xLy)<L,.

Proof. Assume first r =¢q. Then ¢ =1 satisfies the condition of the
theorem. Assume now r > q and define g, by q; ' = (¥)"! + ¢~ !. Define the
positive n-linear map B,: L, x *-+ x L, x L,— L by

Bi(f1s s SusSusd) =fn+lB('fls afn)

We show that B, maps actually into L,,. Let ffe L, (1<i<n)andf,, €

L,.. Then, by Holder’s inequality,
r q/r q q1/q
d#) <ﬂ B(fy, -5 f) du) < oo.

s

Hence B, maps into L,. Applying Theorem 2.3 we find a positive linear
operator

J‘Bl(fl’ "'7f;|+1)

fn+1

~

T:L,® ®L,®L,— L,



FACTORIZATION OF POSITIVE MULTILINEAR MAPS 587

such that B =T ®. Since g; ' = ()" ' +q '=1+(q ' —r ') > 1, we can
apply Theorem 3.4 to get 0< ¢ < L, with s ! =q;' —1=¢q"! —r~! such
that
1
¢

It follows as before that

T(L,,® ®L,®L)<L,.

1
¢

As before we get for n = 1:

B(L,, x - x L,)<L,.

COROLLARY 3.6 (Maurey). If T: L,— L, (9 > 0) is a positive linear oper-
ator and p > q, then there exists 0 <'¢ € Ly with s~ = q~' — p~*! such that
1

5 TEI=L,.

We present some examples to indicate the scope of above theorems.

Example 1. Let E = {fe Lo([0, 1]%): ess sup, || f(s, ©)| dt < c0}. Define
the positive linear operator T: E— Ly([0, 1]%) by (Tf)(s, t) =f{(t, s). Assume
that for some 0 <& < 1 there exists X, < [0, 1]*> with u(X?) <& such that
Xx, * T(E) < E. Then there exists M > 0 such that

ess sup fxx‘(s, )| f(¢, s)| dt < M ess sup Jlf(s, t)| dt for all fe E.

We apply this inequality to functions f(s, t) with f(s, t) = g(t) € L,([0, 1]) to
get the inequality

ess sup JXX,(S, 1 g()| dt < Mligll,

for all g € L,[0, 1]. Put h(s) = | xx(s, t) dt. Then h, > 0 on a set of measure
>1—¢and

lghlle < Mgl

for all g e L,[0, 1], which is a contradiction. This example shows that
Theorem 3.2 and Corollary 3.3 cannot be extended to arbitrary Banach func-
tion spaces.

Example 2. Let Tf(x) =[5 |x — y|~*?*f(y) dy for fe L,[0, 1]. Then T is
a positive linear operator from L, into L,. Suppose T factors through L ;
i.e., suppose there exists 0 < ¢ € Ly[0, 1] such that (1/¢) - T(L,) = L,,. Then
there exists M > 0 such that | Tf(x)| < M¢(x)|| f]l, a.c. This implies (see [9],
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theorem) that T is a Carleman operator; ie., y— T(x, y) = |x — y| /2 is in
L,[0, 1] for a.e. x, which is clearly not the case. Hence T does not factor
thorugh L . Define now B: L, x L, — L, by B(f, g) = gTf. Then B defines a
positive bilinear operator from L, x L;— L,;. This bilinear operator
extends to a positive linear operator S: L, ® L; — L, 3, which by above con-
siderations cannot be extended to a positive linear operator from L, ® L,.
Hence we cannot drop the condition that ) p;! = 1 in Theorem 2.3 or that
Y pi! < 1in Theorem 3.5.

Example 3. Let (X, u) be a probability measure space and let # be an
ergodic family of measure-preserving transformations on X, which is closed
under composition (see [10] for an explanation of these notions). Let p,, p,
and r > 1 such that p;' + p; ' =r~'. Let B: L, (X, p) X L,(X, p)— L, be a
positive bilinear map. Assume B commutes simultaneously with every
member of #. Then B is a bounded map into L(X, u). For the proof of this
note that if ¢ > 0, then there exists C, >0 and 4 = X with u(4°) < ¢ such
that [, |B(f, g)I"<C, for all f and g with |f], <1 and |g|,, <1 by
Theorem 3.2. If now wy, ..., w, € &, then it follows that

J |B(f, 9)I"< C,
wi~1(4)

for all such f and g (by the commuting property). Hence

J‘kzllk ka‘l(A)I B(f, 9)I'< C,

if 4, >0 and 5., 4, = 1. It follows now from [10] (corollary after Lemma
1) that there exists a sequence h, of such convex combinations such that
h(x)— u(A) a.e. It follows from Fatou’s lemma that | u(4)|B(f, g)|" < C, for
all fand g with || f],, <1 and | g|,, <1;ie,

r Ca
JIB(f,g)I du<71—
for all such fand g.

We proceed by indicating the extension of the theorems of this section to
positive n-linear operators defined on E, x -+ x E,, where each E, is a
Banach lattice. For the following definition and properties connected with it
we refer to [3].

DerINITION. A Banach lattice E is called p-convex if there exists a con-
stant M < oo such that

)"

1/p
< M(Z lei||”) if 1<p<oo,
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or

< M max ||x;|| if p= oo,

n
\/|x1|
i=1

for every choice of vectors {x,: k=1, ..., n} in E. It is proved in [3] that a
p-convex Banach lattice E can be renormed equivalently so that E, endowed
with the new norm and the same order, is a p-convex Banach lattice with
constant M = 1. Using this one proves the following theorem similarly to the
theorems proved before.

THEOREM 3.7. IfE, (k =1, ..., n) are p,-convex Banach lattices and
B:E; x - xE,—»L, (20)

is a positive n-linear map and r > 1 such that r™' =Y, p;* and r > g, then
there exists 0 < ¢ € Ly with s™! = q~! — r~! such that

%-B(El x - xE)cL,.

We conclude by deriving an interesting consequence of Theorem 3.4 not
connected with the main theme of our paper.

THEOREM 3.8. Let H < L, (0 < q < 1) be a convex set of non-negative func-
tions which is bounded in L,. Suppose that H is compact in L,, then H is
compact in L,.

Proof. By Theorem 3.4 we can find ¢ >0 ae.inL, (r ! =q~! — 1) such
that

J%dusl for all fe H.
Let ¢ > 0. Then we can write X as a disjoint union X; U X, such that

Joe) "=
X1

and such that u(X,) < c0. Then we can find § > 0 such that u(4) <4, A <
X, implies that ([, ¢" du)' "% <e. Let A< X. Then we have via Holder’s
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[ra- (oo
() 4) [+ 4)”

1-¢q
< (J ¢ d,u) for all fe H.
A

It follows that fxl fidu < ¢ for all fe H and that u(4) < d, A = X, implies
that

inequality

ff“du<s
A

for all fe H; ie, {f%x,:f€ H} is uniformly integrable. Let f, € H. Then
by passing to a subsequence we may assume that f,(x)— fo(x) a.e. It follows
from Fatou’s lemma that also [y, /4 du <& By Egoroff's theorem we can
find X, € X, with u(X,\X,) <d such that f,(x)— fo(x) uniformly on X,.
By the above we have [y, x, /2 du < ¢ for all n, so again by Fatou’s lemma,
[x2x0 f8 du < & It now follows that

J|ﬁ,—foi"du=L|ﬁ.—fol"du+L |fn—fo|"du+L|fn—-foI“du

2\Xo

S2"(e+s)+2"(e+e)+f | fn —fol?du
Xo

=202 ¢ j | fo=fol" d.
Xo
Since f, — f uniformly on X, and since ¢ > 0 is arbitrary it follows that

Ilf.. —f1*du— 0.
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