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FACTORIZATION OF POSITIVE MULTILINEAR MAPS
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1. Introduction

Let (X, #) be a finite measure space and let Lo(X, #) denote the space of
(equivalence classes of) all #-measurable functions on X. E. M. Nikisin !-6]
andB. Maurey [5] proved several factorization theorems for linear and sub-
linear operators, where a (sub-)linear operator T from a Banach space E into
L,(X, #) (p > O) factors through ,(weak-) L, (r > 1), if there exists b Ls for
some s > 0 with b > 0 a.e., such that

1
-7" T(E)

_
(weak-)L,.

For an excellent survey of these theorems and the many applications of them
we refer to J. E. Gilbert’s paper [2]. In this same article Gilbert indicates
that there are available versions of weak-type factorizations for maximal
operators defined by multilinear operators, but it was also noticed that
strong-type factorizations for multilinear operators had not yet been studied.
In this paper we shall prove strong-type factorizations for positive multilinear
operators. Our approach uses the positive projective tensor product of
Banach lattices and we also use some of the linear operator results of Nikisin
and Maurey. The results for bilinear operators are typical for the multilinear
case, but we could not restrict ourselves to the bilinear case. To prove
Theorem 3.2 and Theorem 3.5 for bilinear operators with values in Lr with
r > 0, we need the result of the same theorems for trilinear operators. There-
fore we consider the general multilinear case. For the same reason we shall
consider tensor products of n Banach lattices. The organization of this paper
is as follows. In Section 2 we develop the necessary machinery of the theory
of tensor products of Banach lattices. In Section 3 we prove the factorization
theorems for positive multilinear operators from Lpl x... x L,,---, Lq where
q>_O.

Received May 24, 1982.
Research supported in part by a grant of the University of South Carolina Research and

Productive Scholarship Fund.

1984 by the Board of Trustees of the University of Illinois
Manufactured in the United States of America

579



580 A.R. SCHEP

2. Tensor product of Banach lattices

For terminology about Riesz spaces and Banach lattices, see [4] and [7].
For notations concerning the tensor products of Banach lattices we follow
[1], where the theory was developed for the tensor product of two such
spaces. The development of the theory for n Banach lattices is completely
analogous to the case n 2, so that we shall omit the proofs of the general
results, but only present proofs which are relevant for our application.

Let El, E. and F be Archimedean Riesz spaces. An n-linear map

B" E1 x’" x E.-+F
is called positive if B(xl, x.) F + whenever Xk e E (k 1, 2, n); it is
called a Riesz n-morphism if B( xl I, Ix, I) B(xl, x,) for all Xk
Ek (k 1, n). Following [1] or [8] one can construct an Archimedean
Riesz space E1 "" E, and a Riesz n-morphism

(R)" E1 x x E.--o E1 ("" (
We now list only these properties of this construction which are relevant for
what follows"

(a) E1 (R)’" (R) E. is dense in E ()"" ()E. in the sense that for any u e

E1 ("" ( E. there exist Xk E (k 1, 2, n) such that for all e > 0
there is a v E1 (R)"" (R) E. with u- v < e(xl (R)"" (R)x.).

(b) If u E1 ("" ( E., then there exist xk E (k 1, n) such that
lul _< x, (R)... (R)

(c) If F is a uniformly complete Archimedean Riesz space, then there is a
one-to-one correspondence between positive n-linear maps B" E1 x
x E,--+F and positive linear maps T" E1 )...E.F such that
B=T(R).

In what follows we shall be mainly interested in the case that Ek Lvk(Xk,
/k) for some Pk--> 1. In that case one can identify E (R)... (R) E. with the
Riesz space generated by

{f(x), ...,L(xO’A ,,,, k 1, n}
in

Lo(X1 x x X.,#I x x #,).

If El, E. are Banach lattices, then we can define the positive-projective
norm II11 on E1 (... ( E. by means of

]lull i=. inf {,.i kiWI<._ [,xi, k,l" x,,k e E such that u[ < ,,.x,, (R) (R) x,..}.
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One can show that II11 is a Riesz norm on E1 "" En, so that we
define the Banach lattice E1 )... )En to be the completion of E ... )
E with respect to II11. As in [1-1 one now proves"

(d) For any Banach lattice F there is a one-to-one normpreserving corre-
spondence between continuous positive n-linear maps fl" E x... x E F
and continuous positive linear maps T" E (R)...(R)EF such that
B=T(R).

The following theorem is, for n 2, partly contained in [11.

THEOREM 2.1. Let Et, E be Banach lattices, Suppose that the function-
al p defined on El ... En by

p(u) inf IIxll" Xk E (k 1,..., n), ul x, (R)... (R) x

is subadditive. Then"

(i) p(u) Ilull&l on E "" E,.
(ii) If u E (R)... E, then there exist Xk E (k 1,..., n) such that

lul-< x,(R)...(R)x.
(iii) E, ... ( E is relatively unorm dense in E, ... E,; that is, if

u E,... E,, then there exist Xk E (k= 1,...,n) such that for all
e > 0 we can find v E, ... E such that

lu vl ex @ @ x.
(iv) If F is a unormly complete Archimedean Riesz space, then there is a

one-to-one correspondence between positive n-linear maps

B" Et (R)... (R)E F

and positive linear maps

such that B T (R).

Proofi (i) If p is subadditive, then p is a Resiz seminorm, since clearly
(u) Il(lul). Since p(u) > Ilullll on E1 ... En, we see that p is
actually a Riesz norm on E (R)... (R) E. Let G denote the completion of
E (R)... (R) E with respect to p and let

Bo: Ex x x E-- G

denote the positive n-linear map (xx, x) x (8)’" (R) xn. Then

Ilnoll sup (p(xx (R)"" (R) x): Ilx, < 1) < 1.
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Hence by (d) above there exists a continuous linear map T’ E1 )""
E.---, G of norm < 1 such that Bo T (R), which implies that

p(u) p(Tu) < Ilullll for all u

Hence p(u) Ilull Ifr all u E )... ) En.
(ii) Let u E (R)... ) E,. Then there exist um E )... ) E. such that

Thus

Ilu Umlll,I < 2-nm-i for m 1, 2,

IlUm+X Umll < 2 for m 1, 2,...,

and we conclude via (i) that there exist Xm,k E (k 1,..., n) such that

lUre+ Um < Xm, (R) Xm,n and I-I Xm,,ll <-- 2 -nm for m 1, 2,
k<_n

It is no loss of generality if we assume that IlXm,l --< 2 for each m 1,
2, and k 1, n. Then Xk m Xm,k exists in each E for k 1 n
and we have

lul <lUll / lum+x--uml
m>l

< luxl + Xm,1 (’’’(Xm,n
m>l

< luxl + xi (R)’’’(R)Xn

By (b) above there exist Yk 6 E such that uxl -< Y (R)’" (R) Yn. Hence

lul _<(Xl / yx) "" (R)(x / y).

(iii) Let u 6 E )... ) E. Then there exist Um E "" E,, such that
2m )... )E. Then by (ii)Ilu Umlltt < 1/4m. Let w ,z [u urn[ in E

there exist xk E such that wl _< xx (R)’" (R) x,. Hence for all m we have

lU--Uml<2
(iv) By (c) above we can find a unique positive linear operator

T’EI...En--F
such that B T (R). Let e E (-.. ( E. Then by (iii) we can find

u,nEl"’E and Xk6E (k=l,...,n)

such that

u-u,l<2-’(x(R)"’(R)xn) for alln--1,2,

Hence Tu- Tu,l < 2-’+T(x (R)’" (R) x) in F for all l>_ m. It follows
that the relative uniform limit of (Tu} exists in F. If we define Tu as this
limit, then one verifies easily that Tu is well defined and extends T uniquely
to a positive linear operator from E1 ... E F.
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The following theorem occurs in [1] for n 2 and E1 E2 L2[0, 1].

THEOREM 2.2. Let

Ek Lvk(Xk, #k) (k 1, 2,..., n)

and assume that Ek<_n P 1. Then

p(u) inf (ll f ,, f. ." u -<f (R)"" (R)f,)

is subadditive on E )... E,.

Proof. Let ut, u2 Et )... ) E, and e > 0. Then we can find f and 0
in E (k 1, n) such that

luxl _<f (R)’’’(R)fn, In21--< 9k(R)’’’(R)gn,

p(ux) >_ IIAII, IIf, ll,- and p(u2) > IIxll, IInll,- .
Let

and put

Then

and

f, =A IIAII (p(ul) + )l/ for k 1, n- 1

f"={k<_,-tH IIfll(P(ux)+e)-x/}f.
f’ (R)...(R) f’ =f (R)...(R) f,

IIf,ll (p(ux) + )x/ for k 1, n.

It follows that we may assume that

IIAII -< (p(ux) / f,) 1/pk for k 1, n.

Similarly we may assume that

IIkll < (P(U2) / )x/ for k 1, n.

Next we observe that E ... ) E, can be considered a subspace of

Lo(X x x X # x x #,,),

so that we can apply H61der’s inequality for n factors. In case all Pk < we
get

lut +ul<ft(R)"’(R)f,,+g(R)’"(R)g,,

<_ (f + g)/v (R)... (R) (f" + gn")/".
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Hence

p(u + u) <_ I-I II(f + g)/ll
k<n

Pk

-< I-I (p(u) + p(u2) + 2,)x/’’ p(u) + p(u,) + 2.
k<n

Since e > 0 was arbitrary, we have that p(ul + u2)< p(ul)+ p(u2). In case
one or more of the Pk’S is we have to replace each (fk + gk)t/’k by sup
(fk, gk), but for the rest the argument remains the same.
The following theorem is now an immediate consequence of the two pre-

vious theorems.

THEOREM 2.3. Let B be a positive n-linear mapfrom
L(X, l) x x L(X, #) into L(X, #)

where q > 0 and Ek P 1. Then there exists a unique positive linear oper-
ator

T" Lt (R)... (R) L- L
such that B T (R).

Remark. If q>l we do not need to assume that kP- =1 in above
theorem, since B induces then a continuous linear map T from L, (R)...
(R) L,n---, L. In case 0 < q < 1 the bilinear map B is jointly continuous, but
does not necessarily induce a continuous linear operator from Lpl (R)...
(R) L,n L, except when k P- 1. In the next section we shall show that
there exist a jointly continuous B" L2 x L L2/a which does not induce a
continuous linear operator from L2 (R) L1 L2/a. Moreover we only use
above theorem for 0 < q < 1 in the next section.

3. Factorization of positive multilinear maps

Let (X, #) be a a-finite measure space. Then the following theorem is fun-
damental for factorization of linear maps with values in Lo(X, #).

THEOREM 3.1. (Maurey-Nikisin, see [5]). Let A Lo(X,/z) be a convex
set of non-negative functions bounded in measure. Then there exists dp > 0 in
Lo(X, #) such that (1/b) A is bounded in Lt(X, #).

We now present our first factorization result.
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THEOREM 3.2. Let B" Lvl(X1, 1al) x x Lvn(Xn, ln)-. Lo(X, ) be a posi-
tive n-linear map and let r >_ 1 be such that Zk<n P r-1. Then there exists

b Lo(X,/) with b > 0 a.e. such that

1- B(Lpl Lpn L.(X,

Proof

where r- + (r’)-
linear map

Define Bl" LI x Lpn x L,,--- Lo by means of

Bl(fl, ...,f.,f.+ 1) =f.+ B(f, ...,f.)

1. Then by Theorem 2.3 there exists a unique positive

T" LIT )"-) L( L,,--* Lo
such that T (R) B1. By the above theorem we can find Lo(x, l), dp > 0
a.e. such that

1- T(L,I ( L,. L,,)
_

LI(X, #).

This implies immediately that

1
dp B(L, x x L)_

We note that for n 1 we have"

COROLLARY 3.3 (Nikisin [6], THEOREM 4). If T" Lv(Y, v)--. Lo(X, #) is
a positive linear map, then there exists c Lo(X, #), b > 0 a.e. such that
(1/b) T(L,)

_
L,.

We now show, that if B in Theorem 3.2 takes its values in Lq(X, Iz) for
some q > 0, then b can be chosen in Ls for some s determined by r and q.
The following theorem takes the place of Theorem 3.1, and does not seem to
have been stated explicitly in the literature before, although our proof was
partially inspired by Maurey’s work.

THEOmM 3.4. Let A
_

Lq(X, #) be a convex set of non-negative functions
such that f dlz < 1 for all f A. Assume 0 < q < 1. Then there exists dp > 0
in L, with I111, -< 1 and r-1 q-1 1 such that

f d# <_ l for all f A.
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Proof Let s (1 -q)-x and let Us be the positive unit ball of Ls. Then
Us is weakly compact, since 1 < s < oo. Define F" Us x A R+ w {o} by

where we employ 0/0 0 as a convention. Then for every f A, F(h,f) is
convex and lower semicontinuous with respect to the weak topology of Ls
(see [5], p. 11). Moreover, for every h Us, F(h,f) is trivially concave on A.
It follows that we can apply a slightly extended version of Ky Fan’s minimax
theorem (extended since we allow + o as a value of F). Thus

min max F(h, f)= max min F(h, f).
hUs fA fA hUs

Since F(h, f) < 1 for h =ft-), it follows that there exists ho U such that

F(ho,f)=f+d#<_l for allf A.

Put b h/q and one sees readily that I111, 1.

THEOREM 3.5. If B" L x x L.--, Lq (q > O) is a positive n-linear oper-
ator and r >_ 1 is such that r- ZkP and r >_ q, then there exists 0 <_
Lswiths- =q--r- such that

1
B(Lt, x x L,.)

_
Lr.

Proof Assume first r q. Then b 1 satisfies the condition of the
theorem. Assume now r > q and define q by q-x (r’)-x + q-x. Define the
positive n-linear map Bx" L, x x Lp. x L,,-- Lo by

n(A, L,L+ ) =L+ n(A, L).

We show that B maps actually into Lql.
L,,. Then, by H61der’s inequality,

Let f 6 L,, (1 < < n) and f.+

Bx(f, f.+ ) dla <_ f.+ d# B(f,...,f,) d#

Hence B maps into LI. Applying Theorem 2.3 we find a positive linear
operator
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such thatBt=T(R).Sinceq-l=(r’)-l+q-l= l+(q-l-r-1)> 1, wecan
apply Theorem 3.4 to get 0 < Ls with s-1 q-1 1 q-1 r-1 such
that

1- T(Lm Lt, L,,)
_

It follows as before that

1

ck
B(Lp’ x x Lp,) L,.

As before we get for n 1"

COROLLARY 3.6 (Maurey). If T" L--, Lq (q > O) is a positive linear oper-
ator and p >_ q, then there exists 0 <ck Ls with s-1 q-1 p-1 such that

1
"-2" T(L,)

_
L,.

We present some examples to indicate the scope of above theorems.

Example 1. Let E {fe Lo([0, 112): ess sups lf(s, t)l dt < oo}. Define
the positive linear operator T: E Lo([0, 1] 2) by (Tf)(s, t)=f(t, s). Assume
that for some 0 < e < 1 there exists X,

_
[0, 1] 2 with #(X) _< e such that

)x, T(E) c__ E. Then there exists M > 0 such that

esssupfZx,(S,t)lf(t,s)ldt<_Messsupflf(s,t)ldts forallfeE.

We apply this inequality to functions f(s, t) with f(s, t)= 9(t) LI([0, 1]) to
get the inequality

ess sup [" 7.x.(S, t)] g(s)[ dt <_ M[[ 9111
d

for all 0 e LI[0, 1]. Put h,(s) 7.x.(S, t) dt. Then h, > 0 on a set of measure
> 1 e and

oh, o -< MII g
for all g LI[0, 1], which is a contradiction. This example shows that
Theorem 3.2 and Corollary 3.3 cannot be extended to arbitrary Banach func-
tion spaces.

Example 2. Let Tf(x) I Ix y[- l/2f(y) dy for f s L2[0, 1]. Then T is
a positive linear operator from L2 into L2. Suppose T factors through Loo;
i.e., suppose there exists 0 < q e Lo[0, 1] such that (1/b) T(L2)

_
Loo. Then

there exists M > 0 such that]Tf(x)] < Mck(x)[lfl[2 a.c. This implies (see [9],
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theorem) that T is a Carleman operator; i.e., y---, T(x, y)= Ix- y1-1/2 is in
L2[0, 1] for a.e. x, which is clearly not the case. Hence T does not factor
thorugh Loo. Define now B: L2 x L1 ---, Lo by B(f, 9) 9Tf Then B defines a
positive bilinear operator from L2 x L1---, L2/3. This bilinear operator
extends to a positive linear operator S: L2 (R) L1 L2/3, which by above con-
siderations cannot be extended to a positive linear operator from L2 L1.
Hence we cannot drop the condition that p-1 1 in Theorem 2.3 or that

p-i < 1 in Theorem 3.5.

Example 3. Let (X, #) be a probability measure space and let be an
ergodic family of measure-preserving transformations on X, which is closed
under composition (see [10] for an explanation of these notions). Let Pl, P2
and r > 1 such that p-1 + p r-1. Let B: Lp(X, #) x Lp(X, #) Lo be a
positive bilinear map. Assume B commutes simultaneously with every
member of -. Then B is a bounded map into L,.(X, #). For the proof of this
note that if e > 0, then there exists Ce > 0 and A c X with #(A0 < such
that AIB(f, O)I" < Ce for all f and O with Ilfll < 1 and e ll2 <- 1 by
Theorem 3.2. If now wl, wn ’, then it follows that

B(f, #)I’ -< C,
,- (A)

for all such f and g (by the commuting property). Hence

A, Z,k-t(A)I B(f, g)I’ Ce

if 2 > 0 and ,= 2 1. It follows now from [10] (corollary after Lemma
1) that there exists a sequence hn of such convex combinations such that
h,,(x)---, #(A) a.e. It follows from Fatou’s lemma that #(A)I B(f, #)I’ < C, for
ally and g with Ilfll < 1 and llp < 1; i.e.,

f CB(f, g)I’ d# _<
1

for all such f and .
We proceed by indicating the extension of the theorems of this section to

positive n-linear operators defined on E1 x... x E, where each Ek is a
Banach lattice. For the following definition and properties connected with it
we refer to [3].

DEFINITION. A Banach lattice E is called p-convex if there exists a con-
stant M < c such that

< M ’. IIx, if 1 < p < c,
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or

< M max IIxll if p ,
for every choice of vectors {x,: k 1, n} in E. It is proved in [3] that a
p-convex Banach lattice E can be renormed equivalently so that E, endowed
with the new norm and the same order, is a p-convex Banach lattice with
constant M 1. Using this one proves the following theorem similarly to the
theorems proved before.

THEOREM 3.7. If Ek (k 1,..., n) are Pk-Convex Banach lattices and

B’Ex x... xE---,L (q_>0)

is a positive n-linear map and r >_ 1 such that r- k P and r > q, then
there exists 0 <_ ck L with s- q- r- such that

1

k
B(E1 x x En) L,

We conclude by deriving an interesting consequence of Theorem 3.4 not
connected with the main theme of our paper.

THEOREM 3.8. Let H
_
L (0 < q < 1) be a convex set of non-neoative func-

tions which is bounded in L. Suppose that H is compact in Lo, then H is
compact in L.

Proof By Theorem 3.4 we can find > 0 a.e. in L, (r-x q-x 1) such
that

fd#<l forallfH.

Let e > 0. Then we can write X as a disjoint union X X2 such that

and such that #(X)< . Then we can find di > 0 such that #(A)< fi, A_

X implies that (a b" d#)- < e. Let A
_

X. Then we have via H51der’s
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inequality

It follows that xf d# < e for all f e H and that #(A) < 6, A
_
X2 implies

that

for all fe H; i.e., {fqx2:fe H} is uniformly integrable. Let f. e H. Then
by passing to a subsequence we may assume that f.(x)fo(x) a.e. It follows
from Fatou’s lemma that also xl f d# < e. By Egoroff’s theorem we can
find Xo- X2 with #(X2\Xo)< 6 such that f(x)--)fo(x) uniformly on Xo.
By the above we have xXXof d# < e for all n, so again by Fatou’s lemma,
xxxof d# e. It now follows that

2Xo o

2a(e + e) + 2a(e + e) + { If.- fo a dp
dxo

2"+2e + [ IL-fol d.
dxo

Since f.,f uniformly on Xo and since e > 0 is arbitrary it follows that

-f q d#-- 0.
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